JMP Connections
Wiley & SAS Business Series

The Wiley & SAS Business Series presents books that help senior-level managers with their critical management decisions. Titles in the Wiley & SAS Business Series include:

- Analytics: The Agile Way by Phil Simon
- Analytics in a Big Data World: The Essential Guide to Data Science and Its Applications by Bart Baesens
- A Practical Guide to Analytics for Governments: Using Big Data for Good by Marie Lowman
- Bank Fraud: Using Technology to Combat Losses by Revathi Subramanian
- Big Data Analytics: Turning Big Data into Big Money by Frank Ohlhorst
- Big Data, Big Innovation: Enabling Competitive Differentiation through Business Analytics by Evan Stubbs
- Business Analytics for Customer Intelligence by Gert Laursen
- Business Intelligence Applied: Implementing an Effective Information and Communications Technology Infrastructure by Michael Gendron
- Business Intelligence and the Cloud: Strategic Implementation Guide by Michael S. Gendron
- Business Transformation: A Roadmap for Maximizing Organizational Insights by Aiman Zeid
- Connecting Organizational Silos: Taking Knowledge Flow Management to the Next Level with Social Media by Frank Leistner
- Data-Driven Healthcare: How Analytics and BI Are Transforming the Industry by Laura Madsen
- Delivering Business Analytics: Practical Guidelines for Best Practice by Evan Stubbs
Demand-Driven Forecasting: A Structured Approach to Forecasting, Second Edition by Charles Chase

Demand-Driven Inventory Optimization and Replenishment: Creating a More Efficient Supply Chain by Robert A. Davis

Developing Human Capital: Using Analytics to Plan and Optimize Your Learning and Development Investments by Gene Pease, Barbara Beresford, and Lew Walker

The Executive’s Guide to Enterprise Social Media Strategy: How Social Networks Are Radically Transforming Your Business by David Thomas and Mike Barlow

Economic and Business Forecasting: Analyzing and Interpreting Econometric Results by John Silvia, Azhar Iqbal, Kaylyn Swankoski, Sarah Watt, and Sam Bullard

Economic Modeling in the Post Great Recession Era: Incomplete Data, Imperfect Markets by John Silvia, Azhar Iqbal, and Sarah Watt House

Enhance Oil & Gas Exploration with Data Driven Geophysical and Petrophysical Models by Keith Holdaway and Duncan Irving

Harness Oil and Gas Big Data with Analytics: Optimize Exploration and Production with Data Driven Models by Keith Holdaway

Health Analytics: Gaining the Insights to Transform Health Care by Jason Burke

Heuristics in Analytics: A Practical Perspective of What Influences Our Analytical World by Carlos Andre Reis Pinheiro and Fiona McNeill

Human Capital Analytics: How to Harness the Potential of Your Organization’s Greatest Asset by Gene Pease, Boyce Byerly, and Jac Fitz-enz

Implement, Improve and Expand Your Statewide Longitudinal Data System: Creating a Culture of Data in Education by Jamie McQuiggan and Armistead Sapp

JMP Connections by John Wubbel
Killer Analytics: Top 20 Metrics Missing from your Balance Sheet by Mark Brown
Machine Learning for Marketers: Hold the Math by Jim Sterne
On-Camera Coach: Tools and Techniques for Business Professionals in a Video-Driven World by Karin Reed
Predictive Analytics for Human Resources by Jac Fitz-enz and John Mattox II
Predictive Business Analytics: Forward-Looking Capabilities to Improve Business Performance by Lawrence Maisel and Gary Cokins
Profit Driven Business Analytics: A Practitioner’s Guide to Transforming Big Data into Added Value by Wouter Verbeke, Cristian Bravo, and Bart Baesens
Retail Analytics: The Secret Weapon by Emmett Cox
Social Network Analysis in Telecommunications by Carlos Andre Reis Pinheiro
Statistical Thinking: Improving Business Performance, Second Edition by Roger W. Hoerl and Ronald D. Snee
Strategies in Biomedical Data Science: Driving Force for Innovation by Jay Etchings
Style & Statistic: The Art of Retail Analytics by Brittany Bullard
Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics by Bill Franks
The Analytic Hospitality Executive by Kelly A. McGuire
The Value of Business Analytics: Identifying the Path to Profitability by Evan Stubbs
The Visual Organization: Data Visualization, Big Data, and the Quest for Better Decisions by Phil Simon
Too Big to Ignore: The Business Case for Big Data by Phil Simon
Using Big Data Analytics: Turning Big Data into Big Money by Jared Dean
Win with Advanced Business Analytics: Creating Business Value from Your Data by Jean Paul Isson and Jesse Harriott

For more information on any of the above titles, please visit www.wiley.com.
I dedicate this book to my mother and father, my wife Rosmary Wubbel, and son Leslie Wubbel for all their love and support. I especially want to thank three strong ladies, sisters to me for their guidance, care, and constructive comments. Thanks to my best friend and son Leslie for his reviews and the many conversations and topic discussions that helped make this book possible. Thanks to my nieces, especially Catherine Mintmire, for producing the graphic art work. And finally, too numerous to mention the many business friends and mentors in software engineering and data science fields including Philip Douglas Brown for his insights and perspectives on making the connections in data for advancing analytical capabilities.
Contents

Preface xv

Chapter 1 Generalized Context for Decision Process Improvement 1
1.1 Situational Assessment (Current State) 3
1.2 Problem Statement 11
1.3 Visualizing State Transition 15
1.4 Metrics On-Demand 20

Chapter 2 Real-Time Metrics Business Case 25
2.1 Project Description and Objectives—A Case Study 27
2.2 Solution Description 31
2.3 Cost and Benefit Analysis 34
2.4 Financial Assessment 37
2.5 Implementation Timeline 42
2.5.1 Contemplating Startup 42
2.5.2 Skills Dependencies and Timeline Consideration 44
2.5.3 Implementation Starting Point 46
2.5.4 Implementation to Deployment 49
2.6 Critical Assumptions and Risk Assessment 50
2.6.1 Critical Assumptions 50
2.6.2 Risk Assessment 51
2.7 Recommendations: Transmigrate the Enterprise 58

Chapter 3 Technical Details and Practical Implementation 63
3.1 Hardware Foundations 69
3.2 Solution Stack 70
3.3 Integration of Hardware and Software Infrastructure 72
3.4 Build Out 72
3.5 The Construction of a Metric 79
3.6 Metric Case Study 80
CONTENTS

Chapter 4 Harvesting Benefits and Extensibility 99
 4.1 Benefits Example 100
 4.2 Extensibility 101
 4.3 Configuration Management Version Control 102

Chapter 5 So What About a Bad Economy? 107
 5.1 Overachievement—Data Virtualization 110
 5.2 JMP Connection as the Universal Server 114
 5.3 Well-Formed Data 117
 5.4 Linked Data 120

Chapter 6 Decision Streams 133

Chapter 7 Delivery and Presentations 139
 7.1 Push Versus Pull Delivery 140
 7.2 Presentation 143
 7.3 DIY, But Leave the Poor Bi Person Alone! 156
 7.4 Advanced Presentation Method 157

Chapter 8 In Closing (As-Built) 163

Glossary 169

Appendix A Server-Side PHP Code 173

Appendix B JMP JSL Time Constant Learning Curve Script 175

Appendix C JMP GUI User Interface Code Example 181

Appendix D Resource Description Framework File Example 185

Appendix E Sample Hardware Requirements 191

Appendix F Early Warning Deliverable 193

Appendix G JMP PRO Connections: The Transversality of the Capability Maturity Model 203
 G.1 Tangential Concept 204
 G.2 Transversal Concept 205
 G.3 Univariate to Multivariate Process Control 206
 G.4 JMP Process Screening 208
CONTENTS

G.5 Transversal Maturity Space in Relation to JMP PRO Features 210
G.6 Summary 212

References 213

Suggested Reading 217

Index 219
List of Figures

1.1 JMP CONNECTIONS Capability Maturity Model Levels 0 and 1 4
1.2 JMP CONNECTIONS Capability Maturity Model Levels 2 and 3 5
1.3 JMP CONNECTIONS Capability Maturity Reference Model 6
1.4 Maturity through Level State Transitions 13
1.5 Common Cycle Time to Build and Publish a Weekly Dashboard 15
1.6 Transition from Level 1 to Level 2 19
1.7 Achieving On-Demand Capability 21
2.1 Business Case Basics 26
2.2 Dashboard 28
2.3 Balanced Scorecard 29
2.4 Graphical Ontology Example: Human Resources 33
2.5 Micro-warehouse Value Tool 38
2.6 Generating Value—Leveraged Knowledge Asset 41
2.7 KPI Development Timeline 48
2.8 BRF Risk Assessment 51
2.9 Example—Large Application Spreadsheet Type 57
2.10 Financial Regulation Documents 59
3.1 Conceptual Illustrations of the JMP CONNECTIVIY Platform 66
3.2 Disk Operating System (DOS) Command Prompt 77
3.3 Definition of the Time-Constant Learning Curve Function 82
3.4 Total Productive Maintenance Conceptual Diagram 84
3.5 Sequence Column and OEE Values Column in a JMP Table 85
3.6 Learning Curve Formula Specification 86
LIST OF FIGURES

3.7 Configuration for Gauss-Newton Iteration 87
3.8 Nonlinear Fit Program 88
3.9 Nonlinear Fit Output 89
3.10 Nonlinear Fit Results 90
3.11 Learning Curve Formula for Estimating OEE 90
3.12 Estimating OEE Formula 91
3.13 Setting Up to Display the Control Chart 92
3.14 Control Chart with Forecasting Errors Out of Criteria 93
5.1 Data Virtualization Server 112
5.2 Federated Virtualization Engine 115
5.3 Federated Concept 116
5.4 Small-Scale Cookie Batch 124
5.5 Recipe Ingredient Metrics 125
5.6 Hierarchical Data Format 127
5.7 Cookie Data in a Table Format 128
7.1 Senders push and receivers pull 143
7.2 Junctured KPI Thought Process for Connecting the Dots 152
7.3 Information Linkage between Parent–Child KPIs 155
7.4 Quick Response Code 156
7.5 JMP GUI Window with JMP Table 158
7.6 Office Temperature Study 160
7.7 Chocolate velvet anyone? 162
8.1 Public Domain: William Thomson Oil Painting 165
G.1 Tangential View 204
G.2 Transversal Maturity Model View 205
G.3 Office Temperature Study 211
Preface

JMP Pro® is the centerpiece software that is capable of saving your business in difficult economic times. JMP CONNECTIONS (herein referred to as “the Model Platform”)\(^1\) illustrates the technical means and financial variables that will leverage peak productivity. JMP CONNECTIONS provides a clear pathway toward quickly generating actionable intelligence from your organization’s raw data for optimal decision-making purposes. The prime reason for describing a CONNECTIONS platform is the fact that JMP Pro® enables computational in-memory statistical analytical capability second to none in the business, engineering, and scientific world. When a person is able to make a connection, what most often happens is a decision and this fact should generate broad discussion as well as potentially collective performance improvements for groups, teams, or large organizations.

More than ever before, metrics are playing the most important role in the conduct of a business on the competitive stage today. In typical fashion, software comes with a wealth of features, functions, and extensibility. In many cases several software packages may be required to satisfy or facilitate common business functions in support of the operation. Office suites come to mind as an example.

When business conditions are challenging or when strategic goals continually set the bar higher for better performance, innovation is a key factor toward contributing to results that exceed expectations. Consequently, the task of producing metrics must become an innovation as well. As a result, one must visualize a model of capability when it comes to designing, developing, generating, and reporting within your own company, division, or all the way down to the department level. Given the nature of today’s office suites, metrics tend to be produced once a week, once a month, or quarterly with

\(^1\)The Model Platform describes a Capability Maturity Model supporting the development of Business Intelligence Competency Center for yielding knowledge from data for making optimal decisions in a business enterprise.
each having a cycle time to completion. JMP CONNECTIONS suggests a model, or innovation, that eliminates cycle time so that there is a reduction in full-time equivalents (FTEs) for metric production purposes whereby the metrics produced are real-time or, in other words, “metrics on-demand.”

The key to understanding how this type of innovation can lessen tough economic times is through improved business decision making. It is innovative by differentiating between cycle time methods versus metrics that are available with either the latest available data or real-time aggregate raw data material, transformed into usable knowledge.

JMP Pro® is the central hub and can become your command and control center for managing and executing a business operating system on many varied scales. The journey in building a real-time metric production system is simplified through a series of capability maturity steps. Pooling the data from disparate silos starts with data aggregation and integration forming a repository. Mining the repository for conducting statistical analysis, the journey transitions through three levels leading to a final maturity level of predictive modeling and analytic goals. The goals are supportive of the key performance indicators required by the strategic objectives set forth for proper performance management. This book will not only discuss the model but help an organization implement the model with their own people.
CHAPTER 1

Generalized Context for Decision Process Improvement
1.1 Situational Assessment (current state)
1.2 Problem Statement
1.3 Visualizing State Transition
1.4 Metrics On-Demand

DECISION PROCESS IMPROVEMENT FOR CORPORATE PERFORMANCE MANAGEMENT

Business is making clear that to stay competitive in the market we need to make decisions quickly and often with disparate data sets. JMP CONNECTIONS should be viewed as a business-oriented data discovery tool and is not an information technology (IT) or enterprise SAP1 Centric model because as is so often the case, data sets are not under the control of the IT department. Data may reside in silos, dozens of spreadsheets, or proprietary database applications. Thus, we can best describe this exercise as the "decision process improvement." If we can improve on the way metrics are produced, it can directly improve the timely implementation of actual decisions for corporate performance management.

The Holy Grail of the Information Age particularly in the information technology (IT) shop is the notion of data integration and interoperability. The Institute of Electrical and Electronics Engineers defines interoperability as:

The ability of two or more systems or components to exchange information and to use the information that has been exchanged.

Unfortunately, interoperability has never been entirely achieved across a large enterprise before.

However, in support of staying competitive, the popular business press and IT periodicals have been pushing “business intelligence” (BI). Business intelligence is a broad category of applications and technologies for gathering, storing, analyzing, and providing access to data to help enterprise users make better business decisions.

1SAP stands for Systeme, Anwendungen, Produkte in der Datenverarbeitung, which, translated to English, means Systems, Applications, Products in data processing.
As postulated in the Preface, a tough economy implies a propensity to cut back on expenditures across a wide cross section of the enterprise that may also include BI software acquisitions. Utilizing JMP Pro®, the following pages will show precisely how the development of state-of-the-art metrics can be facilitated without the need for a major capital expenditure (CAPEX) project.

1.1 SITUATIONAL ASSESSMENT (CURRENT STATE)

ADVANCEMENT IN METRICS FOR BUSINESS AUGMENTATION

Before describing the common state of affairs that may be typical from small to large businesses, a framework for visualizing capability maturity with regard to the development of metrics and their use is outlined in Figure 1.1.

0. The lowest level of capability maturity (Level 0) would be a business or organization that may not have an IT department. Most of the management and reporting of business data is done using spreadsheets and perhaps the facilities of software office suites/applications for presentations. Reporting may be ad hoc or sporadic due to such factors as data that is not readily in a form for use in conducting statistical analysis when required. Companies often have so much data that they realize knowledge is locked up; however, they have no practical, inexpensive way to develop and utilize it.

1. The first level of maturity (Level 1) is where companies produce dashboards, scorecards, and KPIs on a regular basis. Perhaps on an annual basis, metrics are reviewed for relevance as needs change over time. Metrics retained may be refined and presentation and timely delivery mechanisms are level set² depending on who is to be receiving them and at what levels of the enterprise they are to be receiving and using them. Publishing BI tools like dashboards (DBs) and scorecards (SCs) have measurable cycle times.

²A situation in which everyone in a group has a basic understanding of a situation.
2. The second level of maturity (Level 2) for an organization would be a realization that some subset of deliverable metrics could be converted to metrics “on-demand.” In identifying these on-demand metrics, the cycle time to generate or refresh a set of deliverable dashboards would be completely eliminated. (See Figure 1.2.)

3. The third and highest level of maturity (Level 3) is a two-part configuration. (See Figure 1.2.)

Level 3, Part 1

- Eliminate cycle time to create on-demand metrics resulting in reduction in FTEs.

Level 3, Part 2

- Human capital resource reallocation for:
 - Performing advanced statistical analysis
 - Predictive analytics and modeling

Level 3, Part 1, maturity level, focuses on reducing the time it takes (cycle time) to produce the metrics on a scheduled basis,
thus in turn reducing the number of FTEs required to produce those metrics. One FTE required to update a dashboard every week does not leave enough time for any other production tasks for metrics. The amount of time for an FTE is finite. As hours are freed up, other knowledge within the data sets can be developed and utilized. Achieving the second level of maturity leads into Level 3, Part 2 because now predictive analytics and the full power of JMP Pro can be leveraged perhaps without the addition of more FTEs. The graphic view in Figure 1.3 summarizes the reference model for maturity capability for business intelligence metrics.

The development of JMP CONNECTIONS is applicable to literally every type of business. All examples cited in this book are totally fictional and for illustrative purposes, which can be adapted to any business. The examples are generic in the sense that the common fuel crucial to business execution is the enterprise data, mature knowledge assets, and performance indicators across the spectrum of organizations that desire optimal results. In many circumstances, particularly in larger firms, one expects to find whatever data they need on the large enterprise database applications. In fact, the information is out there but its access is less than ideal. It may in no way be in a
format to provide any statistical analysis capability. It lacks a certain agility for manipulative processes for generating BI tools or data. It is a “what you see is what you get” due to the hard-coded requirements built into the application. Consequently, a query returned is often a table of data or records that do not necessarily communicate or impart knowledge to the recipient. Something extra needs to be done.

Additionally, one would think that, especially within technology firms or scientific and engineering firms, data management would be state of the art. For many and perhaps for a majority, business is
conducted using spreadsheets, small desktop database applications, web applications, text files, and sticky notes. In fact, the proliferation of spreadsheets from one year to the next with no sense of version control is prevalent where many sheets act as placeholders for data rather than actually doing any computations or analysis.

Given the standard corporate desktop environment, when a set of metrics are required, they are likely prepared using a combination of the office suite applications. These may include the word processor, spreadsheet, and presentation software applications. A chart or graph may be present with some annotation explaining the meaning of the numbers and is the bare minimum or Level 0 of maturity for making metrics. Thus, it is useful to point out here exactly what types of BI solutions exist.

1. Executive scorecards and dashboards
2. Online Analytical Processing (OLAP) analysis
3. Ad hoc reporting
4. Operational reporting
5. Forecasting
6. Data mining
7. Customer intelligence

Each of the BI solutions has a data analysis ingredient or function that derives the reported out metric for a particular BI solution. While features and functions may be alike, what sets these apart is how they are applied to support decision making.

To be more precise in thinking about analytic metrics, there are three areas of data analysis derived from data science, information technology, and business applications that can be categorized as follows:

* PREDICTIVE (Forecasting)
* DESCRIPTIVE (Business Intelligence and Data Mining)
* PRESCRIPTIVE (Modeling, Optimization, and Simulation)

Without efficient sharing of operational business intelligence, a company is going to suffer breakdowns from small to large, be