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Preface

Many engineering materials have a heterogeneous structure, especially at the
microscopic scale. These are often referred to as multiphase materials, composite or
heterogeneous materials. From an engineering point of view, multiphase materials
are desirable because they can be tailor-made to take advantage of particular
properties of each constituent. The size, shape, spatial distribution, volume fraction,
and properties of the constituents at microstructural level have a significant impact
on the behavior of material properties observed at the macroscale. Additionally, the
external loading applied at macroscale might cause changes in the microstructural
morphology, e.g., void formation, damage as well as cracking, which can put
structural integrity at risk. In order to assess structural integrity and to predict
structural lifetime, an analysis of the evolving microstructure is necessary. An
efficient computational strategy enabling more realistic material description as well
as deformation response is still a challenge in computational mechanics. Various
multiscale techniques have been developed that model materials at multiple levels.
Moreover, various modern experimental techniques provide access to a detailed
characterization of the internal structure and processes taking place in materials at
small scales, paving the way to new routes for model validation.

This book contains 18 papers that resulted from selected presentations at the
workshop “Multiscale Modeling of Heterogeneous Structures” held September 21–
23, 2016 in Dubrovnik, Croatia. The workshop focused on multiscale approaches
and homogenization procedures as well as damage evaluation and crack initiation.
Recent advances in the analysis and discretization of heterogeneous materials were
addressed. The state of the art in this research area was highlighted with respect to
different computational methods, software development, and applications to engi-
neering structures.

The papers were allotted to four topics: Composites, Computational Solution
Approaches, Gradient Enhanced Modeling, and Multiphysics and associated
experimental techniques. The topic Composites covers defects in composite
materials including their numerical and experimental investigations. Elastic as well
as elastoplastic constitutive models are considered, where the modeling has been
performed at macro- and microlevels. The second group of the papers is more
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focused on novel computational schemes applied at the different scales. The vali-
dation of numerical results has been discussed. The quasi-brittle and the ductile
damage using the gradient enhanced approach are considered in the frame of the
topic Gradient Enhanced Modeling. Finally, the thermoplasticity, the solid-liquid
mixture as well as the ferroelectric models are discussed in the fourth topic.

The workshop was held under the auspices of the German Association for
Computational Mechanics (GACM), the Central European Association for
Computational Mechanics (CEACM), the ENS Cachan, the Leibniz Universität
Hannover, the Faculty of Mechanical Engineering, and Naval Architecture of the
University of Zagreb. It was supported by the Alexander von Humboldt
Foundation, the Deutsch-Französische Hochschule, and the Deutsche
Forschungsgemeinschaft. The editors express their deep gratitude to all sponsoring
institutions. Furthermore, the editors would like to thank Ms. Schulte and Dr.
Lesičar for their engagement in the organization of the workshop as well as Dr.
Weißenfels for his valuable assistance in preparing the book.

Zagreb, Croatia Jurica Sorić
Hannover, Germany Peter Wriggers
Cachan, France Olivier Allix
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Part I
Composites



Evolution of Failure Mechanisms
in Composite Shell Structures Using
Different Models

Werner Wagner and Friedrich Gruttmann

Abstract Modelling of structures on different scales has been a popular subject in
the past. Within such a strategy the structural behaviour is modeled on a macro-level,
describing the structure itself, whereas thematerial behaviour is modeled on amicro-
level. Here typically RVEs are used. The proper choice of boundary conditions for
the RVE is a difficult task in case of shell structures. Here, results have been presented
for homogeneous and layered structures for composite materials in (Gruttmann &
Wagner, Int J Num Meth Eng 94:1233–1254, 2013) [10]. In the present paper we
discuss the influence of material nonlinear behaviour, especially the damage behav-
iour of fiber reinforced polymers, within the above described setting in comparison
to other modeling techniques.

1 Introduction

Finite shell elements which are based on the first–order shear deformation theory are
in general able to describe the global deformation behaviour of thin plate and shell
structures. In [20] we presented results that show remarkable robustness of mixed
formulations in nonlinear applications. Modifications of such mixed formulations to
layered structures are developed in [9]. With respect to damage behaviour a layer-
wise numerical integration has to be used. A similar approach can be achieved in case
of solid shell elements, e.g. [14, 15]. Choosing one element in thickness direction
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4 W. Wagner and F. Gruttmann

again a layerwise approach has to be added. However for some stress components
only an average shape through the thickness can be obtained. Various methods have
been developed to obtain the complicated local stress state in inhomogeneous thin
structures. So-called multi-director shell formulations with an appropriate number
of global degrees of freedom at the nodes yield approximate solutions of the three-
dimensional boundary value problem, e.g. [8, 18]. The application of brick elements
or solid shell elements provides likewise a computationally expensive approach, e.g.
[14, 15], but allow the description of warping or other effects in the cross section
of the shell. For laminates each layer must be discretised with several elements in
thickness direction to obtain satisfactory results. The enhancement of the displace-
ment field by layer-wise linear (zig-zag) functions through the thickness, see e.g. [1],
could be another option, which leads to a more precise deformation behaviour. New
actual promising results for locally extended shell formulations can be found in [11]
for the elastic case. A further alternative is the treatment of shells as a homogeneous
continuum in a 2D shell environment with effective properties obtained through a
homogenisation procedure to avoid large-scale computations. A large number of
papers exists on computational homogenisation methods for general heterogeneous
materials, see e.g. [5, 23] for a survey and new developments. Based on the formula-
tion in [20] we have derived a two-scale model with a variational formulation and an
associated linearisation for the coupled global–local boundary value problem in [10]
and an adaptive application to local elasto-plastic material in [22]. In this paper we
present the applicability to damaged composite shell structures. For that we compare
different discretisation models

• layered solid shell models [14, 15]
• layerwise solid shell models [14, 15]
• layerwise shell models [9, 20]
• shell models with an internal FE2-approach [2, 6, 10].

To do this we describe in the next two sections briefly the main equations of
a two-scale shell model and the main equations of damage models of Hashin, e.g.
[7, 12], Puck, e.g. [16] and Cuntze, e.g. [3, 4].

2 Two-Scale Shell Model

2.1 Theoretical Background

At first the basic equations of a Reissner-Mindlin shell model are summarised. Based
on a reference surface the thickness coordinate ξ3 = z is defined, where h− and h+
are the z-coordinates of the outer surfaces. The shell is loaded statically by loads p̄ in
Ω and by boundary forces t̄ on �σ. The displacement field of the Reissner-Mindlin
theory is obtained with
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ū = ū0 + z (d̄ − D̄) ū0 = x − X , (1)

where x,X denote the position vectors of the initial and current reference surface,
respectively. The unit director vectors are denoted by D̄, d̄, where d̄ is a function of
the rotational parameters ω̄.

The shell strains are derived from the Green-Lagrangian strain tensor using kine-
matic assumption (1) and are arranged in a vector as

ε(ū0, ω̄) = [ε11, ε22, 2 ε12,κ11,κ22, 2κ12, γ1, γ2]T . (2)

Furthermore the vector of stress resultants σ with membrane forces nαβ , bending
moments mαβ and shear forces qα is introduced via

σ = [n11, n22, n12,m11,m22,m12, q1, q2]T . (3)

Further details on the remarkable robust mixed formulation are described in [20] and
[9].According to Fig. 1 a representative volume element (RVE) at an integration point
i of a particular finite shell element is introduced. The domain Bi extends through
the total thickness h of the shell and has the size lx × ly × h. The displacement field
is split in an averaged part ū and a fluctuation part ũ.

u = ū + ũ . (4)

The averaged displacements ū according to (1) exhibit a linear shape of the thickness
coordinate, whereas ũ describes warping and thickness change. The weak form of
equilibrium of the coupled problem can now be written with v = [ū0, ω̄,u]T and
associated admissible variations

Fig. 1 Computational
homogenisation of a layered shell

h

h

εDσ

F

Ω

BiBi

h+
h-
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g(v, δv) =
∫

Ω1

(σ · δε − p̄ · δū0) d A1 +
∫

Ω2

(σ · δε − p̄ · δū0) d A2

+
ne2∑
e=1

NGP∑
i=1

1

Ai

∫

Ωi

h+∫

h−

S · δE μ̄ dz d A −
∫

�σ

t̄ · δū0 ds = 0 .

(5)

The structure is divided in parts Ω1 without and Ω2 with a two-scale model, respec-
tively. Furthermore ne1 and ne2 denote the associated number of shell elements
within a discretisation. NGP is the number of Gauss points for each element and
Ai = lx ly is the reference area of the RVE. On the RVE S denotes the Second Piola-
Kirchhoff stress tensor with P = FS and the virtual Green-Lagrangian strain tensor
is introduced via δE = 1

2 (δF
TF + FT δF). For the finite element formulation of the

next section we need to derive the linearisation of Eq. (5). With conservative loads p̄
and t̄ one obtains

L [g(v, δv),Δv] := g(v, δv) + Dg · Δv (6)

where g(v, δv) is given in (5) and

Dg · Δv =
∫

Ω1

(Δσ · δε + σ · Δδε) d A1 +
∫

Ω2

(Δσ · δε + σ · Δδε) d A2

+
ne2∑
e=1

NGP∑
i=1

1

Ai

∫

Ωi

h+∫

h−

(ΔS : δE + S : ΔδE) dz d A

(7)

with Δσ = DΔε, ΔS = CΔE and ΔδE = 1
2 (δF

TΔF + ΔFT δF). The material
matrixC is a standard output of a library of constitutive laws in amaterial description.
The linearised virtual shell strains Δδε are derived for finite rotations in [20]. The
stress resultant vector σ and the matrix of linearised stress resultants D are specified
within the finite element formulation in the next section.

2.2 Finite Element Formulation

The reference surface of the shell is discretised with ne = ne1 + ne2 quadrilat-
eral isoparametric shell elements, using bilinear shape functions NI (ξ, η) which are
arranged in the matrix N. The nodal degrees of freedom are three displacements and
two or three rotations. Inserting these interpolation functions into the linearised weak
form (6) considering (5) and (7) yields
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L [g(vh, δvh),Δvh] =
ne1∑
e=1

δvGe k
G
e ΔvGe + fGe +

ne2∑
e=1⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

δvG

δV1
...

δVi
...

δVNGP

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

e

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

kG 0
... 0

... 0

0 KL
1

... 0
... 0

. . . . . .
. . . 0 . . . . . .

0 0 0 KL
i 0 0

. . . . . . . . . 0
. . . . . .

0 0 . . . 0 . . . KL
NGP

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

e

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ΔvG

ΔV1
...

ΔVi
...

ΔVNGP

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

e

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

fG(σi )

FL
1
...

FL
i
...

FL
NGP

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

e

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(8)

The indices G and L refer to the global and local boundary value problems, respec-
tively. The matrices of the first row in (8) follow from the global part of the linearised
weak form. The element residual vector and the tangential element stiffness matrix
read

fG(σi ) =
∫

Ωe

(BTσ − NT p̄) d A −
∫

�σe

NT t̄ dskG(Di )

=
∫

Ωe

(BTDB + G) d A
(9)

where the matrices B and G are derived in [20]. The vector of stress resultants σi

and linearised stress resultants Di are specified below. The matrices of the second to
the last row in (8) are associated with the local boundary value problems at Gauss
points 1 ≤ i ≤ NGP of shell element e and occur only, if a two-scale model is used.
A local boundary value problem can be defined at Gauss point i

δVT
i (KL

i ΔVi + FL
i ) = 1

Ai

Ne∑
e=1

δvTe (kL
e Δve + f Le ) . (10)

Here, the total number of elements used for the discretisation of the RVE is denoted
by Ne. The element residual vector f Le and the tangential element stiffness matrix
kL
e read

f Le =
∫

(Ve)

B̃TS dV kL
e =

∫

(Ve)

(B̃TC B̃ + G̃) dV (11)

where B̃ and G̃ are the virtual strain displacement matrix and the geometrical matrix
of 8-noded solid shell elements, respectively. The element displacement vector ve
is now split in a part vΩ with internal displacements and a part v� which contains
displacements on the boundary �u of the RVE

ve =
[
vΩ

v�

]
=
[
ae Vi

Ae εi

]
. (12)
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In Eq. (12) ae is a standard assembly matrix. Ae is defined for nel nodes on the
element with

Ae = [δ1 A1, . . . , δI AI , . . . , δnel Anel ]
T (13)

with δI = 0 for internal nodes and δI = 1 for boundary nodes. Assuming small
strains the relation of the boundary displacements to the shell strains ε can be written
as

[
vx
vy

]
I

= AI (x, y, z) εi =
[
x 0 1

2 y xz 0 1
2 yz z 0

0 y 1
2 x 0 yz 1

2 xz 0 z

]

I

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε11
ε22
2ε12
κ11

κ22

2κ12

γ1
γ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

i

(14)

Based on the element displacement split (12) one can introduce submatrices of kL
e

and f Le in (10)

δVT
i (KL

i ΔVi + FL
i )

= 1

Ai

Ne∑
e=1

[
δVi

δεi

]T {[ aTe kΩΩ ae aTe kΩ� Ae

AT
e k�Ω ae AT

e k�� Ae

]
e

[
ΔVi

Δεi

]
+
[
aTe fΩ
AT

e f�

]
e

}

= 1

Ai

[
δVi

δεi

]T {[ K L
LT M

] [
ΔVi

Δεi

]
+
[
FΩ

F�

]}
.

(15)

The internal degrees of freedomΔVi can now be eliminated from the set of equations
which yields the final form of Eq. (15)

δVT
i (KL

i ΔVi + FL
i ) = δεTi (Di Δεi + σi ) (16)

where the stress resultants and linearised stress resultants of Gauss point i are defined
using KX = L and KY = FΩ

σi = 1

Ai
(F� − LTY) Di = 1

Ai
(M − LTX) . (17)

Finally (16) is inserted into the linearised coupled global-local boundary value prob-
lem (8)
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L [g(vh, δvh),Δvh] =
ne1∑
e=1

δvGe k
G
e ΔvGe + fGe +

ne2∑
e=1⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

δvG

δε1
...

δεi
...

δεNGP

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

e

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

kG(Di ) 0
... 0

... 0

0 D1
... 0

... 0

. . . . . .
. . . 0 . . . . . .

0 0 0 Di 0 0

. . . . . . . . . 0
. . . . . .

0 0 . . . 0 . . . DNGP

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

e

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ΔvG

Δε1
...

Δεi
...

ΔεNGP

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

e

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

fG(σi )

σ1
...

σi
...

σNGP

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

e

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(18)

It has been shown, see e.g. [21], that the equivalence of macroscopic andmicroscopic
stress power for shell structures, the so called Hill condition, holds

1

h
σε̇ = 1

V

∫

V

S : Ė dV = 1

V

∫

A

t · ˙̄u d A with ˙̄uI =
[ ˙̄ux˙̄uy

]
I

= AI ε̇ (19)

3 Failure Models of Hashin, Puck and Cuntze

For fiber reinforced composite structures a range of failure mechanisms as fiber
fracture (FF), inter fiber failure (IFF) and delamination may occur. Several failure
models are proposed to describe FF (Fig. 2a, b) and IFF, usually each distinct in a
tensile(t) and compressive(c) mode, (Fig. 2c, d). Improved models subdivide the IFF
compressive mode in a shear dominant (Fig. 2d) and purely compression dominant
mode (Fig. 2e). FF is themost severe failure and generally leads to structural collapse.
Based on a large number of models we choose themodifiedHashin-model [7] as one
of the most commercial ones. Furthermore we employ the Puck-model [16] and the
Cuntze-model [3], which provide approaches to the physical aspects of the fracture.
We describe the main equations. For a further discussion we refer to the original
references.

3.1 The Modified Hashin-Model

Oneof the used failuremodels is themodifiedHashin-model [7], based on the original
version in [12]. Themodel consists of five failure criteriawhere the equations separate
tensile and compressive matrix(M)- and fiber(F)-failure (Mt is used if S22 > 0, Mc

if S22 < 0).
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(a) (b)

(c) (d) (e)

Fig. 2 Possible failure modes of a single ply of composite laminates: a tensile FF b compressive
FF c tensile IFF d shear-dominant IFF e compressive IFF

Ft :
(
S11
Rt‖

)2

= 1, S11 > 0

Fc :
(
S11
Rc‖

)2

= 1, S11 < 0

Mt :
(
S22
Rt⊥

)2

+
(

S12
R⊥‖

)2
+
(

S13
R⊥‖

)2
+
(

S23
R⊥⊥

)2
= 1

Mc :
(

S22
2R⊥⊥

)2
+
[(

Rc⊥
2R⊥⊥

)2

− 1

]
S22
Rc⊥

+
(

S12
R⊥‖

)2
+
(

S13
R⊥‖

)2
+
(

S23
R⊥⊥

)2
= 1

FMS :
(

〈−S11〉
Rc‖

)2

+
(

S12
R⊥‖

)2
+
(

S13
R⊥‖

)2
= 1

(20)
The most important modification is the fiber-matrix-shear (FMS)-condition. This
cut-off considers the shear load additional via

〈−S11〉 =
{
0, S11 ≥ 0
S11, S11 < 0

. (21)

The failuremodel is used ply-by-ply, thus every single layer is treated exclusively. Si j
are stresses referring to a local coordinate system, where the 1-direction specifies the
fiber-direction, the 2-direction the in-plane direction normal to the fibers and the 3-
direction is the through-thickness direction. Associated material strength values are



Evolution of Failure Mechanisms in Composite Shell Structures … 11

defined typically with Rt
‖, R

c
‖, R

t
⊥, Rc

⊥, R⊥‖, R⊥⊥ where subscripts ‖ and ⊥ denote
the directions parallel and transverse to the fiber direction.

3.2 The Puck-Model

The Puck-model is used as a second model to predict failure of composite laminates.
All equations and contents of this subsection refer to [16]. To describe the individual
failure mode Puck introduces four different failure conditions. Each layer can fail
in different modes, a FF and three IFF-conditions with tensile (IFFA), compressive
(IFFC) and shear dominant inter fiber failure (IFFB).

FF: εFF =
(

〈S11〉
Rt‖

)2

+
(

〈−S11〉
Rc‖

)2

= 1

IFFA: εI FF A =
√√√√(

S12
R⊥‖

)2
+
(
1 − pt⊥‖

Rt⊥
R⊥‖

)2 (
S22
Rt⊥

)2

+ pt⊥‖
S22
R⊥‖

= 1, S22 > 0

IFFB: εI FF B = 1

R⊥‖

(√
S212 +

(
pc⊥‖S22

)2 + pc⊥‖S22
)

= 1

IFFC: εI FF C =
⎡
⎣
(

S12
2
(
1 + pc⊥⊥

)
R⊥‖

)2

+
(
S22
Rc⊥

)2
⎤
⎦ Rc⊥

(−S22)
= 1

(22)

Equation (22) defines efforts Eff (mode). Failure occur for Eff i > 1. Curve fitting
parameters appear which can be used to fit the failure model to a single material or
an experiment. For carbon fiber reinforced plastics Puck [17] proposes pt⊥‖ = 0.35,
pc⊥‖ = 0.30, pt⊥⊥ = 0.25 − 0.30, pc⊥⊥ = 0.25 − 0.30.

3.3 The Cuntze-Model

As a third model for composite laminates the Cuntze failure model is used. All
equations and contents of this subsection refer to [3, 4]. To describe an individual
failure mode Cuntze [3] introduces five failure conditions. Each layer can fail in
different modes, two FF and three IFF-conditions. The FF-conditions distinguish
tensile (FF1) and compressive fiber failure (FF2), and the IFF-conditions can be
divided into tensile (IFF1), compressive (IFF3) and shear dominant inter fiber failure
(IFF2).
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FF1:
I1
Rt

‖
= 1

FF2:
−I1
Rc

‖
= 1

IFF1:
I2 + √

I4
Rt

⊥
= 1

IFF2:

√
I 33 + b⊥‖(I2 I3 − I5)

(R⊥‖)3
= 1

IFF3:
(bτ

⊥ − 1)I2 + bτ
⊥
√
I4

Rt
⊥

= 1

(23)

with
I1 = S11 I2 = S22
I3 = S222 + S213 I4 = S222 + 4S223
I5 = S22(S213 − S212) − 4S12S13S23

(24)

In Eq. (24) two curve fitting parameters appear which can be used to fit the failure
model to a single material or an experiment. For carbon fiber reinforced plastics
Cuntze [4] propose 0.05 < b⊥‖ < 0.15, and 1.0 < bτ

⊥ < 1.15). Equation (23) defines
stress efforts Eff (mode) for each failure mode which depends only on one material
strength. They can be combined to a more realistic numerical model via

E f f ṁ(res) =
5∑

i=1

E f f ṁ(i). (25)

Here, a third curve fitting parameter ṁ (‘rounding-off-parameter’) is used, which
considers an interaction of the failure modes. A value of ṁ ≈ 3.0 is recommended,
see [4].

4 Example-Four Point Bending Test

4.1 Problem Description

The developed algorithms and elements are implemented in an extended version of
the general finite element program FEAP [19]. The investigated example is a four
point bending test, depicted in Fig. 3. The geometrical data are L = 400mm, B =
12.5mm, D = 20mm and a layer thickness of t = 2.5mm together with a stack-
ing sequence [0◦/90◦]2s . With respect to symmetry only one half of the structure is
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1 2

3

Fig. 3 Four point bending test: geometry, loading and discretisation options

discretised. A discretisation with solid shell elements [15] is chosen with 32×1 ele-
ments in x-y-plane. Furthermore the 1-Element-8-Layer model (‘Solid Shell 1(8)’)
has one element in thickness direction and 8 layers, whereas the 8-Element-1-Layer
model (‘Solid Shell 8(1)’) has for each layer one element in thickness direction.
The discretisation with shell elements [20] is chosen with 32×1 elements in x-y-
plane (‘Shell (8)’). The thickness direction is modeled within a layerwise approach.
With respect to the multi-scale approach the same shell model is used. Here, on
RVE-level, discretisations using solid shell elements are applied. Again an option
with 1-Element-8-Layer (8×8×1(8) named ‘Shell FE2 1(8)’) and an option with 8-
Element-1-Layer (8×8×8(1) named ‘Shell FE2 8(1)’) in thickness direction could
be used. The global boundary conditions are chosen as uz = 0 at x = 0 and symmetry
conditions at x = L . Furthermore plain strain conditions are assumed with uy = 0 at
y = 0 and y = B. It is well known, that in case of local stress based failure models
a mesh dependency of solutions may occur. This is not topic of present paper. As
stated above, we compare different discretisation options but introduce comparable
meshes. The underlying material data for A-S Epoxy1 are depicted in Tables1 and 2.
Results are presented for the different shell and failure models in the following.
The analysis is performed geometrically and material nonlinear on global as well as
on local level. An arc-length scheme with displacement control is adopted. Load-
deflection curves and damage distributions are depicted for the different cases. Dif-
ferent failure modes are shown with values between 0 (no damage) and 1 (fully

Table 1 A-S Epoxy1 stiffness values

E‖ [MPa] E⊥ [MPa] ν‖⊥ [-] G‖⊥ [MPa] G⊥⊥ [MPa]

140000 10000 0.3 6000 3335

Table 2 A-S Epoxy1 strength values

Rt‖ [MPa] Rc‖ [MPa] Rt⊥ [MPa] Rc⊥ [MPa] R⊥‖ [MPa]

1990 1500 38 150 70
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damaged) for solid shell and multi-scale models. The failure behaviour is plotted
layerwise since no averaging in thickness direction is allowed.

The general deformation behaviour, see Fig. 5, is as follows. A nearly linear load-
deflection behaviour occurs until a value of approximately w = 70mm. The failure
modes start with a matrix-failure in the 90◦-layer at bottom in the loading region,
when reaching Rt

⊥. The drastic reduction of the load is then based mainly on the fiber
failure in the 0◦-layer at top in the loading region, when reaching Rc

‖. Note R
c
‖ < Rt

‖.
Further loading leads to another matrix-failure in the 90◦-layer at top in the loading
region, with respect to Rc

⊥. Further minor mixed shear failure modes occur.

4.2 Hashin-Model

Figure4 presents the deformedmeshes at the final deformation of w=100mm for the
different models. Figure5 depicts load-deflection curves for different discretisation
models for the case of the Hashin failure model. Depicted are results for the external
load p [N/mm2] with respect to the center deflection w [mm], see Fig. 3. Relatively
similar results are produced for a discretisation ‘Solid Shell 1(8) and a standard shell
formulation ‘Shell (8)’. Results for ‘Solid Shell 1(8)’ and ‘Solid Shell 8(1)’ differ in
the post-failure region. ‘Solid Shell 8(1)’ and ‘Shell (8)’ lead to nearly similar results,
even in the post-failure region. The multi-scale solutions ‘Shell FE2 1(8)’ and ‘Shell
FE2 8(1)’ deviate from the ‘Solid Shell 8(1)’ solutions. A lower failure load and
different post-failure paths are reached. This will be discussed in more detail in the
following. Figure6 presents the failure behaviour at w =100mm in the solid model
‘Solid Shell 8(1)’, which is dominated by failures Mc(0◦) and Mt (90◦), Mc(90◦). A
muchmore detailed analysis is possible for themulti-scale model, which is presented
in Fig. 7. Here different failure modes are presented on the RVE, chosen here for

Fig. 4 Hashin. Deformed mesh Solid Shell 8(1), Solid Shell 1(8) versus Shell+FE2 at w=100mm
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Fig. 5 Hashin-Failure model. Load-deflection curves for different discretisation models

(a)

(b)

(c)

(d)

0.0
0.1
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0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fig. 6 Hashin-Failure model in Solid Shell at w=100mm a FF(0◦), b Mt (0◦), c Mt (90◦), d
Mc(90◦)
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(a) (b)

(c) (d)
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0.9
1.0

Fig. 7 Hashin-Failure model in Shell-FE2 at w=100mm a FF(0◦), b FMS(0◦), c Mt (90◦), d
Mc(90◦)

element 24, Gauss-point 1, which is near the loading area. As can be seen from
Fig. 7, the failure behaviour in the ‘Shell-FE2 8(1)’ model, is dominated by failure
FF(0◦) at top (c) and bottom (t), FMS(0◦) and Mt (90◦), Mc(90◦).

4.3 Puck-Model

Again load-deflection curves for different discretisation models, now in case of the
Puck failure model, are depicted in Fig. 8. As can be seen from the diagram sim-
ilar results are produced for a discretisation ‘Solid Shell 1(8) and a standard shell
formulation ‘Shell (8)’. These results deviate from the model ‘Solid Shell 8(1)’,
where a more complex post-failure region occurs. The multi-scale solutions ‘Shell
FE2 1(8)’ and ‘Shell FE2 8(1)’ have lower failure loads than ‘Solid Shell 8(1)’
but a similar post-critical behaviour. The distribution of damaged areas can be seen
again in Figs. 9 and 10. The detailed failure behaviour is similar to the Hashin-
model. Failure modes occur for FF(0◦) at top (c) and bottom (t), I FF B(0◦) and
I FF A = Mt (90◦), I FF C = Mc(90◦).

4.4 Cuntze-Model

The Cuntze-model is based on similar concepts as the Puck-model. Thus it could be
expected, that the load-deflection behaviour for this model lies in the same range,
see Fig. 11. Again similar results are produced for discretisation ‘Solid Shell 1(8)’
and ‘Shell (8)’. Also these results do not show the more complex post failure behav-
iour, which occur for model ‘Solid Shell 8(1)’. The multi-scale solutions ‘Shell



Evolution of Failure Mechanisms in Composite Shell Structures … 17

Fig. 8 Puck-Failure model. Load-deflection curves for different discretisation models
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Fig. 9 Puck-Failure model in Solid Shell at w=100mm a FF(0◦), b I FF A(0◦), c I FF A =
Mt (90◦), d I FF C = Mc(90◦)
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(a) (b)

(c) (d)
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Fig. 10 Puck-Failure model in Shell-FE2 at w = 100mm a FF(0◦), b I FF B(0◦), c I FF A =
Mt (90◦), d I FF C = Mc(90◦)

Fig. 11 Cuntze-Failure model. Load-deflection curves for different discretisation models

FE2 1(8)’ and ‘Shell FE2 8(1)’ have lower failure loads than ‘Solid Shell 8(1)’
but describe the post-critical behaviour in a similar way. The distribution of dam-
aged areas can be seen again in Figs. 12 and 13. The detailed failure behaviour for
the Cuntze-model is governed by FF(0◦) at top (c) and bottom (t), I FF1(0◦) and
I FF1 = Mt (90◦), I FF3 = Mc(90◦) and is close to the results of the Puck-model.
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Fig. 12 Cuntze-Failure model in Solid Shell at w=100mm a FF(0◦), b I FF1 = Mt (0◦), c
I FF1 = Mt (90◦), d I FF3 = Mc(90◦)
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Fig. 13 Cuntze-Failure model in Shell-FE2 at w=100mm a FF(0◦), b I FF1 = Mt (0◦), c
I FF1 = Mt (90◦), d I FF3 = Mc(90◦)
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5 Conclusions

Different discretisation concepts for thin shell structures with respect to damage
behaviour have been discussed in this paper. These concepts are layered solid shell
models, layerwise solid shell models, layerwise shell models and shell models with
a FE2-approach. Layerwise solid shell and shell models possess a similar number
of unknowns. The layered solid shell models allows the studying of possible warp-
ing in thickness direction. The multi-scale models are chosen with associated RVE
discretisations. Results for the pre-damage behaviour are very close together for all
models. No influences of different kinematic models occur for the chosen exam-
ple, see Figs. 5, 8 and 11. Damage behaviour is described via three different failure
models. Obviously these models lead to different estimations for the post-failure
behaviour. Nevertheless the general failure behaviour could be described with all
models, when matrix-failure in the 90◦-layer at bottom, fiber failure in the 0◦-layer
at top and another matrix-failure in the 90◦-layer at top occur. However, in detail,
different load deflection curves are predicted in the post-failure region. The influence
of the failure models are presented in Fig. 14. Results using layerwise solid shell ele-
ments for the Puck- and Cuntze-model are comparable, whereas the Hashin-model
leads to a more conservative interpretation in the post-failure region. This is also
reflected when choosing the shell-FE2 approach. With respect to Figs. 7, 10 and 13
it could be stated that the shell-FE2-approach gives much more insight into the local
behaviour at integration points. Finally it should be stated that such detailed results
could be reached only after time-consuming calculations. Improvements are adaptive
schemes, see e.g. [22] as well as parallelisation techniques, see e.g. [13], for which
multi-scale models are well suited ([2, 6]).

Fig. 14 Load-deflection curves for different discretisation and failure models
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