
Monographs in Theoretical Computer Science
An EATCS Series

Kenichi Morita

Theory of
Reversible
Computing

n Theoretical Computer Science
An EATCS Series

On behalf of the European Association
for Theoretical Computer Science (EATCS)

Advisory Board:

Editors: M. Henzinger J. Hromkovi M. Nielsen G. Rozenberg
A. Salomaa

S. Albers H. Attiya G. Ausiello M. Broy C. Calude A. Condon
A. Czumaj P. Degano J. Diaz P. Gastin G. Gottlob D. Harel
J. Hartmanis R. Heckel L.A. Hemaspaandra T. Henzinger
M. Hermenegildo B. Jonsson J. Karhumäki L. Kari M. Koutny
D. Kozen T. Leighton H. Lin G. Mauri M. Nivat D. Niwi ski
C. Papadimitriou D. Peleg D. Sannella U. Schöning D. Scott
P.G. Spirakis D. Wagner E. Welzl M. Wirsing

Founding Editors: W. Brauer G. Rozenberg A. Salomaa

Monographs i

ttp://www.springer.com/series/More information about this series at h 776

http://www.springer.com/series/776

Kenichi Morita

Theory of Reversible
Computing

Kenichi Morita
Professor Emeritus, Hiroshima University
Hiroshima, Japan

ISSN 1431-2654 ISS N 2193-2069 (electronic)
Monographs in Theoretical Computer Science. An EATCS Series
ISBN 978-4-431-56604-5 ISBN 978-4-431-56606-9 (eBook)
DOI 10.1007/978-4-431-56606-9

Library of Congress Control Number: 2017957823

© Springer Japan KK 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
citation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein
or for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer Japan KK

Series Editors
Monika Henzinger
Faculty of Science
Universität Wien
Wien, Austria

Mogens Nielsen
Department of Computer Science
Aarhus Universitet
Aarhus, Denmark

Arto Salomaa
Turku Centre of Computer Science
Turku, Finland

Juraj Hromkovi
ETH Zentrum
Department of Computer Science
Swiss Federal Institute of Technology
Zürich, Switzerland

Grzegorz Rozenberg
Leiden Centre of Advanced
Computer Science
Leiden University
Leiden, The Netherlands

The registered company address is: Chiyoda First Bldg. East, 8-1 Nishi-Kanda Chiyoda-ku, 101-0065
Tokyo, Japan

To my parents, my wife, my children, and my
grandchildren

Preface

A reversible computing system is a “backward deterministic” system such that every
state of the system has at most one predecessor. Hence, there is no pair of distinct
states that go to the same state. Though its definition is so simple, it is closely re-
lated to physical reversibility. The study of reversible computing originated from an
investigation of energy dissipation in reversible and irreversible computing systems.
Rolf Landauer investigated the relation between reversibility in computing and re-
versibility in physics in his paper “Irreversibility and heat generation in the comput-
ing process” (IBM J. Res. Dev., Vol. 5, pp. 183–191, 1961). He pointed out that an
irreversible logical operation inevitably causes energy dissipation in the computing
system. Since then, reversible computing has been studied in relation to physical re-
versibility. Besides the problem of energy dissipation in computing, it is important
to know how reversibility can be effectively utilized in computing. This is because
future computing devices will surely be implemented directly by physical phenom-
ena in the nano-scale level, and reversibility is one of the fundamental microscopic
physical laws of Nature. For this purpose, various models of reversible computing
have been proposed and investigated till now.

In this book, reversible computing is studied from the standpoint of the theory
of automata and computing. We deal with various reversible computing models
belonging to several different levels, which range from a microscopic level to a
macroscopic one. They are reversible physical models, reversible logic elements,
reversible functional modules composed of logic elements, reversible computing
systems such as Turing machines, cellular automata, and others. The purpose of this
book is to clarify how computation can be carried out efficiently and elegantly in
these reversible computing models. We shall see that even very simple reversible
systems have computational universality in spite of the constraint of reversibility.
We shall also see various reversible systems in different levels are related each other,
i.e., a reversible system in a higher level can be constructed out of those in a lower
level. Moreover, the construction methods are often very unique and different from
those in the traditional methods. Thus, these computing models as well as the de-
signing methods will give us new insights for future computing systems.

vii

viii Preface

This book is not a comprehensive textbook on reversible computing, but de-
scribes mainly the results shown in the papers by myself and my colleagues, which
were published between 1989 and 2017. In this book, readers will see how the world
of reversible computing works, how reversible computing systems are constructed
out of simple reversible primitives, how they are different from the traditional com-
puting systems, and how they can be computationally universal. In fact, we shall see
even very simple reversible systems have high capability of computing, and thus re-
versibility is not a constraint, but a useful property for computing.

This book consists of 14 chapters. Chapter 1 is an introduction. In Chaps. 2–4,
reversible logic elements for constructing reversible machines are investigated. In
Chaps. 5–8, reversible Turing machines, a standard model of reversible computing
systems, are studied. In Chap. 9, some other reversible computing models are in-
vestigated. In Chaps. 10–14, reversible cellular automata, a spatiotemporal model
of reversible dynamical systems, are studied.

There is no prerequisite knowledge to read this book besides some basics on
logic, discrete mathematics and formal languages. But, it is preferable to have some
knowledge on the theories of automata and computing. Fortunately, the framework
of reversible computing itself is very simple. Therefore, in many cases, readers can
easily understand the basic function and the structure of each such system. However,
its behavior can be very complex even if the structure of the system is simple. Hence,
sometimes, it becomes quite difficult to follow its behavior by using only paper and
pencil. In some of these cases, readers can find files in the References that contain
computer simulation results of such reversible systems.

More than 50 years have passed since Landauer’s paper appeared. Thus, the his-
tory of reversible computing is relatively long. But, it is still developing, and there
remain many problems to be investigated. Also, even at present, it is not so clear
which results will become practically useful in the future. However, the world of
reversible computing will lead readers to the new ways of thinking that cannot be
found in the traditional design methodologies for computing systems. I hope the
theory of reversible computing will stimulate readers’ interest, and open new vistas
for future computing systems.

Acknowledgments. This work would not have been accomplished without the help
and encouragement given by many people in many countries. I would express my
highest gratitude to all of them. In particular, I would express my special thanks
to Prof. Toshio Mitsui and Prof. Kazuhiro Sugata who guided me in the early days
of my research career in Osaka University. Frequent discussions with them led me
to the research fields of automata theory, cellular automata, and finally reversible
computing. Since then, I had many good colleagues and students in Hiroshima
University, Yamagata University, Osaka University, and other places in the world.
Working with them was a great pleasure for me. I am grateful to them, especially,
Susumu Adachi, Andrew Adamatzky, Artiom Alhazov, Yoichi Fujii, Yoshifumi
Gono, Masateru Harao, Takahiro Hori, Katsunobu Imai, Teijiro Isokawa, Chuzo
Iwamoto, Atsushi Kanno, Hiroko Kato, Jia Lee, Maurice Margenstern, Genaro J.
Martinez, Mitsuya Morimoto, Yuta Mukai, Noritaka Nishihara, Masanori Ogino,

Preface ix

Tsuyoshi Ogiro, Ferdinand Peper, Akihiko Shirasaki, Rei Suyama, Keiji Tanaka,
Tsuyoshi Tanizawa, Yasuyuki Tojima, Ryoichi Ueno, Satoshi Ueno, Hiroshi Umeo,
Yoshikazu Yamaguchi, and Yasunori Yamamoto for their helpful discussions, coop-
eration, and coauthoring the papers on reversible computing and related fields.

I also express my cordial thanks to the anonymous reviewer for his/her very
careful reading and valuable comments. The manuscript was greatly improved by
the detailed comments.

This work on reversible computing was supported by JSPS KAKENHI Grant
Number JP15K00019.

September 2017 Kenichi Morita

Contents

1 Introduction . 1
1.1 Reversibility in Physics and Computing . 1
1.2 Significance of Reversible Computing . 2
1.3 Scope of This Volume . 4

1.3.1 Organization of this book . 5
1.3.2 Related studies and references . 6

1.4 Terminology and Notations . 8
References . 10

2 Reversible Logic Elements with Memory . 15
2.1 Logical Primitives for Reversible Computers . 15
2.2 Reversible Logic Element with Memory (RLEM) 16

2.2.1 Rotary element (RE), a typical RLEM 17
2.2.2 Circuit composed of REs . 19
2.2.3 Realizing RE in the billiard ball model 22

2.3 Making Reversible Sequential Machines (RSMs) from RE 26
2.3.1 RE-column, a building module for RSMs 26
2.3.2 Composing reversible sequential machines by RE-columns . 27

2.4 Concluding Remarks . 30
References . 30

3 Classification of Reversible Logic Elements with Memory and Their
Universality . 31
3.1 Classification of RLEMs . 31

3.1.1 Graphical representation of RLEMs . 32
3.1.2 Equivalence in RLEMs . 35
3.1.3 Degeneracy in RLEMs . 40
3.1.4 Classification of 2-, 3- and 4-symbol RLEMs 40

3.2 Universality of All Non-degenerate 2-State RLEMs with Three or
More Symbols . 41
3.2.1 Realizing RE using non-degenerate 3-symbol RLEMs 41

xi

xii Contents

3.2.2 Making a non-degenerate (k−1)-symbol RLEM from a
non-degenerate k-symbol RLEMs . 45

3.3 Systematic Construction of RSMs out of Universal RLEMs 51
3.4 Compact Realization of RSMs Using RLEMs 4-31 and 3-7 53
3.5 Frontier Between Universal and Non-universal RLEMs 56

3.5.1 Definitions on RLEM-circuits . 57
3.5.2 Non-universality of three kinds of 2-state 2-symbol RLEMs 60
3.5.3 Universality of combinations of 2-state 2-symbol RLEMs . . 67

3.6 Realizing 4-Symbol RLEMs in the Billiard Ball Model 70
3.7 Concluding Remarks . 74
References . 74

4 Reversible Logic Gates . 77
4.1 Reversible Logic Gates and Circuits . 77

4.1.1 Reversible logic gates . 78
4.1.2 Reversible combinatorial logic circuits 80
4.1.3 Logical universality of reversible logic gates 82
4.1.4 Clearing garbage information . 84
4.1.5 Realization in the billiard ball model . 88

4.2 Relation Between Reversible Logic Gates and Reversible
Sequential Machines . 89
4.2.1 Making Fredkin gate from RE . 90
4.2.2 Making RE from Fredkin gate . 91
4.2.3 Making reversible sequential machines from Fredkin gate . . 93

4.3 Concluding Remarks . 100
References . 100

5 Reversible Turing Machines . 103
5.1 Turing Machines and Reversibility . 103

5.1.1 Basic definitions on reversible Turing machines (RTMs) . . . 104
5.1.2 Notion of simulation and computational universality 111
5.1.3 Conversion between the quadruple and quintuple forms 112
5.1.4 Inverse reversible Turing machines . 115

5.2 Converting Irreversible Turing Machines to Reversible Ones 119
5.2.1 Three-tape Turing machines . 119
5.2.2 Inverse three-tape Turing machines . 121
5.2.3 Computational universality of three-tape RTMs 122

5.3 Variations of Reversible Turing Machines . 129
5.3.1 Converting RTMs with two-way infinite tapes into RTMs

with one-way infinite tapes . 129
5.3.2 Converting multi-tape RTMs into one-tape RTMs 134
5.3.3 Converting many-symbol RTMs into two-symbol RTMs . . . 138
5.3.4 Converting many-state RTMs into four-state RTMs 143
5.3.5 Converting many-state RTMs into three-state RTMs 148
5.3.6 Computational universality of restricted classes of RTMs . . . 154

Contents xiii

5.4 Concluding Remarks . 155
References . 155

6 Making Reversible Turing Machines from Reversible Primitives 157
6.1 Constructing Reversible Turing Machines out of RE 157

6.1.1 Memory cell for two-symbol RTMs . 158
6.1.2 Finite control module for two-symbol RTMs 162
6.1.3 RE-circuit that simulates a one-tape two-symbol RTM 164

6.2 Constructing Reversible Turing Machines out of RLEM 4-31 166
6.2.1 Making memory cell out of RLEM 4-31 166
6.2.2 Making finite control module out of RLEM 4-31 168

6.3 Concluding Remarks . 171
References . 172

7 Universal Reversible Turing Machines . 173
7.1 Universal Turing Machines . 173
7.2 Tag Systems . 176

7.2.1 m-tag systems . 176
7.2.2 Cyclic tag systems . 177

7.3 Small Universal Reversible Turing Machines (URTMs) 181
7.3.1 13-state 7-symbol URTM . 182
7.3.2 10-state 8-symbol URTM . 185
7.3.3 17-state 5-symbol URTM . 187
7.3.4 15-state 6-symbol URTM . 189
7.3.5 24-state 4-symbol URTM . 191
7.3.6 32-state 3-symbol URTM . 193
7.3.7 138-state 2-symbol URTM converted from URTM(24,4) . . . 195
7.3.8 4-state and 3-state URTMs converted from URTM(10,8)

and URTM(32,3) . 197
7.4 Concluding Remarks . 199
References . 200

8 Space-Bounded Reversible Turing Machines . 203
8.1 Reversibility and Determinism in Space-Bounded Computation 203

8.1.1 Two-tape Turing machine as an acceptor of a language 204
8.1.2 Reversibility and determinism . 206
8.1.3 Computation graph . 208
8.1.4 Space-bounded TMs . 209
8.1.5 Normal forms for TMs . 209

8.2 Relation Between Irreversible Deterministic and Reversible
Deterministic TMs . 213
8.2.1 Halting property of reversible space-bounded TMs 214
8.2.2 Space-efficient reversible simulation of irreversible TMs . . . 215

8.3 Relation Between Reversible Nondeterministic and Reversible
Deterministic TMs . 222

xiv Contents

8.4 Concluding Remarks . 226
References . 228

9 Other Models of Reversible Machines . 229
9.1 Models of Reversible Automata and Machines 229
9.2 Reversible Counter Machines . 231

9.2.1 Basic definitions on reversible counter machines 231
9.2.2 Simulating irreversible counter machines by reversible ones 234
9.2.3 Universality of reversible two-counter machine 242

9.3 Reversible Multi-head Finite Automata . 249
9.3.1 Basic definitions on two-way multi-head finite automata . . . 249
9.3.2 Converting a multi-head finite automaton into a reversible

one with the same number of heads . 252
9.4 Concluding Remarks . 257
References . 259

10 Reversible Cellular Automata . 261
10.1 Cellular Automata and Reversibility . 261
10.2 Cellular Automata (CAs) . 262

10.2.1 Definitions of CAs . 263
10.2.2 Examples of CAs . 266

10.3 Reversible Cellular Automata (RCAs) . 269
10.3.1 Definitions of RCAs . 270
10.3.2 Basic properties of RCAs and related CAs 272

10.4 Design Methods for RCAs . 275
10.4.1 CAs with block rules . 275
10.4.2 Second-order CAs . 277
10.4.3 Partitioned CAs (PCAs) and reversible PCAs (RPCAs) 279

10.5 Simulating Irreversible CAs by Reversible CAs 286
10.5.1 Simulating k-dimensional CA by (k+1)-dimensional RPCA 286
10.5.2 Simulating one-dimensional CA by one-dimensional RPCA 287

10.6 Making RPCAs from Reversible Logic Elements 293
10.7 Concluding Remarks . 295
References . 296

11 One-Dimensional Universal Reversible Cellular Automata 299
11.1 Universality in One-Dimensional CAs . 299

11.1.1 Ultimately periodic configurations in one-dimensional CAs . 300
11.1.2 Notion of simulation and Turing universality in

one-dimensional CAs . 302
11.2 One-Dimensional RCAs That Simulate Reversible Turing Machines 303

11.2.1 Simulating RTMs by three-neighbor RPCAs 303
11.2.2 Simulating RTMs by two-neighbor RPCAs 307

11.3 Simple Turing Universal One-Dimensional RPCAs 311

Contents xv

11.3.1 24-state universal RPCA with ultimately periodic
configurations . 312

11.3.2 98-state universal RPCA with finite configurations 315
11.4 Reversible and Number-Conserving CAs . 319

11.4.1 Number-conserving CAs . 319
11.4.2 Turing universal reversible and number-conserving CA 322

11.5 Concluding Remarks . 327
References . 328

12 Two-Dimensional Universal Reversible Cellular Automata 331
12.1 Universality in Two-Dimensional CAs . 331

12.1.1 Ultimately periodic configurations in two-dimensional CAs . 332
12.1.2 Notion of simulation and Turing universality in

two-dimensional CAs . 333
12.2 Symmetries in Two-Dimensional PCAs . 334
12.3 Simulating Reversible Logic Circuits in Simple RPCAs 335

12.3.1 16-state RPCA model S1 . 335
12.3.2 16-state RPCA model S2 . 337
12.3.3 Turing universality of the two models of 16-state RPCAs . . . 343

12.4 Simulating Reversible Counter Machines in RPCA 343
12.4.1 81-state RPCA model P3 . 344
12.4.2 Basic elements in the RPCA P3 . 345
12.4.3 Constructing reversible counter machine in the RPCA P3 . . . 350
12.4.4 Turing universality of the RPCA P3 . 361

12.5 Intrinsic Universality of Two-Dimensional RPCAs 361
12.6 Concluding Remarks . 364
References . 364

13 Reversible Elementary Triangular Partitioned Cellular Automata . . . 367
13.1 Elementary Triangular Partitioned Cellular Automata 367

13.1.1 Triangular partitioned cellular automata (TPCAs) 368
13.1.2 Elementary Triangular Partitioned Cellular Automata

(ETPCAs) and reversible ETPCAs (RETPCAs) 374
13.1.3 Dualities in ETPCAs . 377

13.2 Conservative RETPCAs and Their Universality 382
13.2.1 Universality of the RETPCA TRU . 383
13.2.2 Universality of the RETPCA TUR . 394
13.2.3 Universality of the RETPCA TRL . 398
13.2.4 Non-universality of the RETPCAs TUU, TRR and TLL 403

13.3 Non-conservative RETPCA T0347 That Exhibits Complex Behavior . 405
13.3.1 Properties of the RETPCA T0347 . 406
13.3.2 Glider guns in T0347 . 414
13.3.3 Universality of the RETPCA T0347 . 416

13.4 Concluding Remarks . 418
References . 419

xvi Contents

14 Self-reproduction in Reversible Cellular Automata 421
14.1 Self-reproducing Cellular Automata . 421
14.2 Self-reproduction in Two- and Three-Dimensional RCAs 424

14.2.1 Two-dimensional model SR2D . 424
14.2.2 Three-dimensional model SR3D . 444

14.3 Concluding Remarks . 447
References . 447

Index . 449

Acronyms

CA cellular automaton
CM counter machine
CTS cyclic tag system
CTSH cyclic tag system with halting condition
ECA elementary cellular automaton
ETPCA elementary triangular partitioned cellular automaton
GoL Game of Life
ID instantaneous description
IDTM irreversible deterministic Turing machine
INTM irreversible nondeterministic Turing machine
L (A) class of languages accepted by the class of automata A
LBA linear-bounded automaton
MFA multi-head finite automaton
m-TS m-tag system
PCA partitioned cellular automaton
RCA reversible cellular automaton
RCM reversible counter machine
RDTM reversible deterministic Turing machine
RE rotary element
RETPCA reversible elementary triangular partitioned cellular automaton
RLEM reversible logic element with memory
RMFA reversible multi-head finite automaton
RNTM reversible nondeterministic Turing machine
RPCA reversible partitioned cellular automaton
RSM reversible sequential machine
RTM reversible Turing machine
SM sequential machine
TM Turing machine
TM(S(n)) S(n) space-bounded Turing machine
UTM universal Turing machine
URTM universal reversible Turing machine

xvii

Chapter 1
Introduction

Abstract Reversible computing is a paradigm that has a close relation to physi-
cal reversibility. Since microscopic physical laws are reversible, and future com-
puting devices will surely be implemented directly by physical phenomena in the
nano-scale level, it is an important problem to know how reversibility can be effec-
tively utilized in computing. Reversible computing systems are defined as systems
for which each of their computational configurations has at most one predecessor.
Hence, they are “backward deterministic” systems. Though the definition is thus
rather simple, these systems reflect physical reversibility very well, and they are
suited for investigating how computing systems can be realized in reversible physi-
cal environments. In this chapter, we argue reversibility in physics and computing,
the significance of reversible computing, and the scope of this volume. Various mod-
els of reversible computing ranging from a microscopic level to a macroscopic one
are dealt with from the viewpoint of the theory of automata and computing. Ter-
minologies and notations on logic, mathematics, and formal languages used in this
volume are also summarized.

Keywords reversibility in computing, reversibility in physics, reversible computing
machine, reversible cellular automaton, reversible logic element

1.1 Reversibility in Physics and Computing

Reversibility is a notion that was argued originally in physics. It is known that mi-
croscopic physical laws are reversible in the sense that they are invariant under the
time-reversal operation. For example, in classical mechanics, the same law holds
for both positive and negative directions of time. It is also the case in quantum me-
chanics, where an evolution of a quantum system is described by a unitary operator.
Since physical reversibility is thus one of the fundamental microscopic properties
of Nature, it is an important problem to know how such a property can be effec-

1© Springer Japan KK 2017
K. Morita, Theory of Reversible Computing, Monographs in Theoretical Computer Science.
An EATCS Series, DOI 10.1007/978-4-431-56606-9_1

2 1 Introduction

tively utilized in computing. This is because future computing devices will surely
be implemented directly by physical phenomena in the nano-scale level.

Reversibility in computing is an analogous notion to physical reversibility, but
its definition is rather simple. Reversible computing systems are systems for which
each of their computational configurations has at most one predecessor. Hence, ev-
ery computing process can be traced backward uniquely from the end to the start. In
other words, they are backward deterministic systems. Though its definition is thus
simple, we shall see later that these systems reflect physical reversibility very well.

Landauer [37] first argued the relation between reversibility in computing and re-
versibility in physics. He proposed Landauer’s principle stating that any irreversible
logical operation, such as erasure of a piece of information from memory, or a merge
of two paths in a program, is associated with physical irreversibility in the macro-
scopic level, and hence it necessarily causes heat generation in the computing sys-
tem. In particular, if one bit of information is completely erased in the system, at
least kT ln2 of energy will be dissipated, where k is the Boltzmann constant, and
T is the absolute temperature. If the computing system is reversible, then no such
lower bound on energy consumption exists, and hence it leads to a possibility of
dissipation-less computing system.

Today’s computers are composed of electronic devices, and logical operations
are realized by controlling the average behavior of a very large number of elec-
trons. Thus, generally, they consume much more energy than kT ln2 per each primi-
tive operation, even for reversible logical operations. They also require considerable
amounts of energy for giving clock signals to the electronic circuits. Therefore, at
present, kT ln2 is a negligible amount of energy in them. However, computing de-
vices will be implemented in a much more microscopic level in the future. At that
time, the lower bound kT ln2 will become critical. In addition, besides the problem
of energy consumption, for the purpose of further miniaturization of computing sys-
tems, we have to find a way of directly utilizing microscopic physical phenomena
for logical operations, where reversibility is one of the key features. Thus, investi-
gating effective methods for using such properties of Nature in computing will give
us a new insight into constructing future computers.

1.2 Significance of Reversible Computing

Reversible computing is a paradigm in which reversible computers are hierarchi-
cally constructed based on reversible physical phenomena and reversible operations.
In the theory of reversible computing, there are several levels of computing models
ranging from a microscopic level to a macroscopic one. In the bottom (i.e., micro-
scopic) level, there are reversible physical models. Reversible logic elements are in
the next level. Then, there are reversible logic circuits that work as functional mod-
ules in reversible systems. In the top level, there are various models of reversible
computers. In this hierarchy, each system in a higher level can be constructed from
systems in a lower level.

1.2 Significance of Reversible Computing 3

The objective of the study of reversible computing is to clarify how computation
can be performed efficiently in reversible computers, how elegantly higher level re-
versible systems can be constructed from those in the lower level, and which kind
of simple reversible primitives are universal and useful for constructing reversible
computers. As we shall see in the following chapters, many reversible systems have
high computing capability in spite of the strong constraint of reversibility. Further-
more, universal reversible computers can be composed of very simple reversible
logic elements. In addition, some of the models are constructed in a very unique
way, which cannot be seen in the traditional design theory of computing systems
made of logic gates and memories.

A Turing machine (TM) is a standard model in the traditional theory of comput-
ing. A reversible Turing machine (RTM) is a backward deterministic TM, and is also
useful in the theory of reversible computing. Lecerf first studied RTMs in the paper
[40], where the halting problem and some other related decision problems on them
were shown to be unsolvable like the case of general (i.e., irreversible) TMs. Later,
Bennett [7] studied RTMs from the viewpoint of Landauer’s principle. Note that it
is easy to simulate an irreversible TM by an RTM by recording all the movements
in a history tape. But, when the computation terminates, they are left as “garbage”
information. Disposal of the garbage information is actually equivalent to erasure
of the information, and hence it leads to energy dissipation. Bennett showed that it
is possible to construct an RTM that simulates a given TM and leaves no garbage
information on its tape when it halts (see Sect. 5.2.3). This result is important, be-
cause any computation can be performed in an efficient way with respect to energy
consumption in an ideal situation.

After the work of Bennett, various reversible computing models ranging from
microscopic to macroscopic ones have been proposed and investigated. In partic-
ular, reversible cellular automata, reversible logic elements and circuits, reversible
physical models, and others were studied, and their relation to physical reversibility
was argued.

A cellular automaton (CA) is a framework that can deal with spatiotemporal
phenomena, and thus a reversible CA is an abstract model of a reversible spatial
dynamical system. A CA is a system composed of an infinite number of identical
finite automata called cells, which are placed and connected uniformly in a space.
Hence, it is also suited for studying how complex phenomena appear from simple
functions. Toffoli [63] investigated the relation between irreversible CAs and re-
versible CAs, and showed that an irreversible k-dimensional CA can be simulated
by a (k+ 1)-dimensional reversible CA, and thus two-dimensional reversible CAs
are computationally universal. Later, Margolus [41] proposed a very simple uni-
versal two-dimensional reversible CA. On the other hand, Morita and Harao [49]
proved that reversible CAs can be universal even in the one-dimensional case. Af-
ter that, it has been shown that there are various simple one- and two-dimensional
universal reversible CAs (see Chaps. 11–13). Therefore, computational universality
emerges even from a very primitive function of a cell.

Reversible logic elements are those whose operations are described by an injec-
tive (i.e., one-to-one) functions. An early study on reversible logic gates is found in

4 1 Introduction

the paper of Petri [55]. Later, Toffoli [64, 65] studied them in the relation to physi-
cal reversibility. In particular, he proposed a universal reversible logic gate called a
Toffoli gate. Then, Fredkin and Toffoli [25] introduced another universal reversible
gate called a Fredkin gate, and showed that any logical function can be realized
by a garbage-less circuit composed of it. On the other hand, Morita [45] proposed
a reversible logic element with one-bit memory called a rotary element (RE) and
showed any RTM can be concisely constructed by it in a very unique method (see
Sect. 6.1). Thus, besides reversible gates, a reversible logic element with memory
(RLEM), a kind of reversible sequential machine (RSM), is also useful in reversible
computing. Note that today’s computers are designed based on the well-known logic
elements such as AND, OR, NOT, and some others. These operations, in particular,
AND, OR and NOT, have been known since the era of ancient Greece (see e.g.,
[13]), and thus have a very long history. Since they were obtained from the analysis
of thinking and reasoning processes performed by humans, it is easy for us to under-
stand and use them. However, to investigate future computing systems, we should
not be tied to old traditions, and we have to look for new bases and methods that are
directly related to microscopic physical phenomena.

As for physical models of reversible computing, Fredkin and Toffoli [25] pro-
posed an interesting model called the billiard ball model (BBM). It consists of ide-
alized balls and reflectors. Logical operations are simulated by elastic collisions of
moving balls. They showed any reversible logic circuit composed of Fredkin gates
can be embedded in BBM. Of course, it can work only in an idealized situation,
since it requires infinite precision on the sizes, positions and velocities of balls.
However, it is a very insightful model for considering the relation between physical
reversibility and computational reversibility.

As seen above, various interesting ideas have been proposed so far, and they
opened new vistas in the theory of reversible computing. However, to understand it
more deeply, we still have to find and develop new methodologies for it, which do
not exist in the world of traditional computing. In order to do so, it is important not
to consider reversibility as a “constraint”, but to find a way of using it positively as
a “useful property”.

1.3 Scope of This Volume

In this volume, reversible computing is studied from the viewpoint of the theory of
automata and computing. It mainly describes the results shown in the past studies
by the author of this volume, his colleagues, and his former students. But, of course,
other researchers’ results related to them are also cited for completeness. Thus, it
is not a very comprehensive book on reversible computing. Instead, it investigates
various aspects of computational universality in reversible systems in detail.

This volume studies, in particular, the problems of how reversible machines can
be designed, how computing can be carried out in a reversible machine, how simple
universal reversible computers can be, which universal reversible logic elements

1.3 Scope of This Volume 5

are useful for constructing reversible computers elegantly, and so on. The following
chapters will give answers to these problems obtained so far. Although some of them
may be improved in future research, they will provide good insights into reversible
computing.

1.3.1 Organization of this book

The following chapters can be divided into three parts. The first part consists of
Chaps. 2–4, in which reversible logic elements and circuits are studied. It also in-
vestigates the relation between reversible logic elements and a reversible physical
model. The second part consists of Chaps. 5–9, in which reversible Turing ma-
chines (RTMs) and related models are studied. Thus, it deals with several reversible
computing systems in the macroscopic level. But, it also argues how RTMs can be
constructed out of reversible logic elements. The third part consists of Chaps. 10–
14, in which reversible cellular automata (RCAs) are studied. Here, the problem of
how complex phenomena, such as computational universality, appear from simple
reversible operations is investigated. Hence, the framework of RCAs itself also con-
nects between the microscopic and macroscopic levels. The details of each chapter
are as follows.

In Chap. 2, a reversible logic element called a rotary element (RE) is given. Dif-
ferent from a reversible logic gate, it is defined as a two-state reversible sequential
machine (RSM) with four input symbols and four output symbols. It is shown that
any RSM can be compactly implemented by an RE. In this sense it is a universal
logic element for constructing reversible machines. It is also shown that RE is sim-
ply realized in the billiard ball model (BBM), a kind of reversible physical model.
In Chap. 3, two-state RLEMs are classified, and their universality is investigated.
It is remarkable that all the non-degenerate RLEMs except only four two-symbol
RLEMs are universal. In addition, three two-symbol RLEMs among four are proved
to be non-universal. A systematic realization method of four-symbol RLEMs in the
BBM is also shown. In Chap. 4, reversible logic gates and their circuits are studied.
In particular, the Fredkin gate and its circuits are dealt with. Their basic proper-
ties, and their relation to RE are given. Furthermore, a method of constructing a
garbage-less circuit out of Fredkin gates that simulates a given RSM is shown.

In Chap. 5, a reversible Turing machine (RTM) is defined, and its basic prop-
erties are shown. First, universality of a garbage-less RTM proved by Bennett [7]
is explained. Then, simplification methods of RTMs, i.e., reducing the numbers of
tapes, symbols, and states of an RTM, are shown. In Chap. 6, constructing meth-
ods of RTMs out of reversible logic elements are studied. It is shown that any
RTM can be realized concisely as a circuit composed only of REs, or other two-
state RLEMs. The methods are very different from the conventional ones that use
logic gates and memory elements. In Chap. 7, universal RTMs (URTMs), which
are RTMs that can simulate any TM, are studied. Here, it is investigated how we
can obtain URTMs with small numbers of states and symbols. By simulating cyclic

6 1 Introduction

tag systems, a kind of universal string rewriting systems proposed by Cook [14],
several small URTMs are constructed. In Chap. 8, memory limited computing in
RTMs is studied. In particular, it is argued how reversibility and determinism affect
the computational power of space-bounded TMs. In Chap. 9, several models of re-
versible machines other than RTMs are studied. It is shown that a reversible counter
machine with only two counters is computationally universal. Equivalence of a re-
versible two-way multi-head finite automaton and an irreversible one with the same
number of heads is also proved.

In Chap. 10, reversible cellular automata (RCAs) are studied. Basic properties
of RCAs and design methods are shown. Here, the framework of partitioned CAs
(PCAs) is given for making it easy to design RCAs. In Chap. 11, universality of one-
dimensional RCAs is investigated, and several RCAs that simulate RTMs and cyclic
tag systems are constructed. In Chap. 12, two models of universal two-dimensional
16-state RCAs that can simulate Fredkin gates are given. A universal 81-state RCA
in which any reversible two-counter machine can be simulated by their finite con-
figurations is also shown. In Chap. 13, CAs on the triangular tessellation called the
elementary triangular partitioned cellular automata (ETPCAs) are studied. There
are 256 ETPCAs, and among them there are 36 reversible ETPCAs. In spite of the
extreme simplicity of their local transition functions, they have very rich computing
capabilities, and it is shown that ten reversible ETPCAs are computationally univer-
sal. In Chap. 14, self-reproduction in RCAs is studied. Self-reproducing CAs were
first studied by von Neumann [51]. Later, Langton [39] proposed a simplified frame-
work for self-reproducing CAs. Here, it is shown that self-reproduction of Langton’s
type is possible in two- and three-dimensional RCAs.

1.3.2 Related studies and references

Here, we give some remarks on related studies and references of reversible comput-
ing, though they are not exhaustive.

As described in Sect. 1.1, Landauer [37] investigated the relation between phys-
ical reversibility and logical reversibility. After that, several studies on reversible
computing from the physical or thermodynamic viewpoint appeared [7, 8, 9, 11, 31].
Feynman also argued reversible computing from the standpoint of physics [21, 22],
and his idea opened the way to quantum computing [19, 20]. Since evolution of a
quantum computing system is described by a unitary operator, reversible computing
is closely related to quantum computing (see, e.g., [27]). Various models of quan-
tum computing, such as quantum Turing machines [6, 12, 17, 53], quantum finite
automata [32], and quantum cellular automata [4, 5, 68], have been proposed. These
quantum computing systems can be considered as generalizations of reversible ones.
Both reversible computing and quantum computing are research fields where we are
looking for microscopic phenomena that can be directly used as primitive operations
for computing. DNA computing and molecular computing (e.g., [1, 57, 70, 71]) also
have the same objectives on such a point.

1.3 Scope of This Volume 7

So far, many kinds of reversible computing models were proposed and their
properties were investigated. Bennett [10] studied time/space trade-offs in reversible
Turing machines (RTMs), which is related to garbage generation and its reversible
erasure in RTMs. On the other hand, Lange, McKenzie and Tapp [38] showed that
any irreversible TM can be simulated by an RTM without increasing the memory
space, though its computing time grows exponentially. Note that a simpler simu-
lation method is given in Sect. 8.2.2. There are also studies on one-way reversible
finite automata [3, 56], two-way reversible finite automata [32], reversible push-
down automata [33], one-way reversible multi-head finite automata [34], and so on.
In Chap. 9, reversible counter machines, and two-way reversible multi-head finite
automata will be investigated. The paper by Vitányi [67] gives a survey on reversible
computing based on RTMs.

As for the study on cellular automata (CAs), there is a classical literature [51]
on von Neumann’s works that investigate construction-universality as well as com-
putational universality of CAs. The reference [30] is a general survey on CAs, and
[18, 52] are on universality of CAs. Reversible CAs (RCAs) have been studied since
the early stage of their history [28, 44, 50, 59], but they were called injective CAs
at that time. There are survey papers by Kari [29], Toffoli and Margolus [66], and
Morita [46, 47, 48] on RCAs and related topics.

We now give an additional remark on reversibility in computing. It is known that
microscopic physical laws are time-reversal-symmetric (see, e.g., [36]), and thus the
same laws hold also for the negative direction of time. But, since reversible com-
puting systems are simply defined as backward deterministic ones, the backward
transition rules may not be the same as the forward ones. Gajardo, Kari and Moreira
[26] introduced the notion of time-symmetry on CAs. It is an interesting property,
and is much closer to physical reversibility. This notion is also defined for other
machines by Kutrib and Worsch [35]. However, here we do not use this definition
because of the following reason. In many cases, reversible computing machines are
constructed hierarchically. Namely, reversible machines are implemented as a re-
versible logic circuit consisting of reversible logic elements, and the elements are
realized in a reversible physical model. In this hierarchy, only the physical model is
given as a system whose evolution is time-reversal-symmetric. Therefore, the whole
computing system can be embedded in a time-reversal-symmetric system in the bot-
tom level, even if it is not so in the higher level.

Since this volume investigates reversible systems from the standpoint of theory
of computing, there are topics that are not dealt with. Among them, it is an important
problem how a reversible computer can be realized in hardware. So far, there have
been several interesting attempts such as implementation of reversible logic circuits
as electrically controlled switches [42], c-MOS implementation of reversible logic
gates and circuits [16], and adiabatic circuits for reversible computer [23, 24]. Also,
recently, studies on synthesis of reversible and quantum logic circuits have been
extensively done [2, 15, 43, 58, 60, 61, 62, 69]. However, ultimately, reversible logic
elements and computing systems should be implemented at the atomic or molecular
level. Although finding such solutions is very difficult, it is a challenging problem
left for future investigations. Studies on more practical architectures for reversible

8 1 Introduction

computers, and on reversible programming languages are also interesting subjects
that are not dealt with in this volume. On reversible programming languages and
software, see, e.g., [54, 72, 73]. In the research field of reversible computing, there
will still be many interesting problems to study, and therefore unique ideas and novel
methodologies are sought.

1.4 Terminology and Notations

In this section, we explain basic terminology and notations on logic, mathematics,
and formal languages used in this book.

First, we give notations on logic. Here, P, P1 and P2 are propositions, x is a
variable, and P(x) is a predicate with a free variable x.

¬P Negation of P
P1∨P2 Disjunction (logical OR) of P1 and P2
P1∧P2 Conjunction (logical AND) of P1 and P2
P1⇒ P2 P1 implies P2
P1⇔ P2 P1 if and only if P2
∀x(P(x)) For all x, P(x) holds
∃x(P(x)) There exists x such that P(x) holds

When describing logical functions of logic gates, and combinatorial logic circuits,
operations of NOT (negation), logical OR, and logical AND are expressed by a,
a+b, and a·b, respectively, instead of ¬, ∨, and ∧. Exclusive OR (XOR) is denoted
by a⊕b. Here, a and b are Boolean variables with a value 0 (false) or 1 (true).

Notations and symbols on set theory are as follows, where S, S1 and S2 are sets,
a is an object, x is a variable, and P(x) is a predicate with a free variable x.

/0 The empty set
a ∈ S a is an element of S
S1 ⊆ S2 S1 is a subset (not necessarily a proper subset) of S2
S1 ⊂ S2 S1 is a proper subset of S2
S1∪S2 The union of S1 and S2
S1∩S2 The intersection of S1 and S2
S1−S2 The difference of S1 and S2
S1×S2 The Cartesian product of S1 and S2 (note that S×S is denoted by S2)
2S The power set of S
|S| The number of elements in S
N The set of all natural numbers (including 0)
Z The set of all integers
Z+ The set of all positive integers
R The set of all real numbers
{x | P(x)} The set of all elements x that satisfy P(x)

1.4 Terminology and Notations 9

A singleton is a set that has exactly one element.

Next, terminology on relations and mappings (functions) is given. Let S1 and S2
be sets. If R ⊆ S1×S2, then R is called a (binary) relation. Generally, let S1, . . . ,Sn
be sets, and if R ⊆ S1× ·· · × Sn, then R is called an n-ary relation. For the case
R⊆ S×S (= S2), we define Rn (n ∈N) recursively as follows: R0 = {(x,x) | x ∈ S},
and Ri+1 = {(x,y) | ∃z ∈ S ((x,z) ∈ R ∧ (z,y) ∈ Ri)} (i ∈ N). Then, R∗ and R+ are
defined below.

R∗ The reflexive and transitive closure of the relation R, i.e., R∗ =
⋃

∞
i=0 Ri

R+ The transitive closure of the relation R, i.e., R+ =
⋃

∞
i=1 Ri

A relation f ⊆ S1× S2 is called a partial mapping (or partial function) from S1
to S2, if it satisfies

∀x ∈ S1 ∀y1,y2 ∈ S2 (((x,y1) ∈ f)∧ ((x,y2) ∈ f)⇒ (y1 = y2)),

which means that for each x ∈ S1 there exists at most one y ∈ S2 such that (x,y) ∈ f .
A partial mapping f is called a mapping (or function) from S1 to S2, if it further
satisfies

∀x ∈ S1 ∃y ∈ S2 ((x,y) ∈ f).

It is also called a total mapping (or total function). A partial mapping f from S1 to
S2 is denoted by f : S1→ S2, where the sets S1 and S2 are called the domain and the
codomain of f , respectively. As usual, (x,y) ∈ f is denoted by y = f (x). Note that
if (x,y) 6∈ f for all y ∈ S2, then f (x) is undefined. The notation x 7→ f (x) indicates x
maps to f (x).

Let f and g be total mappings such that f : A1 → B, g : A2 → B, and A1 ⊆ A2.
If ∀x ∈ A1(g(x) = f (x)) holds, then g is called an extension of f , and f is called a
restriction of g to A1, which is denoted by g|A1 .

A partial mapping f : S1→ S2 is called injective if

∀x1,x2 ∈ S1 ∀y ∈ S2 ((f (x1) = y)∧ (f (x2) = y)⇒ (x1 = x2)).

A partial mapping f : S1→ S2 is called surjective if

∀y ∈ S2 ∃x ∈ S1 (f (x) = y).

A partial mapping f : S1→ S2 that is both injective and surjective is called bijective.
If a total mapping f : S1→ S2 is injective (surjective, or bijective, respectively), then
it is called an injection (surjection, or bijection).

Let f : S1→ S2 be an injection. The inverse partial mapping of f is denoted by
f−1 : S2→ S1, and is defined as follows.

∀x ∈ S1 ∀y ∈ S2 (f (x) = y ⇔ f−1(y) = x)

Hence, f−1(f (x)) = x holds for all x ∈ S1, and f−1 is an injective partial mapping.
Note that, for y0 ∈ S2, if there is no x ∈ S1 such that f (x) = y0, then f−1(y0) is

10 1 Introduction

undefined. If f is a bijection, then f−1 is totally defined, and thus called the inverse
mapping of f , which is also a bijection.

Notations on formal languages are given below. A nonempty finite set of symbols
is called an alphabet. Let Σ be an alphabet. A finite sequence of symbols a1 · · ·an
(n ∈ N) taken from Σ is called a string (or word) over the alphabet Σ . The concate-
nation of strings w1 and w2 is denoted by w1 ·w2 (usually · is omitted). The length
of a string w is denoted by |w|. Hence, if w = a1 · · ·an, then |w|= n. We denote the
empty string (i.e., the string of length 0) by λ . The reversal of a string w is denoted
by wR. Thus, if w = a1 · · ·an, then wR = an · · ·a1. For a symbol a, we use an to de-
note the string consisting of n repetitions of a (n ∈ N). We define the set of strings
Σ n (n ∈ N) recursively as follows: Σ 0 = {λ}, and Σ i+1 = {aw | a ∈ Σ ∧ w ∈ Σ i}
(i ∈ N). Then, Σ ∗ and Σ+ are defined below.

Σ ∗ The set of all strings over Σ including λ , i.e., Σ ∗ =
⋃

∞
i=0 Σ i

Σ+ The set of all strings over Σ of positive length, i.e., Σ+ =
⋃

∞
i=1 Σ i

Let Σ1 and Σ2 be alphabets. A string homomorphism is a mapping ϕ : Σ ∗1 →
Σ ∗2 that satisfy the following: ϕ(λ) = λ , ϕ(a) ∈ Σ ∗2 for all a ∈ Σ1, and ϕ(aw) =
ϕ(a)ϕ(w) for all a ∈ Σ1 and w ∈ Σ ∗1 .

A subset of Σ ∗ is called a (formal) language over the alphabet Σ . Let L, L1 and
L2 be languages over Σ . The concatenation of L1 and L2 is defined by L1 · L2 =
{w1w2 | w1 ∈ L1 ∧ w2 ∈ L2}. We define the language Ln recursively in a similar
manner as in Σ n: L0 = {λ}, and Li+1 = L · Li (i ∈ N). Then, L∗ and L+ are as
follows: L∗ =

⋃
∞
i=0 Li, and L+ =

⋃
∞
i=1 Li.

In the later chapters, we define some automata as acceptors of languages to
investigate their capability. For this purpose, we use the notation L (A) to de-
note the class of languages accepted by the class of automata A , i.e., L (A) =
{L | L is accepted by some A ∈A } (see, e.g., Sect. 8.1.4).

References

1. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266,
1021–1024 (1994). doi:10.1126/science.7973651

2. Al-Rabadi, A.N.: Reversible Logic Synthesis. Springer (2004). doi:10.1007/978-3-642-
18853-4

3. Angluin, D.: Inference of reversible languages. J. ACM 29, 741–765 (1982).
doi:10.1145/322326.322334

4. Arrighi, P., Grattage, J.: Intrinsically universal n-dimensional quantum cellular automata. J.
Comput. Syst. Sci. 78, 1883–1898 (2012). doi:10.1016/j.jcss.2011.12.008

5. Arrighi, P., Grattage, J.: Partitioned quantum cellular automata are intrinsically universal. Nat-
ural Computing 11, 13–22 (2012). doi:10.1007/s11047-011-9277-6

6. Benioff, P.: The computer as a physical system: A microscopic quantum mechanical Hamil-
tonian model of computers as represented by Turing machines. J. Statist. Phys. 22, 563–591
(1980). doi:10.1007/BF01011339

7. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973).
doi:10.1147/rd.176.0525

http://dx.doi.org/10.1126/science.7973651
http://dx.doi.org/10.1007/978-3-642-18853-4
http://dx.doi.org/10.1007/978-3-642-18853-4
http://dx.doi.org/10.1145/322326.322334
http://dx.doi.org/10.1016/j.jcss.2011.12.008
http://dx.doi.org/10.1007/s11047-011-9277-6
http://dx.doi.org/10.1007/BF01011339
http://dx.doi.org/10.1147/rd.176.0525

References 11

8. Bennett, C.H.: The thermodynamics of computation — a review. Int. J. Theoret. Phys. 21,
905–940 (1982). doi:10.1007/BF02084158

9. Bennett, C.H.: Notes on the history of reversible computation. IBM J. Res. Dev. 32, 16–23
(1988). doi:10.1147/rd.321.0016

10. Bennett, C.H.: Time/space trade-offs for reversible computation. SIAM J. Comput. 18, 766–
776 (1989). doi:10.1137/0218053

11. Bennett, C.H., Landauer, R.: The fundamental physical limits of computation. Sci. Am. 253,
38–46 (1985). doi:10.1038/scientificamerican0785-48

12. Bernstein, E., Vazirani, U.V.: Quantum complexity theory. SIAM J. Comput. 26, 1411–1473
(1997). doi:10.1137/S0097539796300921

13. Bocheński, J.M.: Ancient Formal Logic. North-Holland, Amsterdam (1951)
14. Cook, M.: Universality in elementary cellular automata. Complex Syst. 15, 1–40 (2004)
15. De Vos, A.: Reversible Computing: Fundamentals, Quantum Computing, and Applications.

Wiley-VCH (2010). doi:10.1002/9783527633999
16. De Vos, A., Desoete, B., Adamski, A., Pietrzak, P., Sibinski, M., Widerski, T.: Design of

reversible logic circuits by means of control gates. In: Proc. PATMOS 2000 (eds. D. Soudris,
P. Pirsch, E. Barke), LNCS 1918, pp. 255–264 (2000). doi:10.1007/3-540-45373-3 27

17. Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum com-
puter. Proc. R. Soc. Lond. A 400, 97–117 (1985). doi:10.1098/rspa.1985.0070

18. Durand-Lose, J.O.: Cellular automata, universality of. In: Encyclopedia of Complexity and
Systems Science (eds. R.A. Meyers, et al.), pp. 901–913. Springer (2009). doi:10.1007/978-
0-387-30440-3 59

19. Feynman, R.P.: Simulating physics with computers. Int. J. Theoret. Phys. 21, 467–488 (1982).
doi:10.1007/BF02650179

20. Feynman, R.P.: Quantum mechanical computers. Opt. News 11, 11–46 (1985).
doi:10.1364/ON.11.2.000011

21. Feynman, R.P.: Feynman lectures on computation (eds., A.J.G. Hey and R.W. Allen). Perseus
Books, Reading, Massachusetts (1996)

22. Feynman, R.P.: The computing machines in the future (Nishina Memorial Lecture in Tokyo,
1985). In: Lect. Notes Phys. 746, pp. 99–113 (2008). doi:10.1007/978-4-431-77056-5 6

23. Frank, M.P.: Reversibility for efficient computing. Ph.D. thesis, MIT (1999)
24. Frank, M.P., Vieri, C., Ammer, M.J., Love, N., Margolus, N.H., Knight, T.E.: A scalable re-

versible computer in silicon. In: Unconventional Models of Computation (eds. C.S. Calude,
J. Casti and M.J. Dinneen), pp. 183–200. Springer (1998)

25. Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theoret. Phys. 21, 219–253 (1982).
doi:10.1007/BF01857727

26. Gajardo, A., Kari, J., Moreira, M.: On time-symmetry in cellular automata. J. Comput. Syst.
Sci. 78, 1115–1126 (2012). doi:10.1016/j.jcss.2012.01.006

27. Gruska, J.: Quantum Computing. McGraw-Hill, London (1999)
28. Hedlund, G.A.: Endomorphisms and automorphisms of the shift dynamical system. Math.

Syst. Theory 3, 320–375 (1969). doi:10.1007/BF01691062
29. Kari, J.: Reversible cellular automata. In: Proc. DLT 2005 (eds. C. de Felice, A. Restivo),

LNCS 3572, pp. 57–68 (2005). doi:10.1007/11505877 5
30. Kari, J.: Theory of cellular automata: a survey. Theoret. Comput. Sci. 334, 3–33 (2005).

doi:10.1016/j.tcs.2004.11.021
31. Keyes, R.W., Landauer, R.: Minimal energy dissipation in logic. IBM J. Res. Dev. 14, 152–157

(1970). doi:10.1147/rd.142.0152
32. Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In: Proc. 36th FOCS,

pp. 66–75. IEEE (1997). doi:10.1109/SFCS.1997.646094
33. Kutrib, M., Malcher, A.: Reversible pushdown automata. J. Comput. Syst. Sci. 78, 1814–1827

(2012). doi:10.1016/j.jcss.2011.12.004
34. Kutrib, M., Malcher, A.: One-way reversible multi-head finite automata. In: Proc. RC 2012

(eds. R. Glück, T. Yokoyama), LNCS 7581, pp. 14–28 (2013). doi:10.1007/978-3-642-36315-
3 2

http://dx.doi.org/10.1007/BF02084158
http://dx.doi.org/10.1147/rd.321.0016
http://dx.doi.org/10.1137/0218053
http://dx.doi.org/10.1038/scientificamerican0785-48
http://dx.doi.org/10.1137/S0097539796300921
http://dx.doi.org/10.1002/9783527633999
http://dx.doi.org/10.1007/3-540-45373-3_27
http://dx.doi.org/10.1098/rspa.1985.0070
http://dx.doi.org/10.1007/978-0-387-30440-3_59
http://dx.doi.org/10.1007/978-0-387-30440-3_59
http://dx.doi.org/10.1007/BF02650179
http://dx.doi.org/10.1364/ON.11.2.000011
http://dx.doi.org/10.1007/978-4-431-77056-5_6
http://dx.doi.org/10.1007/BF01857727
http://dx.doi.org/10.1016/j.jcss.2012.01.006
http://dx.doi.org/10.1007/BF01691062
http://dx.doi.org/10.1007/11505877_5
http://dx.doi.org/10.1016/j.tcs.2004.11.021
http://dx.doi.org/10.1147/rd.142.0152
http://dx.doi.org/10.1109/SFCS.1997.646094
http://dx.doi.org/10.1016/j.jcss.2011.12.004
http://dx.doi.org/10.1007/978-3-642-36315-3_2
http://dx.doi.org/10.1007/978-3-642-36315-3_2

12 1 Introduction

35. Kutrib, M., Worsch, T.: Time-symmetric machines. In: Proc. RC 2013 (eds. G.W. Dueck,
D.M. Miller), LNCS 7948, pp. 168–181 (2013). doi:10.1007/978-3-642-38986-3 14

36. Lamb, J., Roberts, J.: Time-reversal symmetry in dynamical systems: A survey. Physica D
112, 1–39 (1998). doi:10.1016/S0167-2789(97)00199-1

37. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev.
5, 183–191 (1961). doi:10.1147/rd.53.0183

38. Lange, K.J., McKenzie, P., Tapp, A.: Reversible space equals deterministic space. J. Comput.
Syst. Sci. 60, 354–367 (2000). doi:10.1006/jcss.1999.1672

39. Langton, C.G.: Self-reproduction in cellular automata. Physica D 10, 135–144 (1984).
doi:10.1016/0167-2789(84)90256-2

40. Lecerf, Y.: Machines de Turing réversibles — récursive insolubilité en n ∈ N de l’équation
u = θ nu, où θ est un isomorphisme de codes. Comptes Rendus Hebdomadaires des Séances
de L’académie des Sciences 257, 2597–2600 (1963)

41. Margolus, N.: Physics-like model of computation. Physica D 10, 81–95 (1984).
doi:10.1016/0167-2789(84)90252-5

42. Merkle, R.C.: Reversible electronic logic using switches. Nanotechnology 4, 20–41 (1993).
doi:10.1088/0957-4484/4/1/002

43. Miller, D.M., Maslov, D., Dueck, G.W.: A transformation based algorithm for re-
versible logic synthesis. In: Proc. Design Automation Conference, pp. 318–323 (2003).
doi:10.1109/DAC.2003.1219016

44. Moore, E.F.: Machine models of self-reproduction. Proc. Symposia in Applied Mathematics,
Am. Math. Soc. 14, 17–33 (1962). doi:10.1090/psapm/014/9961

45. Morita, K.: A simple reversible logic element and cellular automata for reversible computing.
In: Proc. MCU 2001 (eds. M. Margenstern, Y. Rogozhin), LNCS 2055, pp. 102–113 (2001).
doi:10.1007/3-540-45132-3 6

46. Morita, K.: Reversible computing and cellular automata — A survey. Theoret. Comput. Sci.
395, 101–131 (2008). doi:10.1016/j.tcs.2008.01.041

47. Morita, K.: Computation in reversible cellular automata. Int. J. of General Systems 41, 569–
581 (2012). doi:10.1080/03081079.2012.695897

48. Morita, K.: Reversible cellular automata. In: Handbook of Natural Computing (eds. G. Rozen-
berg, T. Bäck, J.N. Kok), pp. 231–257. Springer (2012). doi:10.1007/978-3-540-92910-9 7

49. Morita, K., Harao, M.: Computation universality of one-dimensional reversible (injective) cel-
lular automata. Trans. IEICE Japan E72, 758–762 (1989)

50. Myhill, J.: The converse of Moore’s Garden-of-Eden theorem. Proc. Am. Math. Soc. 14,
658–686 (1963). doi:10.2307/2034301

51. von Neumann, J.: Theory of Self-reproducing Automata (ed. A.W. Burks). The University of
Illinois Press, Urbana (1966)

52. Ollinger, N.: Universalities in cellular automata. In: Handbook of Natural Computing, pp.
189–229. Springer (2012). doi:10.1007/978-3-540-92910-9 6

53. Peres, A.: Reversible logic and quantum computers. Phys. Rev. A 32, 3266–3276 (1985).
doi:10.1103/PhysRevA.32.3266

54. Perumalla, K.S.: Introduction to Reversible Computing. CRC Press (2014)
55. Petri, C.A.: Grundsätzliches zur Beschreibung diskreter Prozesse. In: Proc. 3rd Colloquium

über Automatentheorie (eds. W. Händler, E. Peschl, H. Unger), Birkhäuser Verlag, pp. 121–
140 (1967). doi:10.1007/978-3-0348-5879-3 10

56. Pin, J.E.: On reversible automata. In: Proc. LATIN ’92 (ed. I. Simon), LNCS 583, pp. 401–416
(1992). doi:10.1007/BFb0023844

57. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing. Springer (1998). doi:10.1007/978-
3-662-03563-4

58. Rice, J.E.: An introduction to reversible latches. The Computer J. 51, 700–709 (2008).
doi:10.1093/comjnl/bxm116

59. Richardson, D.: Tessellations with local transformations. J. Comput. Syst. Sci. 6, 373–388
(1972). doi:10.1016/S0022-0000(72)80009-6

60. Saeedi, M., Markov, I.L.: Synthesis and optimization of reversible circuits - a survey. ACM
Comput. Surv. 45, 21 (2013). doi:10.1145/2431211.2431220

http://dx.doi.org/10.1007/978-3-642-38986-3_14
http://dx.doi.org/10.1016/S0167-2789(97)00199-1
http://dx.doi.org/10.1147/rd.53.0183
http://dx.doi.org/10.1006/jcss.1999.1672
http://dx.doi.org/10.1016/0167-2789(84)90256-2
http://dx.doi.org/10.1016/0167-2789(84)90252-5
http://dx.doi.org/10.1088/0957-4484/4/1/002
http://dx.doi.org/10.1109/DAC.2003.1219016
http://dx.doi.org/10.1090/psapm/014/9961
http://dx.doi.org/10.1007/3-540-45132-3_6
http://dx.doi.org/10.1016/j.tcs.2008.01.041
http://dx.doi.org/10.1080/03081079.2012.695897
http://dx.doi.org/10.1007/978-3-540-92910-9_7
http://dx.doi.org/10.2307/2034301
http://dx.doi.org/10.1007/978-3-540-92910-9_6
http://dx.doi.org/10.1103/PhysRevA.32.3266
http://dx.doi.org/10.1007/978-3-0348-5879-3_10
http://dx.doi.org/10.1007/BFb0023844
http://dx.doi.org/10.1007/978-3-662-03563-4
http://dx.doi.org/10.1007/978-3-662-03563-4
http://dx.doi.org/10.1093/comjnl/bxm116
http://dx.doi.org/10.1016/S0022-0000(72)80009-6
http://dx.doi.org/10.1145/2431211.2431220

References 13

61. Shende, V.V., Prasad, A.K., Markov, I.L., Hayes, J.P.: Synthesis of reversible logic circuits.
IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems 22, 710–722 (2003).
doi:10.1109/TCAD.2003.811448

62. Thapliyal, H., Ranganathan, N.: Design of reversible sequential circuits optimizing quantum
cost, delay, and garbage outputs. ACM Journal on Emerging Technologies in Computing
Systems 6, 14:1–14:31 (2010). doi:10.1145/1877745.1877748

63. Toffoli, T.: Computation and construction universality of reversible cellular automata. J. Com-
put. Syst. Sci. 15, 213–231 (1977). doi:10.1016/S0022-0000(77)80007-X

64. Toffoli, T.: Reversible computing. In: Automata, Languages and Programming (eds.
J.W. de Bakker, J. van Leeuwen), LNCS 85, pp. 632–644 (1980). doi:10.1007/3-540-10003-
2 104

65. Toffoli, T.: Bicontinuous extensions of invertible combinatorial functions. Math. Syst. Theory
14, 12–23 (1981). doi:10.1007/BF01752388

66. Toffoli, T., Margolus, N.: Invertible cellular automata: a review. Physica D 45, 229–253
(1990). doi:10.1016/0167-2789(90)90185-R

67. Vitányi, P.M.B.: Time, space, and energy in reversible computing. In: Conf. Computing Fron-
tiers, pp. 435–444 (2005). doi:10.1145/1062261.1062335

68. Watrous, J.: On one-dimensional quantum cellular automata. In: Proc. FOCS, pp. 528–537
(1995). doi:10.1109/SFCS.1995.492583

69. Wille, R., Drechsler, R.: Towards a Design Flow for Reversible Logic. Springer (2010).
doi:10.1007/978-90-481-9579-4

70. Winfree, E.: Self-healing tile sets. In: Nanotechnology: Science and Computation, pp. 55–78.
Springer (2006). doi:10.1007/3-540-30296-4 4

71. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-
dimensional DNA crystals. Nature 394, 539–544 (1998). doi:10.1038/28998

72. Yokoyama, T.: Reversible computation and reversible programming languages. Electron.
Notes in Theoret. Comput. Sci. 253, 71–81 (2010). doi:10.1016/j.entcs.2010.02.007

73. Yokoyama, T., Axelsen, H.B., Glück, R.: Fundamentals of reversible flowchart languages.
Theoret. Comput. Sci. (2015). doi:10.1016/j.tcs.2015.07.046

http://dx.doi.org/10.1109/TCAD.2003.811448
http://dx.doi.org/10.1145/1877745.1877748
http://dx.doi.org/10.1016/S0022-0000(77)80007-X
http://dx.doi.org/10.1007/3-540-10003-2_104
http://dx.doi.org/10.1007/3-540-10003-2_104
http://dx.doi.org/10.1007/BF01752388
http://dx.doi.org/10.1016/0167-2789(90)90185-R
http://dx.doi.org/10.1145/1062261.1062335
http://dx.doi.org/10.1109/SFCS.1995.492583
http://dx.doi.org/10.1007/978-90-481-9579-4
http://dx.doi.org/10.1007/3-540-30296-4_4
http://dx.doi.org/10.1038/28998
http://dx.doi.org/10.1016/j.entcs.2010.02.007
http://dx.doi.org/10.1016/j.tcs.2015.07.046

Chapter 2
Reversible Logic Elements with Memory

Abstract A reversible logic element with memory (RLEM) is presented as a logical
primitive for constructing reversible computing systems. In the conventional design
theory of logic circuits, logic gates, which are elements without memory, are mainly
used as logical primitives. On the other hand, in the case of reversible computing,
RLEMs are also useful as logical primitives. This is because reversible machines
can be constructed easily and concisely by a simple RLEM. In addition, the design
method using RLEMs is very different from those in the traditional theory of logic
circuits based on logic gates. Thus RLEMs give new vistas and suggest various
possibilities in the theory of reversible computing. Here, we present a typical 2-state
4-symbol RLEM called a rotary element (RE), and investigate how it is realized in
the billiard ball model, a reversible physical model of computing, and how reversible
sequential machines can be constructed from it.

Keywords reversible logic element with memory, rotary element, reversible se-
quential machine, billiard ball model

2.1 Logical Primitives for Reversible Computers

A logic element is a primitive for composing logic circuits by which computing
systems are implemented. There are two types of logic elements: one without mem-
ory, which is usually called a logic gate, and one with memory. In the traditional
design theory of logic circuits, logic gates such as AND, OR, NOT, NAND, and
others are used as primitives, and thus logic gates are dealt with separately from
memory elements such as flip-flops. In the theory of reversible logic circuits, also,
logic gates have been treated as the main primitives for circuit design, and there has
been much research on them. However, as we shall see in the following sections and
chapters, a reversible logic element with memory (RLEM) is also useful for com-
posing various models of reversible computing systems. In particular, we shall see
that even very simple RLEMs have universality, and we can compose reversible se-

15© Springer Japan KK 2017
K. Morita, Theory of Reversible Computing, Monographs in Theoretical Computer Science.
An EATCS Series, DOI 10.1007/978-4-431-56606-9_ 2

16 2 Reversible Logic Elements with Memory

quential machines, reversible Turing machines, and others rather easily from them.
In addition, these machines are constructed in a very different manner from those
in the traditional design theory of logic circuits. Since RLEMs thus give new vistas
and suggest various possibilities in the theory of reversible computing, we mainly
discuss RLEMs in this book.

A reversible logic element is one whose operation is described by an injec-
tion. For example, a NOT gate is reversible, since it realizes the injective logi-
cal function fNOT : {0,1} → {0,1} where fNOT(0) = 1 and fNOT(1) = 0. On the
other hand, NAND is irreversible, since it realizes the non-injective logical function
fNAND : {0,1}2→{0,1} where fNAND(0,0) = 1, fNAND(0,1) = 1, fNAND(1,0) = 1,
and fNAND(1,1) = 0. It is, of course, possible to implement reversible computing
models, such as reversible Turing machines, by irreversible logic elements like
NAND gates and flip-flops. But, such an implementation is almost meaningless
because of the following reason. One of the objectives of the study of reversible
computing is to find an efficient method of implementing reversible machines by
reversible logic elements, and to find an elegant way of realizing reversible logic
elements by physically reversible phenomena. Hence, our final goal is to realize a
reversible computer in a reversible physical system in an efficient way. Therefore,
the important point of the study of reversible logic elements is to find a key ele-
ment that lies in the intermediate level between the levels of abstract machines and
physical systems. Namely, the problem is which reversible logic element is useful
for constructing reversible machines, and is easily realizable in a reversible physical
system. We investigate this problem based mainly on RLEMs in this book. In fact,
there are several interesting RLEMs from which reversible machines are constructed
very simply. We shall also see that they are concisely implemented in the billiard
ball model, a kind of a reversible physical model of computing.

In this chapter, we introduce a particular reversible logic element with 1-bit mem-
ory called a rotary element (RE) [5], since its operation is very easily understood.
We shall see that the RE can be concisely realized in the billiard ball model, and it
is powerful enough for constructing reversible sequential machines.

2.2 Reversible Logic Element with Memory (RLEM)

We first define a sequential machine (SM) and its reversible version, since a re-
versible logic element with memory (RLEM) is a kind of reversible sequential ma-
chine (RSM). An SM given here is a finite automaton with an output port as well as
an input port, which is often called an SM of Mealy type.

Definition 2.1. A sequential machine (SM) is a system defined by M = (Q,Σ ,Γ ,δ),
where Q is a finite set of internal states, Σ and Γ are finite sets of input and output
symbols, and δ : Q×Σ → Q×Γ is a move function. If δ is injective, M is called
a reversible sequential machine (RSM). Note that if M is reversible, then |Σ | ≤ |Γ |
must hold. It is also called a |Q|-state |Γ |-symbol RSM.

