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Preface

Branching processes constitute a fundamental part in the theory of stochastic

processes. Very roughly speaking, the theory of branching processes deals with the

issue of exponential growth or decay of random sequences or processes. Its central

concept consists of a system or a population made up of particles or individuals

which independently produce descendants. This is an extensive topic dating back to a

publication of F. Galton and H. W. Watson in 1874 on the extinction of family names

and afterwards dividing into many subareas. Correspondingly, it is treated in a

number of monographs starting in 1963 with T. E. Harris’ seminal The Theory of
Branching Processes and supported in the middle of the 1970s by Sevastyanov’s

Verzweigungsprozesse, Athreya and Ney’s Branching Processes, Jagers’ Branching
Processes with Biological Applications and others. The models considered in these

books mainly concern branching processes evolving in a constant environment.

Important tools in proving limit theorems for such processes are generating

functions, renewal type equations and functional limit theorems.

However, these monographs rarely touch the matter of branching processes in a

random environment (BPREs). These objects form not so much a subclass but rather

an extension of the area of branching processes. In such models, two types of

stochasticity are incorporated: on the one hand, demographic stochasticity resulting

from the reproduction of individuals and, on the other hand, environmental

stochasticity stemming from the changes in the conditions of reproduction along

time. A central insight is that it is often the latter component that primarily

determines the behavior of these processes. Thus, the theory of BPREs gains its own

characteristic appearance and novel aspects appear such as a phase transition. From a

technical point of view, the study of such processes requires an extension of the range

of methods to be used in comparison with the methods common in the classical

theory of branching processes. Other techniques should be attracted, in particular

from the theory of random walks which plays an essential role in proving limit

theorems for BPREs.
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With this volume, we have two purposes in mind. First, we have to assert that the

basics of the theory of BPREs are somewhat scattered in the literature (since the late

1960s), from which they are not at all easily accessible. Thus, we start by presenting

them in a unified manner. In order to simplify matters, we confine ourselves from

the beginning to the case where the environment varies in an i.i.d. fashion, the model

going back to the now classical paper written by Smith and Wilkinson in 1969. We

also put together that material which is required from the topic of branching processes

in a varying environment. Overall, the proofs are now substantially simplified and

streamlined but, at the same time, some of the theorems could be better shaped.

Second, we would like to advance some scientific work on branching processes in

a random environment conditioned on survival which was conducted since around

2000 by a German-Russian group of scientists consisting of Valery Afanasyev,

Christian Böinghoff, Elena Dyakonova, Jochen Geiger, Götz Kersting, Vladimir

Vatutin and Vitali Wachtel. This research was generously supported by the German

Research Association DFG and the Russian Foundation for Basic Research RFBR. In

this book, we again do not aim to present our results in their most general setting, yet

an ample amount of technical context cannot be avoided.

We start the book by describing in Chapter 1 some properties of branching

processes in a varying environment (BPVEs). In particular, we give a (short) proof of

the theorem describing the necessary and sufficient conditions for the dichotomy in

the asymptotic behavior of a BPVE: such a process should either die or its population

size should tend to infinity with time. Besides the construction of family trees,

size-biased trees and Geiger’s tree, representing conditioned family trees, are

described here in detail. These trees play an important role in studying subcritical

BPREs. Chapter 2 leads the reader in to the world of BPREs. It contains

classification of BPREs, describes some properties of supercritical BPREs and gives

rough estimates for the growth rate of the survival probability for subcritical BPREs.

Conclusions of Chapter 2 are supported by Chapter 3 where the asymptotic behavior

of the probabilities of large deviations for all types of BPREs is investigated.

Properties of BPREs are closely related to the properties of the so-called associated

random walk (ARW) constituted by the logarithms of the expected population sizes

of particles of different generations. This justifies the appearance of Chapter 4 that

includes some basic results on the theory of random walks and a couple of findings

concerning properties of random walks conditioned to stay non-negative or negative

and probabilities of large deviations for different types of random walks.

Chapters 5 through 9 deal with various statements describing the asymptotic

behavior of the survival probability and Yaglom-type functional conditional limit

theorems for the critical and subcritical BPREs and analyzing properties of the ARW
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providing survival of a BPRE for a long time. Here, the theory of random walks

conditioned to stay non-negative or negative demonstrates its beauty and power.

Thus, it is shown in Chapter 5 (under the annealed approach) that if a critical

BPRE survives up to a distant moment n, then the minimum value of the ARW on

the interval [0, n] is attained at the beginning of the evolution of the BPRE and the

longtime behavior of the population size of such BPREs (conditioned on survival)

resembles the behavior of the ordinary supercritical Galton–Watson branching

processes. If, however, a critical BPRE is considered under the quenched approach

(Chapter 6) then, given the survival of the process for a long time, the evolution of

the population size in the past has an oscillating character: the periods when the

population size was very big were separated by intervals when the size of the

population was small.

Chapters 7–9 are devoted to the weakly, intermediately and strongly subcritical

BPREs investigated under the annealed approach. To study properties of such

processes, it is necessary to make changes in the initial measures based on the

properties of the ARWs. The basic conclusion of Chapters 7–8 is: the survival

probability of the weakly and intermediately subcritical BPREs up to a distant

moment n is proportional to the probability for the corresponding ARW to stay

non-negative within the time interval [0, n]. Finally, it is shown in Chapter 9 that

properties of strongly subcritical BPREs are, in many respect, similar to the

properties of the subcritical Galton–Watson branching processes. In particular, the

survival probability of such a process up to a distant moment n is proportional to the

expected number of particles in the process at this moment.

We do not pretend that this book includes all interesting and important results

established up to now for BPREs. In particular, we do not treat here BPREs with

immigration and multitype BPREs. The last direction of the theory of BPREs is a

very promising field of investigation that requires study of properties of Markov chains

generated by products of random matrices. To attract the attention of future researchers

to this field, we give a short survey of some recent results for multitype BPREs in

Chapter 10. The book is concluded by an Appendix that contains statements of results

used in the proofs of some theorems but not fitting the main line of the monograph.

Götz KERSTING

Vladimir VATUTIN

August 2017
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1

Branching Processes in
Varying Environment

1.1. Introduction

Branching processes are a fundamental object in probability theory. They serve as

models for the reproduction of particles or individuals within a collective or a

population. Here we act on the assumption that the population evolves within clearly

distinguishable generations, which allows us to examine the population at the

founding generation n = 0 and the subsequent generations n = 1, 2, . . . To begin

with, we focus on the sequence of population sizes Zn at generation n, n ≥ 0. Later,

we shall study whole family trees.

Various kinds of randomness can be incorporated into such branching models.

For this monograph, we have two such types in mind. On the one hand, we take

randomness in reproduction into account. Here a main assumption is that different

individuals give birth independently and that their offspring distributions coincide

within each generation. On the other hand, we consider environmental stochasticity.

This means that these offspring distributions may change at random from one

generation to the next. A fundamental question concerns which one of the two

random components will dominate and determine primarily the model’s long-term

behavior. We shall get to know the considerable influence of environmental

fluctuations.

This first chapter is of a preliminary nature. Here we look at branching models

with reduced randomness. We allow that the offspring distributions vary among the

generations but as a start in a deterministic fashion. So to speak we consider the above

model conditioned by its environment.

Discrete Time Branching Processes in Random Environment, First Edition.
Götz Kersting and Vladimir Vatutin.
© ISTE Ltd 2017. Published by ISTE Ltd and John Wiley & Sons, Inc.
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We begin with introducing some notation. Let P(N0) be the space of all probability

measures on the natural numbers N0 = {0, 1, 2, . . .}. For f ∈ P(N0), we denote its

weights by f [z], z = 0, 1, . . .. We also define

f(s) :=
∞∑
z=0

f [z]sz, 0 ≤ s ≤ 1.

The resulting function on the interval [0, 1] is the generating function of the

measure f . Thus, we take the liberty here to denote the measure and its generating

function by one and the same symbol f . This is not just as probability measures and

generating functions uniquely determine each other but operations on probability

measures are often most conveniently expressed by means of their generating

functions. Therefore, for two probability measures f1 and f2, the expressions f1f2 or

f1 ◦ f2 do not only stand for the product or composition of their generating functions

but also stand for the respective operations with the associated probability measures

(in the first case, it is the convolution of f1 and f2). Similarly, the derivative f ′ of the

function f may be considered as well as the measure with weights

f ′[z] = (z + 1)f [z + 1] (which in general is no longer a probability measure). This

slight abuse of notation will cause no confusions but on the contrary will facilitate

presentation. Recall that the mean and the normalized second factorial moment,

f̄ :=
∞∑
z=1

zf [z] and f̃ :=
1

f̄2

∞∑
z=2

z(z − 1)f [z]

can be obtained from the generating functions as

f̄ = f ′(1), f̃ =
f ′′(1)
f ′(1)2

.

NOTE.– Any operation we shall apply to probability measures (and more generally to

finite measures) on N0 has to be understood as an operation applied to their generating

functions.

We are now ready for first notions. Let (Ω,F ,P) be the underlying probability

space.

DEFINITION 1.1.– A sequence v = (f1, f2, . . .) of probability measures on N0 is

called a varying environment.

DEFINITION 1.2.– Let v = (fn, n ≥ 1) be a varying environment. Then a stochastic

process Z = {Zn, n ∈ N0} with values in N0 is called a branching process with
environment v, if for any integers z ≥ 0, n ≥ 1

P(Zn = z | Z0, . . . , Zn−1) = (fZn−1
n )[z] P-a.s.
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On the right-hand side, we have the Zn−1th power of fn. In particular, Zn = 0
P-a.s. on the event that Zn−1 = 0. If we want to emphasize that probabilities P(·) are

determined on the basis of the varying environment v, we use the notation Pv(·).

In probabilistic terms, the definition says, for n ≥ 1, that given Z0, . . . Zn−1 the

random variable Zn may be realized as the sum of i.i.d. random variables Yi,n,

i = 1, . . . , Zn−1, with distribution fn,

Zn =

Zn−1∑
i=1

Yi,n.

This corresponds to the following conception of the process Z: Zn is the number

of individuals of some population in generation n, where all individuals reproduce

independently of each other and of Z0, and where fn is the distribution of the number

Yn of offspring of an individual in generation n− 1. The distribution of Z0, which is

the initial distribution of the population, may be arbitrary. Mostly we choose it to be

Z0 = 1.

EXAMPLE 1.1.– A branching process with the constant environment f = f1 = f2 =
· · · is called a Galton–Watson process with offspring distribution f . �

The distribution of Zn is conveniently expressed via composing generating

functions. For probability measures f1, . . . fn on N0 and for natural numbers

0 ≤ m < n, we introduce the probability measures

fm,n := fm+1 ◦ · · · ◦ fn. [1.1]

Moreover, let fn,n be the Dirac measure δ1.

PROPOSITION 1.1.– Let Z be a branching process with initial size Z0 = 1 a.s. and
varying environment (fn, n ≥ 1). Then for n ≥ 0, the distribution of Zn is equal to
the measure f0,n.

PROOF.– Induction on n. �

Usually it is not straightforward to evaluate f0,n explicitly. The following example

contains an exceptional case of particular interest.

EXAMPLE 1.2.– LINEAR FRACTIONAL DISTRIBUTIONS. A probability measure f
on N0 is said to be of the linear fractional type, if there are real numbers p, a with

0 < p < 1 and 0 ≤ a ≤ 1, such that

f [z] = apqz−1 for z �= 0,
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with q = 1− p. For a > 0, this implies

f [0] = 1− a, f̄ =
a

p
, f̃ =

2q

a
.

We shall see that it is convenient to use the parameters f̄ and f̃ instead of a and

p. Special cases are, for a = 1, the geometric distribution g with success probability

p and, for a = 0, the Dirac measure δ0 at point 0. In fact, f is a mixture of both, i.e.

f = ag + (1 − a)δ0. A random variable Z with values in N0 has a linear fractional

distribution, if

P(Z = z | Z ≥ 1) = pqz−1 for z ≥ 1,

that is, if its conditional distribution, given Z ≥ 1, is geometric with success

probability p. Then

P(Z ≥ 1) = a =
( 1

f̄
+

f̃

2

)−1

.

For the generating function, we find

f(s) = 1− a
1− s

1− qs
, 0 ≤ s ≤ 1

(leading to the naming of the linear fractional). It is convenient to convert it for f̄ > 0
into

1

1− f(s)
=

1

f̄ · (1− s)
+

f̃

2
, 0 ≤ s < 1. [1.2]

Note that this identity uniquely characterizes the linear fractional measure f with

mean f̄ and normalized second factorial moment f̃ .

The last equation now allows us to determine the composition f0,n of linear

fractional probability measures fk with parameters f̄k, f̃k, 1 ≤ k ≤ n. From

f0,n = f1 ◦ f1,n,

1

1− f0,n(s)
=

1

f̄1 · (1− f1,n(s))
+

f̃1
2
.

Iterating this formula we obtain (with f̄1 · · · f̄k−1 := 1 for k = 1)

1

1− f0,n(s)
=

1

f̄1 · · · f̄n · (1− s)
+

1

2

n∑
k=1

f̃k
f̄1 · · · f̄k−1

. [1.3]
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It implies that the measure f0,n itself is of the linear fractional type with a mean

and normalized second factorial moment

f̄0,n = f̄1 · · · f̄n, f̃0,n =
n∑

k=1

f̃k
f̄1 · · · f̄k−1

.

This property of perpetuation is specific for probability measures of the linear

fractional type. �

For further investigations, we now rule out some cases of less significance.

ASSUMPTION V1.– The varying environment (f1, f2, . . .) fulfills 0 < f̄n < ∞ for all
n ≥ 1.

Note that, in the case of f̄n = 0, the population will a.s. be completely wiped out

in generation n.

From Proposition 1.1, we obtain formulas for moments of Zn in a standard manner.

Taking derivatives by means of Leibniz’s rule and induction, we have, for 0 ≤ m < n,

f ′
m,n(s) =

n∏
k=m+1

f ′
k(fk,n(s)),

and f ′
n,n(s) = 1. In addition, using the product rule, we obtain after some

rearrangements

f ′′
m,n(s) = f ′

m,n(s)
2

n∑
k=m+1

f ′′
k (fk,n(s))

f ′
k(fk,n(s))

2
∏k−1

j=m+1 f
′
j(fj,n(s))

, [1.4]

and f ′′
n,n(s) = 0. Evaluating these equations for m = 0 and s = 1, we get the

following formulas for means and normalized second factorial moments of Zn, which

we had already come across in the case of linear fractional distributions (now the

second factorial moments may well take the value ∞).

PROPOSITION 1.2.– For a branching process Z with initial size Z0 = 1 a.s. and
environment (f1, f2, . . .) fulfilling V 1, we have

E[Zn] = f̄1 · · · f̄n,
E[Zn(Zn − 1)]

E[Zn]2
=

n∑
k=1

f̃k
f̄1 · · · f̄k−1

. [1.5]
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We note that these equations entail the similarly built formula

Var[Zn]

E[Zn]2
=

n∑
k=1

ρk
f̄1 · · · f̄k−1

, [1.6]

set up for the standardized variances

ρk :=
1

f̄2
k

∞∑
z=0

(z − f̄k)
2fk[z]

of the probability measures fk. Indeed,

n∑
k=1

ρk
f̄1 · · · f̄k−1

=

n∑
k=1

f ′′
k (1) + f ′

k(1)− f ′
k(1)

2

f̄1 · · · f̄k−1 · f̄2
k

=
n∑

k=1

f ′′
k (1)

f̄1 · · · f̄k−1 · f̄2
k

+
n∑

k=1

( 1

f̄1 · · · f̄k
− 1

f̄1 · · · f̄k−1

)

=
n∑

k=1

f̃k
f̄1 · · · f̄k−1

+
1

f̄1 · · · f̄n
− 1

=
E[Zn(Zn − 1)]

E[Zn]2
+

1

E[Zn]
− 1 =

Var[Zn]

E[Zn]2
.

1.2. Extinction probabilities

For a branching process Z , let

θ := min{n ≥ 1 : Zn = 0}

be the moment when the population dies out. Then P(θ ≤ n) = P(Zn = 0), and the

probability that the population becomes ultimately extinct is equal to

q := P(θ < ∞) = lim
n→∞P(Zn = 0).

In this section, we would like to characterize a.s. extinction. For a first criterion,

we use the Markov inequality

P(θ > n) = P(Zn ≥ 1) ≤ E[Zn]

and the fact that P(Zn ≥ 1) is decreasing in n. We obtain

lim inf
n→∞ f̄1 · · · f̄n = 0 ⇒ q = 1. [1.7]
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On the other hand, the Paley–Zygmund inequality tells us that

P(θ > n) = P(Zn > 0) ≥ E[Zn]
2

E[Z2
n]

=
E[Zn]

2

E[Zn] +E[Zn(Zn − 1)]
,

which in combination with equation [1.6] yields the bound

1

P(θ > n)
≤ E[Z2

n]

E[Zn]2
= 1 +

Var[Zn]

E[Zn|2
= 1 +

n∑
k=1

ρk
f̄1 · · · f̄k−1

. [1.8]

Thus, the question arises as to which one of both bounds captures the size of

P(θ > n) more adequately. It turns out that, under a mild extra assumption, it is

the Paley–Zygmund bound.

ASSUMPTION V2.– For the varying environment (f1, f2, . . .), there exists a constant
c < ∞ such that for all n ≥ 1

E[Yn(Yn − 1)] ≤ cE[Yn] ·E[Yn − 1 | Yn > 0],

where the random variables Y1, Y2, . . . have the distributions f1, f2, . . .

This uniformity assumption is typically satisfied, as illustrated by the following

examples.

EXAMPLE 1.3.– Assumption V 2 is fulfilled in the following cases:

i) The Yn have arbitrary Poisson-distributions;

ii) The Yn have arbitrary linear fractional distributions;

iii) There is a constant c < ∞ such that Yn ≤ c a.s. for all n.

For the proof of (iii), rewrite V 2 as

E[Yn(Yn − 1)] ≤ cE[Yn | Yn > 0] ·E[(Yn − 1)+]

and observe that E[Yn | Yn > 0] ≥ 1. �

Here comes the main result of this section.

THEOREM 1.1.– Let the branching process Z in a varying environment fulfill
Assumption V 1. Then the conditions

i) q = 1;

ii) E[Zn]
2
∣∣
= o

(
E[Z2

n]
)

as n → ∞;
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iii)
∞∑
k=1

ρk
f̄1 · · · f̄k−1

= ∞.

are equivalent.

Condition (ii) can be equivalently expressed as E[Zn] = o
(√

Var[Zn]
)
. Thus,

shortly speaking, under Assumption V 2 we have a.s. extinction whenever the random

fluctuations dominate the mean behavior of the process in the long run.

For the proof, we introduce a method of handling the measures f0,n, which will be

useful elsewhere, too. It mimics the calculation we got to know for linear fractional

distributions. For a probability measure f ∈ P(N0) with mean 0 < f̄ < ∞, we define

the function

ϕf (s) :=
1

1− f(s)
− 1

f̄ · (1− s)
, 0 ≤ s < 1.

We also set

ϕf (1) := lim
s→1

ϕf (s) =
f ′′(1)
2f ′(1)2

=
f̃

2
, [1.9]

where the limit arises by means of the Taylor expansion

f(s) = 1 + f ′(1)(s− 1) +
1

2
f ′′(t)(s− 1)2 with some t ∈ (s, 1).

From the convexity of the function f(s) we get that ϕf (s) ≥ 0 for all 0 ≤ s ≤ 1.

Then for probability measures f1, . . . , fn with positive, finite means, we obtain

1

1− f0,n(s)
=

1

f̄1 · (1− f1,n(s))
+ ϕf1(f1,n(s)).

Iterating the formula and having in mind the conventions fn,n(s) = s and

f̄1 · · · f̄k−1 = 1 for k = 1, we arrive at the following expansion.

PROPOSITION 1.3.– For probability measures f1, . . . , fn with positive, finite means
f̄1, . . . , f̄n we have

1

1− f0,n(s)
=

1

f̄1 · · · f̄n · (1− s)
+

n∑
k=1

ϕfk(fk,n(s))

f̄1 · · · f̄k−1
, 0 ≤ s < 1.

As seen from [1.2], the functions ϕfk are constant for linear fractional probability

measures. In general, we have the following sharp estimates.
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PROPOSITION 1.4.– Let f ∈ P(N0) with mean 0 < f̄ < ∞. Then, it follows for
0 ≤ s ≤ 1

1

2
ϕf (0) ≤ ϕf (s) ≤ 2ϕf (1). [1.10]

Note that ϕf is identical to zero if f [z] = 0 for all z ≥ 2. Otherwise ϕf (0) > 0,

and the lower bound of ϕf becomes strictly positive. Choosing s = 1 and s = 0
in [1.10], we obtain ϕf (0)/2 ≤ ϕf (1) and ϕf (0) ≤ 2ϕf (1). Note that for f = δk
(Dirac-measure at point k) and k ≥ 2, we have ϕf (1) = ϕf (0)/2, implying that the

constants 1/2 and 2 in [1.10] cannot be improved.

PROOF.– i) We prepare the proof by showing for g1, g2 ∈ P(N0) the following

statement: If g1 and g2 have the same support and if, for any k ≥ 0 with g1[k] > 0,

we have

g1[z]

g1[k]
≤ g2[z]

g2[k]
for all z > k,

then ḡ1 ≤ ḡ2. Indeed, for g1[k] > 0

∑
z≥k g1[z]

1−∑
z≥k g1[z]

=

∑
z≥k g1[z]/g1[k]∑
z<k g1[z]/g1[k]

≤
∑

z≥k g2[z]/g2[k]∑
z<k g2[z]/g2[k]

=

∑
z≥k g2[z]

1−∑
z≥k g2[z]

and consequently

∑
z≥k

g1[z] ≤
∑
z≥k

g2[z].

It follows that this inequality holds for all k ≥ 0, since vanishing summands on

the left-hand side may be removed. Summing the inequality over k ≥ 0, we arrive at

the claim.

For a special case, consider for 0 ≤ s ≤ 1 and r ∈ N0 the probability measures

gs[z] :=
sr−z

1 + s+ · · ·+ sr
, 0 ≤ z ≤ r.

Then for 0 < s ≤ t, k ≤ r, z > k, we have gs[z]/gs[k] ≥ gt[z]/gt[k]. We

therefore obtain that

ḡs =
sr−1 + 2sr−2 + · · ·+ r

1 + s+ · · ·+ sr
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is a decreasing function in s. Moreover, ḡ0 = r and ḡ1 = r/2, and it follows for

0 ≤ s ≤ 1

r

2
≤ r + (r − 1)s+ · · ·+ sr−1

1 + s+ · · ·+ sr
≤ r. [1.11]

ii) Next, we derive a second representation for ϕ = ϕf . We have

1− f(s) =

∞∑
z=1

f [z](1− sz) = (1− s)

∞∑
z=1

f [z]

z−1∑
k=0

sk,

and

f ′(1)(1− s)− (1− f(s)) = (1− s)
∞∑
z=1

f [z]
z−1∑
k=0

(1− sk)

= (1− s)2
∞∑
z=1

f [z]
z−1∑
k=1

k−1∑
j=0

sj

= (1− s)2
∞∑
z=1

f [z]((z − 1) + (z − 2)s+ · · ·+ sz−2).

Therefore,

ϕ(s) =
f ′(1)(1− s)− (1− f(s))

f ′(1)(1− s)(1− f(s))

=

∑∞
z=1 f [z]((z − 1) + (z − 2)s+ · · ·+ sz−2)

f̄ ·∑∞
k=1 f [k](1 + s+ · · ·+ sk−1)

.

From [1.11], it follows

ϕ(s) ≤ ψ(s)

f̄
≤ 2ϕ(s) [1.12]

with

ψ(s) :=

∑∞
z=1 f [z](z − 1)(1 + s+ · · ·+ sz−1)∑∞

k=1 f [k](1 + s+ · · ·+ sk−1)
.

Now consider the probability measures gs ∈ P(N0), 0 ≤ s ≤ 1, given by

gs[z] :=
f [z + 1](1 + s+ · · ·+ sz)∑∞
k=0 f [k + 1](1 + s+ · · ·+ sk)

, z ≥ 0.
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Then for f [k + 1] > 0 and z > k, after some algebra,

gs[z]

gs[k]
=

f [z + 1]

f [k + 1]

z−k∏
v=1

(
1 +

1

s−1 + · · ·+ s−k−v

)
,

which is an increasing function in s. Therefore,

ψ(s) = ḡs

is increasing in s. In combination with [1.12], we get

ϕ(s) ≤ ψ(s)

f̄
≤ ψ(1)

f̄
≤ 2ϕ(1), 2ϕ(s) ≥ ψ(s)

f̄
≥ ψ(0)

f̄
≥ ϕ(0).

This gives the claim of the proposition. �

PROOF (Proof of Theorem 1.1).– If q = 1, then P(θ > n) → 0 as n → ∞. Therefore,

the implications (i) ⇒ (ii) and (ii) ⇒ (iii) follow from formula [1.8]. For the remaining

part of the proof, note that P(θ > n) = P(Zn �= 0) = 1−f0,n(0), such that it follows

from Proposition 1.3

1

P(θ > n)
=

1

f̄1 · · · f̄n
+

n∑
k=1

ϕfk(fk,n(0))

f̄1 · · · f̄k−1
. [1.13]

Moreover, we observe that V 2 reads

f̃n(f̄n)
2 ≤ cf̄n · f̄n − (1− fn[0])

1− fn[0]
,

which can be converted to ϕfn(1) ≤ cϕfn(0). Then Proposition 1.4 together with

ϕfn(1) = f̃n/2 yields for 0 ≤ s ≤ 1

f̃n
4c

≤ ϕfn(s).

Together with [1.13] and Proposition 1.2, this implies with d := max(1, 4c)

1

P(θ > n)
≥ 1

f̄1 · · · f̄n
+

1

4c

n∑
k=1

f̃k
f̄1 · · · f̄k−1

≥ 1

d

E[Zn(Zn − 1)] +E[Zn]

E[Zn]2
=

1

d

(Var[Zn]

E[Zn]2
+ 1

)
.

Now the implication (iii) ⇒ (i) follows from equation [1.6]. �
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1.3. Almost sure convergence

There are a few supermartingales which allow convergence considerations for

branching processes Z in a varying environment. Under Assumption V 1, an obvious

choice is the process W = {Wn, n ≥ 0}, given by

Wn :=
Zn

f̄1 · · · f̄n
, n ∈ N0,

which is easily seen to be a non-negative martingale. Therefore, there is an integrable

random variable W ≥ 0, such that

Zn

f̄1 · · · f̄n
→ W a.s. as n → ∞.

THEOREM 1.3.– For a branching process Z with Z0 = 1 and in a varying
environment fulfilling the assumptions V 1 and V 2, we have

i) If q = 1 then W = 0 a.s.

ii) If q < 1 then E[W ] = 1.

PROOF.– The first claim is obvious. For the second one, we observe that q < 1 in view

of Theorem 1.1 implies

∞∑
k=1

ρk
f̄1 · · · f̄k−1

< ∞.

From [1.6], it follows that

sup
n

E[Z2
n]

E[Zn]2
= sup

n

Var[Zn]

E[Zn]2
+ 1 < ∞.

Therefore, W is a square-integrable martingale implying E[W ] = E[W0] = 1. �

The next theorem on the a.s. convergence of the unscaled process is remarkable,

also in that it requires no assumptions at all. We name it the Church–Lindvall

theorem. Among others, it clarifies as to which condition is needed for Z with a

positive probability to stick forever in some state z ≥ 1. In its proof, we shall

encounter a finer construction of a supermartingale.

THEOREM 1.4.– For a branching process Z = {Zn, n ≥ 0} in a varying environment,
there exists a random variable Z∞ with values in N0 ∪ {∞} such that as n → ∞

Zn → Z∞ a.s.
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Moreover,

P(Z∞ = 0 or ∞) = 1 ⇔
∞∑

n=1

(1− fn[1]) = ∞.

PROOF.– i) We prepare the proof by showing that the sequence of probability

measures f0,n is vaguely converging to a (possibly defective) measure g on N0. Note

that f0,n[0] → q. Thus, either f0,n → qδ0 vaguely (with the Dirac measure δ0 at

point 0), or else (by the Helly–Bray theorem) there exists a sequence of integers

0 = n0 < n1 < n2 < · · · , such that, as k → ∞, we have f0,nk
→ g vaguely with

g �= qδ0.

In the latter case, the limiting generating function g(s) is strictly increasing in s,

and f0,nk
(s) → g(s) for all 0 ≤ s < 1. Then, given n ∈ N0, we define ln :=

nk,mn := nk+1 with nk ≤ n < nk+1, thus ln ≤ n < mn. We want to show

that fln,n converges vaguely to δ1. For this purpose, we consider a subsequence n′

such that both fln′ ,n′ and fn′,mn′ converge vaguely to measures h1 and h2. Going in

f0,mn′ = f0,ln′ ◦ fln′ ,n′ ◦ fn′,mn′ to the limit, we obtain

g(s) = g(h1(h2(s))), 0 ≤ s < 1.

Since g is strictly increasing, h1(h2(s)) = s, which for generating functions

implies h1(s) = h2(s) = s. Thus, using the common sub-sub-sequence argument,

fln,n → δ1 as n → ∞. It follows that, as n → ∞,

f0,n(s) = f0,ln(fln,n(s)) → g(s), 0 ≤ s < 1,

which means f0,n → g vaguely, as has been claimed.

ii) We now turn to the proof of the first statement. The case g(s) = 1 for all

0 ≤ s < 1 is obvious, then g = δ0 and q = 1, and Zn is a.s. convergent to 0. Thus,

we are left with the case g(s) < 1 for all s < 1. Then, there is a decreasing sequence

(bn, n ≥ 0) of real numbers, such that f0,n(1/2) ≤ bn ≤ 1 and bn ↓ g(1/2). We

define the sequence (an, n ≥ 0) using the following equation:

f0,n(an) = bn.

Therefore, 1/2 ≤ an ≤ 1, and we also have f0,n+1(an+1) ≤ f0,n(an) or

equivalently fn+1(an+1) ≤ an. Then, the process U = {Un, n ≥ 0}, given by

Un := aZn
n · I{Zn > 0}
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is a non-negative supermartingale. Indeed, because of fn+1(0)
Zn ≥ I{Zn = 0} and

fn+1(an+1) ≤ an, we have

E[Un+1 | Z0, . . . , Zn] = fn+1(an+1)
Zn − fn+1(0)

Zn ≤ aZn
n − I{Zn = 0} = Un a.s.

Thus, Un is a.s. convergent to a random variable U ≥ 0.

Now, we distinguish two cases. Either g �= qδ0. Then g(s) is strictly increasing,

which implies an → 1/2 as n → ∞. Hence, the a.s. convergence of Un enforces the

a.s. convergence of Zn with possible limit ∞.

Or g = qδ0. Then g(1/2) = q, implying that, for n → ∞,

E[Un] = f0,n(an)− f0,n(0) = bn −P(Zn = 0) → g(1/2)− q = 0

and consequently U = 0 a.s. implying Un → 0 a.s. Since an ≥ 1/2 for all n, this

enforces that Zn converges a.s. to 0 or ∞. In both cases, Zn → Z∞ a.s. for some

random variable Z∞.

iii) For the second statement, we use the representation Zn =
∑Zn−1

i=1 Yi,n. Define

the events Az,n := {∑z
i=1 Yi,n �= z}. Then for z ≥ 1

P(Az,n) ≥ 3−z(1− fn[1]).

Indeed, if fn[1] ≥ 1/3, then

P(Az,n) ≥ P(Y1,n �= 1, Y2,n = · · · = Yz,n = 1)

≥ (1− fn[1])fn[1]
z ≥ 3−z(1− fn[1]),

and if fn[1] ≤ 1/3, then either P(Yi,n > 1) ≥ 1/3 or P(Yi,n = 0) ≥ 1/3 implying

P(Az,n) ≥ P(min(Y1,n, . . . , Yz,n) > 1) +P(Y1,n = · · · = Yz,n = 0)

≥ 3−z(1− fn[1]).

Now assume
∑∞

n=1(1 − fn[1]) = ∞. As, for fixed z, the events Az,n are

independent, it follows by the Borel–Cantelli lemma that these events occur a.s.

infinitely often. From the a.s. convergence of Zn, we get, for z ≥ 1,

P(Z∞ = z) = P(Zn �= z finitely often) ≤ P(Az,n occurs finitely often) = 0.

This implies that P(1 ≤ Z∞ < ∞) = 0.


