Practical Python
Design Patterns

Pythonic Solutions to Common Problems

Wessel Badenhorst

Apress’

Practical Python Design
Patterns

Pythonic Solutions to Common
Problems

Wessel Badenhorst

Apress’

Practical Python Design Patterns: Pythonic Solutions to Common Problems

Wessel Badenhorst
Durbanville, Eastern Cape, South Africa

ISBN-13 (pbk): 978-1-4842-2679-7 ISBN-13 (electronic): 978-1-4842-2680-3
https://doi.org/10.1007/978-1-4842-2680-3

Library of Congress Control Number: 2017957538

Copyright © 2017 by Wessel Badenhorst

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Cover image by Shutterstock (www.shutterstock.com)

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Michael Thomas
Coordinating Editor: Mark Powers
Copy Editor: April Rondeau

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and
the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM
Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484226797. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

For Tanya, my love, always.

Table of Contents

About the AUROFc.ccccmiiimnmnsnsnssss s nn s nn e nnn s xiii
About the Technical REVIEWETccusurssassssnssssssssassssnsssasssssssssnssssssssassssnsssansssssnsansas XV
AcknowledgmEeNtS......cccueemmssssssnmsnnssmmssssssssssssnnsssssssssssssssnnnnsssssssssssnnnnnnsssssssssssnnnnns XVii
Chapter 1: Before We Beginccccuusseenmmssssnsnmmsssssnnssssssssssssssssssssssssssssssssssssnssssssnnssssss 1
THE MASTEIS ...t bR 1
Becoming @ Better Programmercccceecevverieenenierses e seesessesseessessesssssessessessssssessessesssssssaessennes 3
Deliberate PraCtiCec.covrereriieree e 4
SINQIE FOCUS ...cveteirereerteseseressesessesessesaeses e ssessesaess s e saesaese e e nsesaesaeseesesaesaesaessnnesaesasssssensesaenes 5
Rapid FEEUDACK.........cceeeererere et sa e s s s a e s s e nn e s ae s e e e e nesaenanans 5
STEICN YOUISEIT ... 6
Stand on the Shoulders of GIANtS...........cccovrrenrsn e —————— 7

HOW DO YOU DO TRIS? ...c.ciiirrieiiirisisssse s s se s e ss e sssesssss s 7

The Ability 10 COUISE COITECT.....ccvierrirerreriererresersererresss e re s s e e s sse e se s e ssesaesa s e ssesaesaesessesaeses 8
SYSLEMS TRINKING.....ccuiceiieiirerire s e s e e st e se s 9
MENTAl MOUEIS ... e n e nnnne s 9
The Right TOOIS fOr the JOD ... s 10
Design Patterns as a CoNCEPL ..o s 11
What Makes a DeSign Pattern?coucvvrennenmnnscsnssssese s sessssessssssesssssssenens 11
ClaSSIfICALIONccceereeerreerise s e e p e nr e e 12

The TOOIS WE Will BE USING ..c.vvvereerieririirieresresissese e sessessessessessssessessesssssssessessesssssssessessessssessessens 13
How 10 Read ThiS BOOKccueirinerinrnssiss e se s e sesss s 13
Setting Up Your Python ENVIFONMENTccccevvveririereressensere e sessessessesessessessessssessessessesssssssesseses 14
O LINUX. ittt se s s sesa s sn e sesnn s 14

0 81 TR 15

TABLE OF CONTENTS

L0 T T 16
VIFUBIENV ... e e 17

o (0] 18
] TR 19

I 1 = o 19
T 1 - 1 1 OO OSSR 19

VM e eE e e nan 19

o T T 20
SUDIME TEXE ... e 20
SUIMIMAIY....ceveereecrere e e e e e e e s re e e e s e e e e s Re e s ae e se e e e nRe e e se e nennnnnnrnnnes 21
Chapter 2: The Singleton Pattern.........ccccccinnnsemmmmmssssnmmmssssnmmssssnmssssnmssssnms 23
LTI (0] 01T o SRS STSRN 23
(=T g (=IO 0T O 29
{08 1= T T4 N) 32

o CC] (01T 35
Chapter 3: The Prototype Patternccccccvviineemmmnninnnnnssss s 37
LI T30 (0 0] = o S 37
Beyond the FirSt STEPS........ccvirrisrrcse s 37
Base for an ACtU@l GAME..........ccccvererierrneserese e e 38
Implementing the Prototype Pattern........cccvvrvnin v 51
Shallow CopY VS. DEEP COPY ..euvrererrerrrrerserserssssssessessessssessessesssssssessessesssssssessessssssssssessesssssssesseses 52

3] 1 L1 1 00) OO OS 53
Dealing With NeSted SIFUCTUIEScovccoeeeereee e 54
DT o I o OO 55
Using What We Have Learned in Our Project.........ccovvrncnnnnnnssenssesssssss s sssse e 56
(=] £ T N 59
Chapter 4: Factory Patterncccuvmeemmmmnnnnmmmssssssssnmnsssmssssssssssssssssssssssssssssssssnsnes 61
[T TS = (=T o 61
THE GAME LOOP ..everiercrresie e sr st r s s sr e e e bbb s b b e e s ne b e r e e nnenne s 63

TABLE OF CONTENTS

The Factory Method ..o s 68

B TC oLy s T o T (0] S 70
B30T 111 T SRR 72
(] (01T TSSOSO 73
Chapter 5: Builder Pattern.........cccuuemmminsmmmmmmssssnmmmssssnmmmssssnmmssssssmsssssssesssssssnnns 75
ANTi-PAIEINS ...t 84
A NOte 0N ADSITACTIONcucuccerisrsscise s 89

(] (01T T 90
Chapter 6: Adapter Pattern.........ccccccmminnemnnmnssesnmmmmssssmmssssssmnssssssesssssssmmms 91
Don’t Repeat YOUrSelf (DRY)ccvcveiiniisircre s s ss e sss s srs s nnas 93
Separation 0f CONCEIN ..o e 93
SAMPIE PrODIBM.......o e s 96
ClaSS AUAPIET.......cieicirerere s e e ne s 97
Object Adapter Pattern ... s 98

D10 Q37 1 4o P 99
Implementing the Adapter Pattern in the Real World...........cccoovvninnninininnnnsenene e 100
Parting SNOTScecerivisirire e e a e e ae e nne 102
(=] (ST 103
Chapter 7: Decorator Pattern.........ccccivunsmmmnmnssssnnnmmssssssnesssssssssssssssnsssssssssssssssnnnnss 105
The Decorator PAtIErN..........cco e 108

0 0T 113
Retaining Function __name__ and __doc__ Attributes........cccceecevrrirvrrnnencrcer e rererens 114
DECOrating CIASSESccueoeruecrerererseserreseresesessese e ses e s e e sse e ses e s e sss e se e e s e e sss e sse e nensssenns 118

Lo L (110] 1 0] SR 121
(] (oSSR 121
Chapter 8: Facade Pattern..........ccucccmmnnnemmmmmsssssmmmmmsssssnmmsssssnmnssssssssssssssssssssnnns 123
Point 0f SAIE EXAMPIEcvcerevirierere e srs s s e s e ss s e snesae e s e saesaessssesaesnees 123
SYSIEMS EVOIUTION.......ccerereirtesersere st s s s e e se s sae e s s s sa e e s saesae e snesaesaesa s e saesaesassesnenaesaes 127
What Sets the Facade Pattern Apart ... s 129

vii

TABLE OF CONTENTS

Parting SNOLSccciiiiirirr e e 132
(] (o1 132
Chapter 9: Proxy Patternccccnnmmemmmmmmmmmmmmssssssssnsmmsssssssssssssssssssssssssssssnnes 133
MEMOIZALION ... e 133
THe ProXy PatIBIN.......ccccoeecreer e s 136
REMOLE PrOXYcoveiecireresiesis s e s 139
VIFTUGE PTOXY 1.vceivceiree e ss s s s se e s e sn e s e sensensnsanens 139
PrOtECHION PrOXY «.vvueveeceriesesiiesssese s ss s sr s sr s s sns s 140
PArting SNOTScvceriririiriere s s e s s a e e a e e e nne 140
(T (01T T 141
Chapter 10: Chain of Responsibility Pattern..........ccuscmmnnsmnnmnnsssnnmmnssssssmsssssnn 143
Setting Up @ WSGI SEIVET ...t e 145
Authentication HEAEIS..........cccoeerrerereeree s e 146
The Chain of Responsibility Patternccovvererrnsnnesnsse e sessesessenens 150
Implementing Chain of Responsibility in Our Project.........ccccvvvvninnncsnies e 154
A More Pythonic Implementationc.ccoevrvriniennsnsne e s ssesessessessens 159
o1 T TS 10O 164
(] (01T T 165
Chapter 11: Command Patternccccccmrriinnisnssssssnmmmmmmmsssssssssssneessssssssssns 167
Controlling the TUMIE.....c..ccce e e 167
The CommMANd PALLEINcccvierrrcciree s nne e 169
Parting SNOLScoveiiriiercirresre e e 177
(=] (1T 177
Chapter 12: Interpreter Patiern ... 179
Domain-SPeCific LANQUAGESccecererrererrerererseseressesssssssessessessssessessesssssssessessessssessessesssssnsessens 179
AdvaNtages Of DSLS........ccceerererrnenmsesssssssssse s s s s sesassssssassens 183
Disadvantages 0f DSLS.......cucvvreriernnrereressesese s saesessessessessssessesaesssssssessesasssssensesaes 183
ComPOSIte PAIEIN ... s 188
Internal DSL Implementation Using the Composite Patternccccvvvevvvnrenienensensenenns 189

viil

TABLE OF CONTENTS

Implementing the Interpreter Pattern ... 194

Lo 1 (] T0 T 1 0] 3 201
(] (o1 SR 201
Chapter 13: Iterator Patterncconsmmmmemmmmsnmmmssnnmsssnmssssmssssmssassssssssssnsnns 203
Python Internal Implementation of the Iterator Patternc.cccovvvniecniscnnscsnnesncse e 206
02T 00 OSSPSR 213
GENErator FUNCHONSccoviiirecrre s e 214
GENErator EXPrESSIONcccvvveerreerrssesssesesse s sr s e se s s s sr s s e s nn s s s 216
Parting SNOTScvceririrsirire e s e s ae e e nne 217
(] (0T 217
Chapter 14: Observer Patternccccivnneemmmnssssnnmmssssssnssssssssnesssssssssssssssssesssssnnnss 219
Parting SNOLSccccciiiiirrr e e 236
(] (o1 237
Chapter15: State Pattern..........ccccunnmemmmmmniinmnnnsssssnn s 239
STAtE PALIEIN ... e 242
Parting SROLScoviieiiirce e e 247
(=] (T R 248
Chapter 16: Strategy Pattern..........ccccinniemmmmnnnesnmmmnssssnmnssssnmnssssssssssssessnn 249
o1 T TS 10U 254
(] (01T 255
Chapter 17: Template Method Pattern.........cccovrmmmmmninnnnnnsssesnmnsssssss 257
Lo 1 110] 1 0] 3 269
EXBICISES. . eveerreeressesesresesseseses e s se e e e e e e s e s e b e e e e R e R e e e e AR nr e s 269
Chapter 18: Visitor Pattern........ccccuneemmmmmmnnnmmmnsssssssnmmmmsmsssssssssssnssssssssssssssnns 271
THE VISItOr PAtIErN.......ccceericriesinese e sn s sr s sn s 284
o1 T TS 10O 296
(] (01T T 297

ix

TABLE OF CONTENTS

Chapter 19: Model-View-Controller Patternccccuseemmrnssssnnmmssssssnsssssssssssssssnnnss 299
Model-View-Controller SKEIBION...........cccocererereeererers e 303
(00011 (0] T O 305
MOGEIS ...t 306
VIBWS ...t e e e AR e e e R e R e e e R 306
Bringing [t All TOQETNENceoieeee et e e s 307
Parting SNOLScccciiiiirrr e e 313
(] (o1 314
Chapter 20: Publish-Subscribe Pattern............ccccinnnmmmmmmnsssnnmnnsssnnmmsssssmnsssnn 315
Distributed MeSSage SENUEN.........cccvicernrerinenirese s sr e 322
Parting SNOTSccvceriririirire e e a e e ae e e e nae e 325
(T (01T T 326
Appendix A: Design Pattern Quick Reference........cccvusssmmssmssssnsnssssssnssssssssnsnsssssnns 327
Quick Checks fOr the COTE..........c.verreererererrneesese e 327
SINGIBION ... —————————— 328
[0 (000 4170 - S 329
[] OSSR 329
310 o SRR 330
0 T S 331
DT oT0] £ L 331
2 T2 T 332

] 11 333
Chain of ReSPONSIDIIILY.......cccureeerererrserrresere s 334
AREINALIVE ... s se s s nre e ne s e nnn e 334
{011 = o SRS 335
{00 11100 LR 336
0T T 0] (<3 S 336
1] 21 (0] O 337
L1024 1 1A R 338

TABLE OF CONTENTS

L]0 TT T T T 338
3] - L3 339
B3] [LT S 340
Template MEthod ... s 340
L 0] T 341
MOdEl—ViEW—CONTIOIIE ..o 342
PUDIISNEr—SUDSCIIDEN ..ottt 343
FINAIWOIS ...t n e ne e e 344
INO@X uueeiiismnnsssnnnsssnnnsssnnnsssnnssssanssssansssssnnssssnsssssnnssssnnssssnnssssnnssssnnssssnnssssnnssssnnnsssnnss 345

xi

About the Author

Wessel Badenhorst is deeply passionate about the process
of attaining mastery, especially in the field of programming.
The combination of a bachelor’s degree in computer science
and extensive experience in the real world gives him a
balanced and practical perspective on programming and the
road every programmer must walk.

xiii

About the Technical Reviewer

Michael Thomas has worked in software development

for more than 20 years as an individual contributor, team
lead, program manager, and vice president of engineering.
Michael has more than ten years of experience working with
mobile devices. His current focus is in the medical sector,
which is using mobile devices to accelerate information
transfer between patients and health care providers.

Acknowledgments

A very big thank you to Mark Powers and his team at Apress, without whom this book
would not have seen the light of day. To Tanya, Lente, and Philip, for letting me do this
when I could have spent time on other things, thank you. Thank you, Lord, for the grace
to complete this project. To you, the reader, thank you for taking steps to make yourself a
better programmer, thereby making the profession better.

Xvii

CHAPTER 1

Before We Begin

Design patterns help you learn from others’ successes instead of your own
failures.

—Mark Johnson

The world is changing.

As you are reading this, people all over the world are learning to program, mostly
poorly. There is a flood of “programmers” heading for the market, and there is nothing
you can do to stop them. As with all things, you will soon see that as the supply of
programmers increases, the cost of hiring programmers will decrease. Simply being able
to write a few lines of code or change something in a piece of software will (like the role
of spreadsheet or word-processing guru) become a basic skill.

If you plan on making a living as a programmer, this problem is made worse by the
Internet. You have to worry not only about programmers in your own area, but also those
from all over the world.

Do you know who does not worry about the millions of programmers produced by
the hundreds of code boot camps that seem to spring up like mushrooms?

The Masters

While everyone can write, there are still the Hemingways of the world. While everyone
can work Excel, there are still the financial modelers. And when everyone can code,
there will still be the Peter Norvigs of the world.

Programming is a tool. For a time, simply knowing how to use this tool made you
valuable. That time has come to an end. There is a new reality, the same one that a lot
of industries have had to face over the years. When a tool is new, no one wants to use it.
Then, some see the value, and it makes them twice as good as the ones who can’t use
the tool. Then, it becomes popular. Before you know it, everyone can use the Internet.

© Wessel Badenhorst 2017
W. Badenhorst, Practical Python Design Patterns, https://doi.org/10.1007/978-1-4842-2680-3_1

CHAPTER 1 BEFORE WE BEGIN

Suddenly, being able create a website becomes a lot less valuable. All the businesses
that were consulting, charging big bucks for the service, get marginalized. However, the
people who spent time mastering the tools are able to thrive no matter what happens in
the market. They can do this because they are able to outproduce the average person on
every level—quality of work, speed of development, and the beauty of the final result.

Right now, we see the popular uptake of that which is easy. The next step will be
automating what is easy. Easy tasks, in every area of life, are easy because they do not
require creativity and deep understanding, and as a result of these characteristics they
are the exact tasks that will be handed over to computers first.

The reason you picked up this book is because you want to become a better
programmer. You want to progress beyond the thousands of introductions to this and
that. You are ready to take the next step, to master the craft.

In the new world of programming, you want to be able to solve big, complex
problems. To do that, you need to be able to think on a higher level. Just like the chess
grand-masters, who can digest the game in larger chunks than mere masters, you too
need to develop the skill to solve problems in larger chunks. When you are able to look
at a brand-new problem and rapidly deconstruct it into high-level parts, parts you have
solved before, you become an exponential programmer.

When I began programming, I could not read the manual yet. There was a picture
of Space Invaders on the cover, and it promised to teach you how to program a game
yourself. It was a bit of a racket because the game ended up being a for loop and a single
if statement, not Space Invaders. But I was in love. Passion drove me to learn everything
I could about programming, which was not a lot. After mastering the basics, I stagnated,
even while attaining a BS in computer science (cum laud). I felt like what I was learning
was a simple rehashing of the basics. I did learn, but it felt slow and frustrating, like
everybody was waiting for something.

In the “real world,” it did not look a lot different. I came to realize that if I wanted to
become an exponential programmer, I had to do something different. At first, I thought
about getting a master’s degree or Ph.D., but in the end I decided to dig deeper on my own.

Ireread the old theory of computing books, and they gained new meaning and new
life. I started regularly taking part in coding challenges and studied more idiomatic
ways of writing code. Then, I began exploring programming languages and paradigms
foreign to my own. Before I knew it, I was completely transformed in my thinking about
programming. Problems that used to be hard became trivial, and some that seemed
impossible became merely challenging.

CHAPTER 1 BEFORE WE BEGIN

I am still learning, still digging.

You can do it too. Start with this very book you are reading right now. In it you will
find a number of tools and mental models to help you think and code better. After you
have mastered this set of patterns, actively seek out and master different tools and
techniques. Play with different frameworks and languages and figure out what makes
them great. Once you can understand what makes someone love a different language
than the one you use regularly, you may find a couple of ideas in it that you can integrate
into your way of thinking. Study recipes and patterns wherever you find them and
translate them into an abstract solution that you can use over and over. Sometimes,
you can simply analyze a solution you already use: can you find a more elegant way to
implement the idea, or is the idea flawed in some way? Constantly ask yourself how you
can improve your tools, your skills, or yourself.

If you are ready to dig deep and master the art, you will find ideas in this book that
will guide you along the road to mastery. We are going to explore a set of fundamental
design patterns in a real-world context. While you are doing this, you will begin to
realize how these design patterns can be seen as building blocks you can use when you
encounter a specific type of problem in the future.

My hope is that you will use the design patterns in this book as a blueprint; that it will
help you kick-start your own collection of problem-solution chunks. After you have read
this book, you should be well on your way to reaching the next level in your journey as a
programmer. You should also see how this set of abstract tools can be translated into any
programming language you may encounter, and how you can use ideas and solutions
from other languages and incorporate them into your mental toolbox.

Becoming a Better Programmer

To become a better programmer, you need to decide to obsess about mastery. Every
day is a new opportunity to become better than the day before. Every line of code is an
opportunity to improve. How do you do that?

* When you must work on a piece of existing code, leave the code
better than you found it.

e Tryto complete a quick problem-solving challenge every day.

e Look for opportunities to work with people who are better
programmers than you are (open source projects are great for this).

CHAPTER 1 BEFORE WE BEGIN

o Focus on deliberate practice.
o Practice systems thinking whenever you can find an excuse.
e Collect and analyze mental models.

e Master your tools and understand what they are good for and what
they should not be used for.

Deliberate Practice

Dr. Anders Erickson studied people who reached a level of performance we call mastery.
He found that these people had a couple of things in common. The first, as popularized
in Malcolm Gladwell’s book Outliers, was that these people all seemed to have spent a
significant amount of time working on the skill in question. The actual numbers vary, but
the time invested approached about 10,000 hours. That is a significant amount of time,
but simply spending 10,000 hours, or ten years, practicing is not enough. There is a very
specific type of practice that was shown to be required for master-level performance. The
key to world-dominating skill is deliberate practice.

We will look at how this relates to programming in a moment, but let’s first look at
what deliberate practice is.

Deliberate practice is slow, halting, anti-flow. If you are practicing the violin,
deliberate practice would entail playing the piece extremely slowly, making sure you hit
every note perfectly. If you are deliberately practicing tennis, this might mean doing the
same shot over and over and over again with a coach, making small adjustments until
you are able to perfectly hit that shot in that location time and time again.

The problem with knowledge work is that the standard deliberate practice
protocols seem foreign. A sports task or playing an instrument is fairly simple when
compared to the process involved in programming. It is a lot harder to deconstruct the
process of designing and developing a software solution. It is hard to figure out how to
practice a way of thinking. One of the reasons for this is that a solved problem tends to
stay solved. What I mean by that is that as a developer you will very rarely be asked to
write a piece of software that has already been written. Finding the “shot” to practice
over and over is hard.

CHAPTER 1 BEFORE WE BEGIN

In programming, you want to learn different ways to solve problems. You want to
find different challenges that force you to attack the same type of problem with different
constraints. Keep working at it until you understand the problem and the set of possible
solutions inside out.

In essence, deliberate practice has these components:

o Each practice session has a single focus.

o The distance (time) between attempt and feedback is as short as
possible.

o Work on something that you cannot yet do.

o Follow in the path of those who have gone before you.

Single Focus

The reason you only want to focus on one thing during a specific training session is that
you want devote all your attention to the element that you wish to improve. You want to
do whatever it takes to do it perfectly, even if it is only once. Then, you want to repeat the
process to get another perfect response, and then another. Every practice run is a single
reinforcement of the skill. You want to reinforce the patterns that lead to the perfect
result rather than those that have less desirable outcomes.

In the context of this book, I want you to target a single design pattern at a time.
Really seek to understand not only how the pattern works, but also why it is used in the
first place and how it applies to the problem at hand. Also, think about other problems
that you might be able to solve using this design pattern. Next, try to solve some of these
problems using the pattern you are working on.

You want to create a mental box for the problem and the pattern that solves it.
Ideally, you will develop a sense for when problems would fit into one of the boxes you
have mastered, and then be able to quickly and easily solve the problem.

Rapid Feedback

One of the pieces of deliberate practice that is often overlooked is the rapid-feedback
loop. The quicker the feedback, the stronger the connection, and the more easily you
learn from it. That is why things like marketing and writing are so hard to master. The
time between putting letters on a page and getting feedback from the market is simply

CHAPTER 1 BEFORE WE BEGIN

too long to really be able to see the effects of experiments. With programming this is not
the case; you can write a piece of code and then run it for instant feedback. This allows
you to course correct and ultimately reach an acceptable solution. If you go one step
further and write solid tests for your code, you get even more feedback, and you are able
to arrive at the solution much more quickly than if you had to test the process manually
each time you made a change.

Another trick to help you learn from the process more rapidly is to make a prediction
as to what the outcome of the block of code you want to write will be. Make a note as to
why you expect this specific outcome. Now write the code and check the result against
the expected result. If it does not match up, try to explain why this is the case and how
you would verify your explanation with another block of code. Then, test that. Keep
doing it until you have attained mastery.

You will find yourself getting feedback on different levels, and each has its own merit.

Level one is simply whether the solution works or not. Next, you might begin
considering questions such as “How easy was the solution to implement?” or “Is this
solution a good fit for the problem?” Later, you might seek out external feedback, which
can take the form of simple code review, working on projects, or discussing solutions
with like-minded people.

Stretch Yourself

What are the things that you shy away from? These are the areas of programming that
cause you slight discomfort. It might be reading from a file on disk or connecting to a
remote API. It makes no difference if it is some graphical library or a machine-learning
setup, we all have some part of the craft that just does not sit comfortably. These are usually
the things that you most need to work on. Here are the areas that will stretch you and force
you to face your own weaknesses and blind spots. The only way to get over this discomfort
is to dive deep into it, to use that tool so many times and in so many ways that you begin to
get a feel for it. You must get so comfortable with it that you no longer have to look up that
file open protocol on stack overflow; in fact, you have written a better one. You jump rope
with the GUI and suck data out of a database with one hand tied behind your back.

There is no shortcut to this level of mastery; the only way is through the mountain.
That is why so few people become true masters. Getting there means spending a lot of
time on the things that are not easy, that do not make you feel like you are invincible.
You spend so much time in these ego-destroying zones that very few masters of any craft
have a lot of arrogance left in them.

6

CHAPTER 1 BEFORE WE BEGIN

So, what should you work on first? That thing you thought of as you read the previous
two paragraphs.

Working your way through the design patterns in this book is another good way of
finding potential growth areas. Just start with the singleton pattern and work your way
through.

Stand on the Shoulders of Giants

There are people who do amazing things in the programming space. These people often
give talks at developer conferences and sometimes have a presence online. Look at what
these people are talking about. Try to understand how they approach a novel problem.
Type along with them as they demonstrate solutions. Get into their head and figure out
what makes them tick. Try to solve a problem like you imagine one of them would do
it; how does the solution you come up with in this way differ from the one you came up
with on your own?

Really great developers are passionate about programming, and it should not take
a lot of prodding to get them to talk about the finer details of the craft. Seek out the user
groups where this type of developer hangs out and strike up a lot of conversations. Be
open and keep learning.

Pick personal projects that force you to use design patterns you have yet to master.
Have fun with it. Most of all, learn to love the process, and don’t get caught up on some
perceived outcome rather than spending time becoming a better programmer.

How Do You Do This?

Begin the same way Leonardo da Vinci began when he decided to make painting his
vocation.

Copy!

That is right. Begin by identifying some interesting problem, one that is already
solved, and then blatantly copy the solution. Don’t copy/paste. Copy the solution by
typing it out yourself. Get your copy to work. Once you do, delete it all. Now try to solve
the problem from memory, only referring to the original solution when your memory
fails you. Do this until you are able to reproduce the solution flawlessly without looking
at the original solution. If you are looking for solutions to problems that you can copy
and learn from, Github is a gold mine.

CHAPTER 1 BEFORE WE BEGIN

Once you are comfortable with the solution as you found it, try to improve on the
original solution. You need to learn to think about the solutions you find out there—
what makes them good? How can you make them more elegant, more idiomatic, more
simple? Always look for opportunities to make code better in one of these ways.

Next, you want to take your new solution out into the wild. Find places to use the
solution. Practicing in the real world forces you to deal with different constraints, the
kinds you would never dream up for yourself. It will force you to bend your nice, clean
solution in ways it was never intended to be. Sometimes, your code will break, and you
will learn to appreciate the way the problem was solved originally. Other times, you may
find that your solution works better than the original. Ask yourself why one solution
outperforms another, and what that teaches you about the problem and the solution.

Try using languages with different paradigms to solve similar problems, taking from
each and shaping a solution yourself. If you pay attention to the process as much as you
do to actually solving the problem, no project will leave you untouched.

The beauty of working on open source projects is that there is usually just the right
mix of people who will help you along, and others who will tell you exactly what is wrong
with your code. Evaluate their feedback, learn what you can, and discard the rest.

The Ability to Course Correct

When exploring a problem, you have two options: go on trying this way, or scrap
everything and start over with what I have learned. Daniel Kahnamann, in his book
Thinking, Fast and Slow, explains the sunk cost fallacy. It is where you keep investing in
a poor investment because you have already invested so much in it. This is a deadly trap
for a developer. The quickest way to make a two-day project take several months is to try
to power your way through a poor solution. Often it feels like it would be a massive loss if
we were to scrap a day, a week, or a month’s work and start from nothing.

The reality is that we are never starting from scratch, and sometimes the last
10,000 lines of code you are deleting are the 10,000 lines of code you needed to write to
become the programmer you need to be to solve the problem in 100 lines of code with a
startlingly elegant solution.

You need to develop the mental fortitude to say enough is enough and start over,
building a new solution using what you have learned.

No amount of time spent on a solution means anything if it is the wrong solution.
The sooner you realize that the better.

CHAPTER 1 BEFORE WE BEGIN

This self-awareness gives you the ability to know when to try one more thing and
when to head in a different direction.

Systems Thinking

Everything is a system. By understanding what elements make up the system, how they
are connected, and how they interact with one another, you can understand the system.
By learning to deconstruct and understand systems, you inevitably teach yourself how
to design and build systems. Every piece of software out there is an expression of these
three core components: the elements that make up the solution, and a set of connections
and interactions between them.

At a very basic level, you can begin by asking yourself: “What are the elements of the
system [want to build?” Write these down. Then, write down how they are connected to
each other. Lastly, list all the interactions between these elements and what connections
come into play. Do this, and you will have designed the system.

All design patterns deal with these three fundamental questions: 1) What are the
elements and how are they created? 2) What are the connections between elements, or
what does the structure look like? 3) How do the elements interact, or what does their
behavior look like?

There are other ways to classify design patterns, but for now use the classical three
groupings to help you develop your systems thinking skills.

Mental Models

Mental models are internal representations of the external world. The more accurate
your models of the world are, the more effective your thinking is. The map is not the
territory, so having more-accurate mental models makes your view of the world more
accurate, and the more versatile your set of mental models is, the more diverse the set of
problems you will be able to solve. Throughout this book you will learn a set of mental
tools that will help you solve specific programming problems you will regularly come
across in your career as a programmer.

Another way to look at mental models is to see them as a grouping of concepts
into single unit of thought. The study of design patterns will aid you in developing new
mental models. The structure of a problem will suggest the kind of solution you will
need to implement in order to solve the problem in question. That is why it is important
that you gain complete clarity into exactly what the problem is you are trying to solve.

CHAPTER 1 BEFORE WE BEGIN

The better—and by better I mean more complete—the problem definition or description is,
the more hints you have of what a possible solution would look like. So, ask yourself dumb
questions about the problem until you have a clear and simple problem statement.

Design patterns help you go from A (the problem statement) to C (the solution)
without having to go through B and however many other false starts.

The Right Tools for the Job

To break down a brick wall, you need a hammer, but not just any hammer—you need

a big, heavy hammer with a long handle. Sure, you can break down the wall with the
same hammer you would use to put nails in a music box, but it will take you a couple of
lifetimes to do what an afternoon’s worth of hammering with the right tool will do.

With the wrong tools, any job becomes a mess and takes way longer than it should.
Selecting the right tool for the job is a matter of experience. If you had no idea that there
were hammers other than the tiny craft hammer you were used to, you would have a
hard time imagining that someone could come along and take down a whole wall in a
couple of hours. You might even call such a person a 10x wall breaker. The pointI am
trying to make is that with the right tool you will be able to do many times more work
than someone who is trying to make do with what they have. It is worth the time and
effort to expand your toolbox, and to master different tools, so that when you encounter
a novel problem you will know which to select.

To become a master programmer, you need to consistently add new tools to your
arsenal, not just familiarizing yourself with them, but mastering them. We already looked
at the process for attaining mastery of the tools you decide on, but in the context of
Python, let me make some specific suggestions.

Some of the beauties of the Python ecosystem are the packages available right
out of the gate. There are a lot of packages, but more often than not you have one or
two clear leaders for every type of problem you might encounter. These packages are
valuable tools, and you should spend a couple of hours every week exploring them. Once
you have mastered the patterns in this book, grab Numpy or Scipy and master them.
Then, head off in any direction your imagination carries you. Download the package
you are interested in, learn the basics, and then begin experimenting with it using the
frameworks touched on already. Where do they shine, and what is missing? What kinds
of problems are they especially good at solving? How can you use them in the future?
What side project can you do that will allow you to try the package in question in a real-
world scenario?

10

CHAPTER 1 BEFORE WE BEGIN

Design Patterns as a Concept

The Gang of Four’s book on design patterns seems to be the place where it all started.
They set forth a framework for describing design patterns (specifically for C++), but the
description was focused on the solution in general, and as a result many of the patterns
were translated into a number of languages. The goal of the 23 design patterns set forth
in that book was to codify best-practice solutions to common problems encountered in
object-oriented programming. As such, the solutions focus on classes and their methods
and attributes.

These design patterns represent a single complete solution idea each, and they keep
the things that change separate from the things that do not.

There are many people who are critical of the original design patterns. One of these
critics, Peter Norvig, showed how 16 of the patterns could be replaced by language
constructs in Lisp. Many of these replacements are possible in Python too.

In this book, we are going to look at several of the original design patterns and
how they fit into real-world projects. We will also consider arguments about them in
the context of the Python language, sometimes discarding the pattern for a solution
that comes stock standard with the language, sometimes altering the GoF solution to
take advantage of the power and expressiveness of Python, and other times simply
implementing the original solution in a pythonic way.

What Makes a Design Pattern?

Design patterns can be a lot of things, but they all contain the following elements (credit:
Peter Norvig, http://norvig.com/design-patterns/ppframe.htm):

e Pattern name

o Intent/purpose

e Aliases

e Motivation/context
e Problem

e Solution

e Structure

o Participants

11

http://norvig.com/design-patterns/ppframe.htm

CHAPTER 1 BEFORE WE BEGIN

e Collaborations

o Consequences/constraints
e Implementation

e Sample code

o Known uses

¢ Related patterns

In Appendix A, you can find all the design patterns we discuss in this book structured
according to these elements. For the sake of readability and the learning process, the
chapters on the design patterns themselves will not all follow this structure.

Classification

Design patterns are classified into different groupings to help us as programmers talk
about categories of solutions with one another and to give us a common language when
discussing these solutions. This allows us to communicate clearly and to be expressive in
our discussions around the subject.

As mentioned earlier in this chapter, we are going to classify design patterns
according to the original groupings of creational, structural, and behavioral patterns.
This is done not only to stick to the general way things are done, but also to aid you, the
reader, in looking at the patterns in the context of the systems they are found in.

Creational

The first category deals with the elements in the system—specifically, how they

are created. As we are dealing with object-oriented programming, the creation of
objects happens through class instantiation. As you will soon see, there are different
characteristics that are desirable when it comes to solving specific problems, and the
way in which an object is created has a significant effect on these characteristics.

Structural

The structural patterns deal with how classes and objects are composed. Objects can be
composed using inheritance to obtain new functionality.

12

CHAPTER 1 BEFORE WE BEGIN

Behavioral

These design patterns are focused on the interaction between objects.

The Tools We Will Be Using

The world is shifting toward Python 3. This shift is slow and deliberate and, like a glacier,
cannot be stopped. For the sake of this book, we will release Python 2 and embrace

the future. That said, you should be able to make most of the code work with Python 2
without much trouble (this is less due to the code in the book and more a result of the
brilliant work done by the Python core developers).

With Python, CPython (the default one) specifically, you get to use Pip, the Python
Package Installer. Pip integrates with PyPI, the Python Package Index, and lets you
download and install a package from the package index without manually downloading
the package, uncompressing it, running python setup.py install and so on. Pip makes
installing libraries for your environment a joy. Pip also deals with all the dependencies
for you, so no need to run around after required packages you have not installed yet.

By the time you begin working on your third project, you are going to need a lot of
packages. Not all of these packages are needed for all of your projects. You will want
to keep every project’s packages nicely contained. Enter VirtualEnv, a virtual Python
interpreter that isolates the packages installed for that interpreter from others on the
system. You get to keep each project in its own minimalist space, only installing the
packages it needs in order to work, without interfering with the other projects you may
be working on.

How to Read This Book

There are many ways to read a book, especially a programming book. Most people start
a book like this hoping to read it from cover to cover and end up just jumping from code
example to code example. We have all done it. With that in mind, there are ways you can
read this book and gain optimal value from the time spent on it.

The first group of readers just wants a quick, robust reference of pythonic versions
of the GoF design patterns. If this is you, skip ahead to Appendix A to see the formal
definition of each of the design patterns. When you have time, you can then return to the
relevant chapter and follow the exploration of the design pattern you are interested in.

13

CHAPTER 1 BEFORE WE BEGIN

The second group wants to be able to find specific solutions to specific problems.

For those readers, each design pattern chapter starts with a description of the problem
addressed by the pattern in question. This should help you decide if the pattern will be
helpful in solving the problem you are faced with.

The last group wants to use this book to master their craft. For these readers, I suggest
you begin at the beginning and code your way through the book. Type out every example.
Tinker with every solution. Do all the exercises. See what happens when you alter the
code. What breaks, and why? Make the solutions better. Tackle one pattern at a time and
master it. Then, find other real-world contexts where you can apply your new knowledge.

Setting Up Your Python Environment

Let’s begin by getting a working Python 3 environment running on your machine. In this
section, we will look at installing Python 3 on Linux, Mac, and Windows.

On Linux

The commands we use are for Ubuntu with the apt package manager. For other
distributions that do not work with apt, you can look at the process for installing Python
3 and pip using an alternative package manager, like yum, or installing the relevant
packages from source.

The whole installation process will make use of the terminal, so you can go ahead
and open it up now.

Let’s begin by checking if you have a version of Python already installed on your
system.

Just a note: For the duration of this book, I will indicate terminal commands with
the leading $; you do not type this character or the subsequent space when entering the
comment in your terminal.

$ python --version

If you have Python 3 (as is the case with Ubuntu 16.04 and up) already installed, you
can skip ahead to the section on installing pip.

If you have either Python 2 or no Python installed on your system, you can go ahead
and install Python 3 using the following command:

$ sudo apt-get install python3-dev
14

CHAPTER 1 BEFORE WE BEGIN

This will install Python 3. You can check the version of the Python install, as before,
to verify that the right version was installed:

$ python3 --version

Python 3 should now be available on your system.
Next, we install build essentials and Python pip:

$ sudo apt-get install python-pip build-essential
Now, check that pip is working:
$ pip --version

You should see a version of pip installed on your system, and now you are ready
to install the virtualenv package; please skip past the Mac and Windows installation
instructions.

On Mac

macOS comes with a version of Python 2 installed by default, but we will not be needing
this.

To install Python 3, we are going to use Homebrew, a command-line package
manager for macOS. For this to work, we will need Xcode, which you can get for free
from the Mac AppStore.

Once you have installed Xcode, open the Terminal app and install the command-line
tools for Xcode:

$ xcode-select --install

Simply follow the prompt in the window that pops up to install the command-line
tools for Xcode. Once that is done, you can install Homebrew:

$ ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/
master/install)"

If you do not have XQuartz already installed, your macOS might encounter some
errors. If this happens, you can download the XQuartz .dmg here: https://www.xquartz.
org/. Then, check that you have successfully installed Homebrew and that it is working:

$ brew doctor

15

https://www.xquartz.org/
https://www.xquartz.org/

CHAPTER 1 BEFORE WE BEGIN

To run brew commands from any folder in the Terminal, you need to add the
Homebrew path to your PATH environment variable. Open or create ~/.bash _profile
and add the following line at the end of the file:

export PATH=/usr/local/bin:$PATH

Close and reopen Terminal. Upon reopening, the new PATH variable will be included
in the environment, and now you can call brew from anywhere. Use brew to find the
available packages for Python:

brew search python

You will now see all the Python-related packages, python3 being one of them. Now,
install Python 3 using the following brew command:

$ brew install python3
Finally, you can check that Python 3 is installed and working:
python3 --version

When you install Python with Homebrew, you also install the corresponding package
manager (pip), Setuptools, and pyvenv (an alternative to virtualenv, but for this book
you will only need pip).

Check that pip is working:

$ pip --version

If you see the version information, it means that pip was successfully installed on
your system, and you can skip past the Windows installation section to the section on
using pip to install VirtualEnwv.

On Windows

Begin by downloading the Python 3 Windows installer. You can download the installer
here: https://www.python.org/.

When your download is done, run the installer and select the Customize option.
Make sure that pip is selected to be installed. Also, select the option to add Python to
your environment variables.

16

https://www.python.org/

