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Preface

A reversible computing system is a “backward deterministic” system such that every
state of the system has at most one predecessor. Hence, there is no pair of distinct
states that go to the same state. Though its definition is so simple, it is closely re-
lated to physical reversibility. The study of reversible computing originated from an
investigation of energy dissipation in reversible and irreversible computing systems.
Rolf Landauer investigated the relation between reversibility in computing and re-
versibility in physics in his paper “Irreversibility and heat generation in the comput-
ing process” (IBM J. Res. Dev., Vol. 5, pp. 183–191, 1961). He pointed out that an
irreversible logical operation inevitably causes energy dissipation in the computing
system. Since then, reversible computing has been studied in relation to physical re-
versibility. Besides the problem of energy dissipation in computing, it is important
to know how reversibility can be effectively utilized in computing. This is because
future computing devices will surely be implemented directly by physical phenom-
ena in the nano-scale level, and reversibility is one of the fundamental microscopic
physical laws of Nature. For this purpose, various models of reversible computing
have been proposed and investigated till now.

In this book, reversible computing is studied from the standpoint of the theory
of automata and computing. We deal with various reversible computing models
belonging to several different levels, which range from a microscopic level to a
macroscopic one. They are reversible physical models, reversible logic elements,
reversible functional modules composed of logic elements, reversible computing
systems such as Turing machines, cellular automata, and others. The purpose of this
book is to clarify how computation can be carried out efficiently and elegantly in
these reversible computing models. We shall see that even very simple reversible
systems have computational universality in spite of the constraint of reversibility.
We shall also see various reversible systems in different levels are related each other,
i.e., a reversible system in a higher level can be constructed out of those in a lower
level. Moreover, the construction methods are often very unique and different from
those in the traditional methods. Thus, these computing models as well as the de-
signing methods will give us new insights for future computing systems.
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viii Preface

This book is not a comprehensive textbook on reversible computing, but de-
scribes mainly the results shown in the papers by myself and my colleagues, which
were published between 1989 and 2017. In this book, readers will see how the world
of reversible computing works, how reversible computing systems are constructed
out of simple reversible primitives, how they are different from the traditional com-
puting systems, and how they can be computationally universal. In fact, we shall see
even very simple reversible systems have high capability of computing, and thus re-
versibility is not a constraint, but a useful property for computing.

This book consists of 14 chapters. Chapter 1 is an introduction. In Chaps. 2–4,
reversible logic elements for constructing reversible machines are investigated. In
Chaps. 5–8, reversible Turing machines, a standard model of reversible computing
systems, are studied. In Chap. 9, some other reversible computing models are in-
vestigated. In Chaps. 10–14, reversible cellular automata, a spatiotemporal model
of reversible dynamical systems, are studied.

There is no prerequisite knowledge to read this book besides some basics on
logic, discrete mathematics and formal languages. But, it is preferable to have some
knowledge on the theories of automata and computing. Fortunately, the framework
of reversible computing itself is very simple. Therefore, in many cases, readers can
easily understand the basic function and the structure of each such system. However,
its behavior can be very complex even if the structure of the system is simple. Hence,
sometimes, it becomes quite difficult to follow its behavior by using only paper and
pencil. In some of these cases, readers can find files in the References that contain
computer simulation results of such reversible systems.

More than 50 years have passed since Landauer’s paper appeared. Thus, the his-
tory of reversible computing is relatively long. But, it is still developing, and there
remain many problems to be investigated. Also, even at present, it is not so clear
which results will become practically useful in the future. However, the world of
reversible computing will lead readers to the new ways of thinking that cannot be
found in the traditional design methodologies for computing systems. I hope the
theory of reversible computing will stimulate readers’ interest, and open new vistas
for future computing systems.
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Chapter 1
Introduction

Abstract Reversible computing is a paradigm that has a close relation to physi-
cal reversibility. Since microscopic physical laws are reversible, and future com-
puting devices will surely be implemented directly by physical phenomena in the
nano-scale level, it is an important problem to know how reversibility can be effec-
tively utilized in computing. Reversible computing systems are defined as systems
for which each of their computational configurations has at most one predecessor.
Hence, they are “backward deterministic” systems. Though the definition is thus
rather simple, these systems reflect physical reversibility very well, and they are
suited for investigating how computing systems can be realized in reversible physi-
cal environments. In this chapter, we argue reversibility in physics and computing,
the significance of reversible computing, and the scope of this volume. Various mod-
els of reversible computing ranging from a microscopic level to a macroscopic one
are dealt with from the viewpoint of the theory of automata and computing. Ter-
minologies and notations on logic, mathematics, and formal languages used in this
volume are also summarized.

Keywords reversibility in computing, reversibility in physics, reversible computing
machine, reversible cellular automaton, reversible logic element

1.1 Reversibility in Physics and Computing

Reversibility is a notion that was argued originally in physics. It is known that mi-
croscopic physical laws are reversible in the sense that they are invariant under the
time-reversal operation. For example, in classical mechanics, the same law holds
for both positive and negative directions of time. It is also the case in quantum me-
chanics, where an evolution of a quantum system is described by a unitary operator.
Since physical reversibility is thus one of the fundamental microscopic properties
of Nature, it is an important problem to know how such a property can be effec-

1© Springer Japan KK 2017 
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2 1 Introduction

tively utilized in computing. This is because future computing devices will surely
be implemented directly by physical phenomena in the nano-scale level.

Reversibility in computing is an analogous notion to physical reversibility, but
its definition is rather simple. Reversible computing systems are systems for which
each of their computational configurations has at most one predecessor. Hence, ev-
ery computing process can be traced backward uniquely from the end to the start. In
other words, they are backward deterministic systems. Though its definition is thus
simple, we shall see later that these systems reflect physical reversibility very well.

Landauer [37] first argued the relation between reversibility in computing and re-
versibility in physics. He proposed Landauer’s principle stating that any irreversible
logical operation, such as erasure of a piece of information from memory, or a merge
of two paths in a program, is associated with physical irreversibility in the macro-
scopic level, and hence it necessarily causes heat generation in the computing sys-
tem. In particular, if one bit of information is completely erased in the system, at
least kT ln2 of energy will be dissipated, where k is the Boltzmann constant, and
T is the absolute temperature. If the computing system is reversible, then no such
lower bound on energy consumption exists, and hence it leads to a possibility of
dissipation-less computing system.

Today’s computers are composed of electronic devices, and logical operations
are realized by controlling the average behavior of a very large number of elec-
trons. Thus, generally, they consume much more energy than kT ln2 per each primi-
tive operation, even for reversible logical operations. They also require considerable
amounts of energy for giving clock signals to the electronic circuits. Therefore, at
present, kT ln2 is a negligible amount of energy in them. However, computing de-
vices will be implemented in a much more microscopic level in the future. At that
time, the lower bound kT ln2 will become critical. In addition, besides the problem
of energy consumption, for the purpose of further miniaturization of computing sys-
tems, we have to find a way of directly utilizing microscopic physical phenomena
for logical operations, where reversibility is one of the key features. Thus, investi-
gating effective methods for using such properties of Nature in computing will give
us a new insight into constructing future computers.

1.2 Significance of Reversible Computing

Reversible computing is a paradigm in which reversible computers are hierarchi-
cally constructed based on reversible physical phenomena and reversible operations.
In the theory of reversible computing, there are several levels of computing models
ranging from a microscopic level to a macroscopic one. In the bottom (i.e., micro-
scopic) level, there are reversible physical models. Reversible logic elements are in
the next level. Then, there are reversible logic circuits that work as functional mod-
ules in reversible systems. In the top level, there are various models of reversible
computers. In this hierarchy, each system in a higher level can be constructed from
systems in a lower level.
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The objective of the study of reversible computing is to clarify how computation
can be performed efficiently in reversible computers, how elegantly higher level re-
versible systems can be constructed from those in the lower level, and which kind
of simple reversible primitives are universal and useful for constructing reversible
computers. As we shall see in the following chapters, many reversible systems have
high computing capability in spite of the strong constraint of reversibility. Further-
more, universal reversible computers can be composed of very simple reversible
logic elements. In addition, some of the models are constructed in a very unique
way, which cannot be seen in the traditional design theory of computing systems
made of logic gates and memories.

A Turing machine (TM) is a standard model in the traditional theory of comput-
ing. A reversible Turing machine (RTM) is a backward deterministic TM, and is also
useful in the theory of reversible computing. Lecerf first studied RTMs in the paper
[40], where the halting problem and some other related decision problems on them
were shown to be unsolvable like the case of general (i.e., irreversible) TMs. Later,
Bennett [7] studied RTMs from the viewpoint of Landauer’s principle. Note that it
is easy to simulate an irreversible TM by an RTM by recording all the movements
in a history tape. But, when the computation terminates, they are left as “garbage”
information. Disposal of the garbage information is actually equivalent to erasure
of the information, and hence it leads to energy dissipation. Bennett showed that it
is possible to construct an RTM that simulates a given TM and leaves no garbage
information on its tape when it halts (see Sect. 5.2.3). This result is important, be-
cause any computation can be performed in an efficient way with respect to energy
consumption in an ideal situation.

After the work of Bennett, various reversible computing models ranging from
microscopic to macroscopic ones have been proposed and investigated. In partic-
ular, reversible cellular automata, reversible logic elements and circuits, reversible
physical models, and others were studied, and their relation to physical reversibility
was argued.

A cellular automaton (CA) is a framework that can deal with spatiotemporal
phenomena, and thus a reversible CA is an abstract model of a reversible spatial
dynamical system. A CA is a system composed of an infinite number of identical
finite automata called cells, which are placed and connected uniformly in a space.
Hence, it is also suited for studying how complex phenomena appear from simple
functions. Toffoli [63] investigated the relation between irreversible CAs and re-
versible CAs, and showed that an irreversible k-dimensional CA can be simulated
by a (k+ 1)-dimensional reversible CA, and thus two-dimensional reversible CAs
are computationally universal. Later, Margolus [41] proposed a very simple uni-
versal two-dimensional reversible CA. On the other hand, Morita and Harao [49]
proved that reversible CAs can be universal even in the one-dimensional case. Af-
ter that, it has been shown that there are various simple one- and two-dimensional
universal reversible CAs (see Chaps. 11–13). Therefore, computational universality
emerges even from a very primitive function of a cell.

Reversible logic elements are those whose operations are described by an injec-
tive (i.e., one-to-one) functions. An early study on reversible logic gates is found in
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the paper of Petri [55]. Later, Toffoli [64, 65] studied them in the relation to physi-
cal reversibility. In particular, he proposed a universal reversible logic gate called a
Toffoli gate. Then, Fredkin and Toffoli [25] introduced another universal reversible
gate called a Fredkin gate, and showed that any logical function can be realized
by a garbage-less circuit composed of it. On the other hand, Morita [45] proposed
a reversible logic element with one-bit memory called a rotary element (RE) and
showed any RTM can be concisely constructed by it in a very unique method (see
Sect. 6.1). Thus, besides reversible gates, a reversible logic element with memory
(RLEM), a kind of reversible sequential machine (RSM), is also useful in reversible
computing. Note that today’s computers are designed based on the well-known logic
elements such as AND, OR, NOT, and some others. These operations, in particular,
AND, OR and NOT, have been known since the era of ancient Greece (see e.g.,
[13]), and thus have a very long history. Since they were obtained from the analysis
of thinking and reasoning processes performed by humans, it is easy for us to under-
stand and use them. However, to investigate future computing systems, we should
not be tied to old traditions, and we have to look for new bases and methods that are
directly related to microscopic physical phenomena.

As for physical models of reversible computing, Fredkin and Toffoli [25] pro-
posed an interesting model called the billiard ball model (BBM). It consists of ide-
alized balls and reflectors. Logical operations are simulated by elastic collisions of
moving balls. They showed any reversible logic circuit composed of Fredkin gates
can be embedded in BBM. Of course, it can work only in an idealized situation,
since it requires infinite precision on the sizes, positions and velocities of balls.
However, it is a very insightful model for considering the relation between physical
reversibility and computational reversibility.

As seen above, various interesting ideas have been proposed so far, and they
opened new vistas in the theory of reversible computing. However, to understand it
more deeply, we still have to find and develop new methodologies for it, which do
not exist in the world of traditional computing. In order to do so, it is important not
to consider reversibility as a “constraint”, but to find a way of using it positively as
a “useful property”.

1.3 Scope of This Volume

In this volume, reversible computing is studied from the viewpoint of the theory of
automata and computing. It mainly describes the results shown in the past studies
by the author of this volume, his colleagues, and his former students. But, of course,
other researchers’ results related to them are also cited for completeness. Thus, it
is not a very comprehensive book on reversible computing. Instead, it investigates
various aspects of computational universality in reversible systems in detail.

This volume studies, in particular, the problems of how reversible machines can
be designed, how computing can be carried out in a reversible machine, how simple
universal reversible computers can be, which universal reversible logic elements
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are useful for constructing reversible computers elegantly, and so on. The following
chapters will give answers to these problems obtained so far. Although some of them
may be improved in future research, they will provide good insights into reversible
computing.

1.3.1 Organization of this book

The following chapters can be divided into three parts. The first part consists of
Chaps. 2–4, in which reversible logic elements and circuits are studied. It also in-
vestigates the relation between reversible logic elements and a reversible physical
model. The second part consists of Chaps. 5–9, in which reversible Turing ma-
chines (RTMs) and related models are studied. Thus, it deals with several reversible
computing systems in the macroscopic level. But, it also argues how RTMs can be
constructed out of reversible logic elements. The third part consists of Chaps. 10–
14, in which reversible cellular automata (RCAs) are studied. Here, the problem of
how complex phenomena, such as computational universality, appear from simple
reversible operations is investigated. Hence, the framework of RCAs itself also con-
nects between the microscopic and macroscopic levels. The details of each chapter
are as follows.

In Chap. 2, a reversible logic element called a rotary element (RE) is given. Dif-
ferent from a reversible logic gate, it is defined as a two-state reversible sequential
machine (RSM) with four input symbols and four output symbols. It is shown that
any RSM can be compactly implemented by an RE. In this sense it is a universal
logic element for constructing reversible machines. It is also shown that RE is sim-
ply realized in the billiard ball model (BBM), a kind of reversible physical model.
In Chap. 3, two-state RLEMs are classified, and their universality is investigated.
It is remarkable that all the non-degenerate RLEMs except only four two-symbol
RLEMs are universal. In addition, three two-symbol RLEMs among four are proved
to be non-universal. A systematic realization method of four-symbol RLEMs in the
BBM is also shown. In Chap. 4, reversible logic gates and their circuits are studied.
In particular, the Fredkin gate and its circuits are dealt with. Their basic proper-
ties, and their relation to RE are given. Furthermore, a method of constructing a
garbage-less circuit out of Fredkin gates that simulates a given RSM is shown.

In Chap. 5, a reversible Turing machine (RTM) is defined, and its basic prop-
erties are shown. First, universality of a garbage-less RTM proved by Bennett [7]
is explained. Then, simplification methods of RTMs, i.e., reducing the numbers of
tapes, symbols, and states of an RTM, are shown. In Chap. 6, constructing meth-
ods of RTMs out of reversible logic elements are studied. It is shown that any
RTM can be realized concisely as a circuit composed only of REs, or other two-
state RLEMs. The methods are very different from the conventional ones that use
logic gates and memory elements. In Chap. 7, universal RTMs (URTMs), which
are RTMs that can simulate any TM, are studied. Here, it is investigated how we
can obtain URTMs with small numbers of states and symbols. By simulating cyclic
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tag systems, a kind of universal string rewriting systems proposed by Cook [14],
several small URTMs are constructed. In Chap. 8, memory limited computing in
RTMs is studied. In particular, it is argued how reversibility and determinism affect
the computational power of space-bounded TMs. In Chap. 9, several models of re-
versible machines other than RTMs are studied. It is shown that a reversible counter
machine with only two counters is computationally universal. Equivalence of a re-
versible two-way multi-head finite automaton and an irreversible one with the same
number of heads is also proved.

In Chap. 10, reversible cellular automata (RCAs) are studied. Basic properties
of RCAs and design methods are shown. Here, the framework of partitioned CAs
(PCAs) is given for making it easy to design RCAs. In Chap. 11, universality of one-
dimensional RCAs is investigated, and several RCAs that simulate RTMs and cyclic
tag systems are constructed. In Chap. 12, two models of universal two-dimensional
16-state RCAs that can simulate Fredkin gates are given. A universal 81-state RCA
in which any reversible two-counter machine can be simulated by their finite con-
figurations is also shown. In Chap. 13, CAs on the triangular tessellation called the
elementary triangular partitioned cellular automata (ETPCAs) are studied. There
are 256 ETPCAs, and among them there are 36 reversible ETPCAs. In spite of the
extreme simplicity of their local transition functions, they have very rich computing
capabilities, and it is shown that ten reversible ETPCAs are computationally univer-
sal. In Chap. 14, self-reproduction in RCAs is studied. Self-reproducing CAs were
first studied by von Neumann [51]. Later, Langton [39] proposed a simplified frame-
work for self-reproducing CAs. Here, it is shown that self-reproduction of Langton’s
type is possible in two- and three-dimensional RCAs.

1.3.2 Related studies and references

Here, we give some remarks on related studies and references of reversible comput-
ing, though they are not exhaustive.

As described in Sect. 1.1, Landauer [37] investigated the relation between phys-
ical reversibility and logical reversibility. After that, several studies on reversible
computing from the physical or thermodynamic viewpoint appeared [7, 8, 9, 11, 31].
Feynman also argued reversible computing from the standpoint of physics [21, 22],
and his idea opened the way to quantum computing [19, 20]. Since evolution of a
quantum computing system is described by a unitary operator, reversible computing
is closely related to quantum computing (see, e.g., [27]). Various models of quan-
tum computing, such as quantum Turing machines [6, 12, 17, 53], quantum finite
automata [32], and quantum cellular automata [4, 5, 68], have been proposed. These
quantum computing systems can be considered as generalizations of reversible ones.
Both reversible computing and quantum computing are research fields where we are
looking for microscopic phenomena that can be directly used as primitive operations
for computing. DNA computing and molecular computing (e.g., [1, 57, 70, 71]) also
have the same objectives on such a point.
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So far, many kinds of reversible computing models were proposed and their
properties were investigated. Bennett [10] studied time/space trade-offs in reversible
Turing machines (RTMs), which is related to garbage generation and its reversible
erasure in RTMs. On the other hand, Lange, McKenzie and Tapp [38] showed that
any irreversible TM can be simulated by an RTM without increasing the memory
space, though its computing time grows exponentially. Note that a simpler simu-
lation method is given in Sect. 8.2.2. There are also studies on one-way reversible
finite automata [3, 56], two-way reversible finite automata [32], reversible push-
down automata [33], one-way reversible multi-head finite automata [34], and so on.
In Chap. 9, reversible counter machines, and two-way reversible multi-head finite
automata will be investigated. The paper by Vitányi [67] gives a survey on reversible
computing based on RTMs.

As for the study on cellular automata (CAs), there is a classical literature [51]
on von Neumann’s works that investigate construction-universality as well as com-
putational universality of CAs. The reference [30] is a general survey on CAs, and
[18, 52] are on universality of CAs. Reversible CAs (RCAs) have been studied since
the early stage of their history [28, 44, 50, 59], but they were called injective CAs
at that time. There are survey papers by Kari [29], Toffoli and Margolus [66], and
Morita [46, 47, 48] on RCAs and related topics.

We now give an additional remark on reversibility in computing. It is known that
microscopic physical laws are time-reversal-symmetric (see, e.g., [36]), and thus the
same laws hold also for the negative direction of time. But, since reversible com-
puting systems are simply defined as backward deterministic ones, the backward
transition rules may not be the same as the forward ones. Gajardo, Kari and Moreira
[26] introduced the notion of time-symmetry on CAs. It is an interesting property,
and is much closer to physical reversibility. This notion is also defined for other
machines by Kutrib and Worsch [35]. However, here we do not use this definition
because of the following reason. In many cases, reversible computing machines are
constructed hierarchically. Namely, reversible machines are implemented as a re-
versible logic circuit consisting of reversible logic elements, and the elements are
realized in a reversible physical model. In this hierarchy, only the physical model is
given as a system whose evolution is time-reversal-symmetric. Therefore, the whole
computing system can be embedded in a time-reversal-symmetric system in the bot-
tom level, even if it is not so in the higher level.

Since this volume investigates reversible systems from the standpoint of theory
of computing, there are topics that are not dealt with. Among them, it is an important
problem how a reversible computer can be realized in hardware. So far, there have
been several interesting attempts such as implementation of reversible logic circuits
as electrically controlled switches [42], c-MOS implementation of reversible logic
gates and circuits [16], and adiabatic circuits for reversible computer [23, 24]. Also,
recently, studies on synthesis of reversible and quantum logic circuits have been
extensively done [2, 15, 43, 58, 60, 61, 62, 69]. However, ultimately, reversible logic
elements and computing systems should be implemented at the atomic or molecular
level. Although finding such solutions is very difficult, it is a challenging problem
left for future investigations. Studies on more practical architectures for reversible
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computers, and on reversible programming languages are also interesting subjects
that are not dealt with in this volume. On reversible programming languages and
software, see, e.g., [54, 72, 73]. In the research field of reversible computing, there
will still be many interesting problems to study, and therefore unique ideas and novel
methodologies are sought.

1.4 Terminology and Notations

In this section, we explain basic terminology and notations on logic, mathematics,
and formal languages used in this book.

First, we give notations on logic. Here, P, P1 and P2 are propositions, x is a
variable, and P(x) is a predicate with a free variable x.

¬P Negation of P
P1∨P2 Disjunction (logical OR) of P1 and P2
P1∧P2 Conjunction (logical AND) of P1 and P2
P1⇒ P2 P1 implies P2
P1⇔ P2 P1 if and only if P2
∀x(P(x)) For all x, P(x) holds
∃x(P(x)) There exists x such that P(x) holds

When describing logical functions of logic gates, and combinatorial logic circuits,
operations of NOT (negation), logical OR, and logical AND are expressed by a,
a+b, and a·b, respectively, instead of ¬, ∨, and ∧. Exclusive OR (XOR) is denoted
by a⊕b. Here, a and b are Boolean variables with a value 0 (false) or 1 (true).

Notations and symbols on set theory are as follows, where S, S1 and S2 are sets,
a is an object, x is a variable, and P(x) is a predicate with a free variable x.

/0 The empty set
a ∈ S a is an element of S
S1 ⊆ S2 S1 is a subset (not necessarily a proper subset) of S2
S1 ⊂ S2 S1 is a proper subset of S2
S1∪S2 The union of S1 and S2
S1∩S2 The intersection of S1 and S2
S1−S2 The difference of S1 and S2
S1×S2 The Cartesian product of S1 and S2 (note that S×S is denoted by S2)
2S The power set of S
|S| The number of elements in S
N The set of all natural numbers (including 0)
Z The set of all integers
Z+ The set of all positive integers
R The set of all real numbers
{x | P(x)} The set of all elements x that satisfy P(x)
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A singleton is a set that has exactly one element.

Next, terminology on relations and mappings (functions) is given. Let S1 and S2
be sets. If R ⊆ S1×S2, then R is called a (binary) relation. Generally, let S1, . . . ,Sn
be sets, and if R ⊆ S1× ·· · × Sn, then R is called an n-ary relation. For the case
R⊆ S×S (= S2), we define Rn (n ∈N) recursively as follows: R0 = {(x,x) | x ∈ S},
and Ri+1 = {(x,y) | ∃z ∈ S ((x,z) ∈ R ∧ (z,y) ∈ Ri)} (i ∈ N). Then, R∗ and R+ are
defined below.

R∗ The reflexive and transitive closure of the relation R, i.e., R∗ =
⋃

∞
i=0 Ri

R+ The transitive closure of the relation R, i.e., R+ =
⋃

∞
i=1 Ri

A relation f ⊆ S1× S2 is called a partial mapping (or partial function) from S1
to S2, if it satisfies

∀x ∈ S1 ∀y1,y2 ∈ S2 (((x,y1) ∈ f )∧ ((x,y2) ∈ f )⇒ (y1 = y2)),

which means that for each x ∈ S1 there exists at most one y ∈ S2 such that (x,y) ∈ f .
A partial mapping f is called a mapping (or function) from S1 to S2, if it further
satisfies

∀x ∈ S1 ∃y ∈ S2 ((x,y) ∈ f ).

It is also called a total mapping (or total function). A partial mapping f from S1 to
S2 is denoted by f : S1→ S2, where the sets S1 and S2 are called the domain and the
codomain of f , respectively. As usual, (x,y) ∈ f is denoted by y = f (x). Note that
if (x,y) 6∈ f for all y ∈ S2, then f (x) is undefined. The notation x 7→ f (x) indicates x
maps to f (x).

Let f and g be total mappings such that f : A1 → B, g : A2 → B, and A1 ⊆ A2.
If ∀x ∈ A1(g(x) = f (x)) holds, then g is called an extension of f , and f is called a
restriction of g to A1, which is denoted by g|A1 .

A partial mapping f : S1→ S2 is called injective if

∀x1,x2 ∈ S1 ∀y ∈ S2 (( f (x1) = y)∧ ( f (x2) = y)⇒ (x1 = x2)).

A partial mapping f : S1→ S2 is called surjective if

∀y ∈ S2 ∃x ∈ S1 ( f (x) = y).

A partial mapping f : S1→ S2 that is both injective and surjective is called bijective.
If a total mapping f : S1→ S2 is injective (surjective, or bijective, respectively), then
it is called an injection (surjection, or bijection).

Let f : S1→ S2 be an injection. The inverse partial mapping of f is denoted by
f−1 : S2→ S1, and is defined as follows.

∀x ∈ S1 ∀y ∈ S2 ( f (x) = y ⇔ f−1(y) = x)

Hence, f−1( f (x)) = x holds for all x ∈ S1, and f−1 is an injective partial mapping.
Note that, for y0 ∈ S2, if there is no x ∈ S1 such that f (x) = y0, then f−1(y0) is
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undefined. If f is a bijection, then f−1 is totally defined, and thus called the inverse
mapping of f , which is also a bijection.

Notations on formal languages are given below. A nonempty finite set of symbols
is called an alphabet. Let Σ be an alphabet. A finite sequence of symbols a1 · · ·an
(n ∈ N) taken from Σ is called a string (or word) over the alphabet Σ . The concate-
nation of strings w1 and w2 is denoted by w1 ·w2 (usually · is omitted). The length
of a string w is denoted by |w|. Hence, if w = a1 · · ·an, then |w|= n. We denote the
empty string (i.e., the string of length 0) by λ . The reversal of a string w is denoted
by wR. Thus, if w = a1 · · ·an, then wR = an · · ·a1. For a symbol a, we use an to de-
note the string consisting of n repetitions of a (n ∈ N). We define the set of strings
Σ n (n ∈ N) recursively as follows: Σ 0 = {λ}, and Σ i+1 = {aw | a ∈ Σ ∧ w ∈ Σ i}
(i ∈ N). Then, Σ ∗ and Σ+ are defined below.

Σ ∗ The set of all strings over Σ including λ , i.e., Σ ∗ =
⋃

∞
i=0 Σ i

Σ+ The set of all strings over Σ of positive length, i.e., Σ+ =
⋃

∞
i=1 Σ i

Let Σ1 and Σ2 be alphabets. A string homomorphism is a mapping ϕ : Σ ∗1 →
Σ ∗2 that satisfy the following: ϕ(λ ) = λ , ϕ(a) ∈ Σ ∗2 for all a ∈ Σ1, and ϕ(aw) =
ϕ(a)ϕ(w) for all a ∈ Σ1 and w ∈ Σ ∗1 .

A subset of Σ ∗ is called a (formal) language over the alphabet Σ . Let L, L1 and
L2 be languages over Σ . The concatenation of L1 and L2 is defined by L1 · L2 =
{w1w2 | w1 ∈ L1 ∧ w2 ∈ L2}. We define the language Ln recursively in a similar
manner as in Σ n: L0 = {λ}, and Li+1 = L · Li (i ∈ N). Then, L∗ and L+ are as
follows: L∗ =

⋃
∞
i=0 Li, and L+ =

⋃
∞
i=1 Li.

In the later chapters, we define some automata as acceptors of languages to
investigate their capability. For this purpose, we use the notation L (A ) to de-
note the class of languages accepted by the class of automata A , i.e., L (A ) =
{L | L is accepted by some A ∈A } (see, e.g., Sect. 8.1.4).

References

1. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266,
1021–1024 (1994). doi:10.1126/science.7973651

2. Al-Rabadi, A.N.: Reversible Logic Synthesis. Springer (2004). doi:10.1007/978-3-642-
18853-4

3. Angluin, D.: Inference of reversible languages. J. ACM 29, 741–765 (1982).
doi:10.1145/322326.322334

4. Arrighi, P., Grattage, J.: Intrinsically universal n-dimensional quantum cellular automata. J.
Comput. Syst. Sci. 78, 1883–1898 (2012). doi:10.1016/j.jcss.2011.12.008

5. Arrighi, P., Grattage, J.: Partitioned quantum cellular automata are intrinsically universal. Nat-
ural Computing 11, 13–22 (2012). doi:10.1007/s11047-011-9277-6

6. Benioff, P.: The computer as a physical system: A microscopic quantum mechanical Hamil-
tonian model of computers as represented by Turing machines. J. Statist. Phys. 22, 563–591
(1980). doi:10.1007/BF01011339

7. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973).
doi:10.1147/rd.176.0525

http://dx.doi.org/10.1126/science.7973651
http://dx.doi.org/10.1007/978-3-642-18853-4
http://dx.doi.org/10.1007/978-3-642-18853-4
http://dx.doi.org/10.1145/322326.322334
http://dx.doi.org/10.1016/j.jcss.2011.12.008
http://dx.doi.org/10.1007/s11047-011-9277-6
http://dx.doi.org/10.1007/BF01011339
http://dx.doi.org/10.1147/rd.176.0525


References 11

8. Bennett, C.H.: The thermodynamics of computation — a review. Int. J. Theoret. Phys. 21,
905–940 (1982). doi:10.1007/BF02084158

9. Bennett, C.H.: Notes on the history of reversible computation. IBM J. Res. Dev. 32, 16–23
(1988). doi:10.1147/rd.321.0016

10. Bennett, C.H.: Time/space trade-offs for reversible computation. SIAM J. Comput. 18, 766–
776 (1989). doi:10.1137/0218053

11. Bennett, C.H., Landauer, R.: The fundamental physical limits of computation. Sci. Am. 253,
38–46 (1985). doi:10.1038/scientificamerican0785-48

12. Bernstein, E., Vazirani, U.V.: Quantum complexity theory. SIAM J. Comput. 26, 1411–1473
(1997). doi:10.1137/S0097539796300921
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Chapter 2
Reversible Logic Elements with Memory

Abstract A reversible logic element with memory (RLEM) is presented as a logical
primitive for constructing reversible computing systems. In the conventional design
theory of logic circuits, logic gates, which are elements without memory, are mainly
used as logical primitives. On the other hand, in the case of reversible computing,
RLEMs are also useful as logical primitives. This is because reversible machines
can be constructed easily and concisely by a simple RLEM. In addition, the design
method using RLEMs is very different from those in the traditional theory of logic
circuits based on logic gates. Thus RLEMs give new vistas and suggest various
possibilities in the theory of reversible computing. Here, we present a typical 2-state
4-symbol RLEM called a rotary element (RE), and investigate how it is realized in
the billiard ball model, a reversible physical model of computing, and how reversible
sequential machines can be constructed from it.

Keywords reversible logic element with memory, rotary element, reversible se-
quential machine, billiard ball model

2.1 Logical Primitives for Reversible Computers

A logic element is a primitive for composing logic circuits by which computing
systems are implemented. There are two types of logic elements: one without mem-
ory, which is usually called a logic gate, and one with memory. In the traditional
design theory of logic circuits, logic gates such as AND, OR, NOT, NAND, and
others are used as primitives, and thus logic gates are dealt with separately from
memory elements such as flip-flops. In the theory of reversible logic circuits, also,
logic gates have been treated as the main primitives for circuit design, and there has
been much research on them. However, as we shall see in the following sections and
chapters, a reversible logic element with memory (RLEM) is also useful for com-
posing various models of reversible computing systems. In particular, we shall see
that even very simple RLEMs have universality, and we can compose reversible se-
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quential machines, reversible Turing machines, and others rather easily from them.
In addition, these machines are constructed in a very different manner from those
in the traditional design theory of logic circuits. Since RLEMs thus give new vistas
and suggest various possibilities in the theory of reversible computing, we mainly
discuss RLEMs in this book.

A reversible logic element is one whose operation is described by an injec-
tion. For example, a NOT gate is reversible, since it realizes the injective logi-
cal function fNOT : {0,1} → {0,1} where fNOT(0) = 1 and fNOT(1) = 0. On the
other hand, NAND is irreversible, since it realizes the non-injective logical function
fNAND : {0,1}2→{0,1} where fNAND(0,0) = 1, fNAND(0,1) = 1, fNAND(1,0) = 1,
and fNAND(1,1) = 0. It is, of course, possible to implement reversible computing
models, such as reversible Turing machines, by irreversible logic elements like
NAND gates and flip-flops. But, such an implementation is almost meaningless
because of the following reason. One of the objectives of the study of reversible
computing is to find an efficient method of implementing reversible machines by
reversible logic elements, and to find an elegant way of realizing reversible logic
elements by physically reversible phenomena. Hence, our final goal is to realize a
reversible computer in a reversible physical system in an efficient way. Therefore,
the important point of the study of reversible logic elements is to find a key ele-
ment that lies in the intermediate level between the levels of abstract machines and
physical systems. Namely, the problem is which reversible logic element is useful
for constructing reversible machines, and is easily realizable in a reversible physical
system. We investigate this problem based mainly on RLEMs in this book. In fact,
there are several interesting RLEMs from which reversible machines are constructed
very simply. We shall also see that they are concisely implemented in the billiard
ball model, a kind of a reversible physical model of computing.

In this chapter, we introduce a particular reversible logic element with 1-bit mem-
ory called a rotary element (RE) [5], since its operation is very easily understood.
We shall see that the RE can be concisely realized in the billiard ball model, and it
is powerful enough for constructing reversible sequential machines.

2.2 Reversible Logic Element with Memory (RLEM)

We first define a sequential machine (SM) and its reversible version, since a re-
versible logic element with memory (RLEM) is a kind of reversible sequential ma-
chine (RSM). An SM given here is a finite automaton with an output port as well as
an input port, which is often called an SM of Mealy type.

Definition 2.1. A sequential machine (SM) is a system defined by M = (Q,Σ ,Γ ,δ ),
where Q is a finite set of internal states, Σ and Γ are finite sets of input and output
symbols, and δ : Q×Σ → Q×Γ is a move function. If δ is injective, M is called
a reversible sequential machine (RSM). Note that if M is reversible, then |Σ | ≤ |Γ |
must hold. It is also called a |Q|-state |Γ |-symbol RSM.


