Impacted Third Molars
Impacted Third Molars

John Wayland

DDS, FAGD, MaCSD
Wailuku

WILEY Blackwell
To my wife and best friend, Betty Yee.
Contents

Preface xi
About the Companion Website xiii

1 Anatomy 1
Nerves 1
Blood Vessels 4
Buccal Fat Pad 6
Submandibular Fossa 7
Maxillary Sinus 8
Infratemporal Fossa 8
References 10

2 Case Selection 13
Medical Evaluation 13
Radiographic Assessment 20
Early Third Molar Removal 27
Prophylactic Removal of Third Molars 29
Summary 30
References 31

3 Complications 33
Paresthesia 33
Alveolar Osteitis 40
Infection 46
Bleeding and Hemorrhage 52
Jaw Fracture 54
Osteomyelitis 56
Damage to Proximal Teeth 57
Buccal Fat Pad Exposure 57
Oral-Antral Communication 57
Displacement of Third Molars 58
Aspiration and Ingestion 61
Temporomandibular Joint Injury 62
Complications Summary 62
References 62
4 Work Space: Equipment, Instruments, and Materials 67
 Equipment 68
 Instruments 74
 Materials 83
 Bloodborne Pathogens Standard 93
 References 94

5 Surgical Principles and Techniques 97
 Surgical Principles 97
 Surgical Technique 108
 Germectomy 125
 References 126

6 Pharmacology 131
 Pharmacokinetics and Pharmacodynamics 131
 Pharmacology for Third Molar Removal 134
 Sedation 134
 Pain Management 140
 Inflammation 150
 Infection 153
 Author’s Medication Regimen 156
 References 157

7 Sedation Techniques 163
 Sedation as a Continuum 165
 ADA Definitions (Verbatim) 166
 ADA Clinical Guidelines (Verbatim) 167
 Medical Evaluation 173
 Routes of Administration 174
 Inhalation (N₂O) 176
 Oral Sedation 183
 Sublingual Administration 184
 Intravenous Sedation 185
 Venipuncture 188
 References 194

8 Sedation Emergencies and Monitoring 197
 Patient Safety and Sedation Law 197
 Sedation Emergencies 200
 Monitors 207
 References 212

9 Documentation 213
 Informed Consent 213
 Progress Notes 217
 Malpractice Cases 218
 Summary 223
 References 224
Contents

10 **The Mobile Third Molar Practice** 225
 Mobile Practice Benefits 227
 General Dentist or Specialist 228
 Mobile Practice Promotion 229
 Third Molar Procedure Manual 234
 Third Molar Removal With IV Sedation 235
 Introduction 235
 Guidelines for Third Molar Surgery 236
 Instruments/Operatory Setup 237
 Instruments/Sterilization 238
 Emergency Procedures 238
 Medical History 241
 Presurgical Instructions 242
 Postsurgical Instructions 243
 Progress Notes 244
 Progress Notes Key 245
 Sedation Record 246
 Third Molar Impaction Consent 247
 IV Sedation and Wisdom Teeth Briefing 248
 Third Molar Research 249
 Contractual Agreement for Dental Services 250
 Documents 253
 Scheduling Letter 253
 Scheduling Protocol 254
 Scheduling Tips 254
 Insurance/Fees 255
 Summary 257
 References 257

Index 259
Preface

Most dentists receive minimal exodontia training in dental school. All difficult extractions and surgical procedures are referred to specialty programs: OMFS, AEGD, and GPR. Exodontia courses are hard to find after dental school, especially courses for the removal of impacted third molars. Most oral surgeons are reluctant to share their third molar knowledge. Very few general dentists have the third molar experience or training to pass on to their colleagues.

The removal of third molars is one of the most common procedures in dentistry. The majority of impacted third molars are removed by oral surgeons who also do hospital procedures including orthognathic, cleft palate, TMJ, reconstructive, and other complex surgical procedures. Compared to complex oral surgery, the removal of third molars is a relatively simple procedure that can be done safely by most general practitioners.

Why Should YOU Remove Third Molars?

The removal of impacted third molars is a predictable and profitable procedure that benefits your practice and patients. Proper case selection and surgical procedure will minimize complications and can be learned by any dentist. The author has removed more than 25,000 wisdom teeth with no significant complications (i.e., no permanent paresthesia).

Fear of the unknown is a common barrier preventing dentists from removing third molars. They often ask themselves, “Is this third molar too close to the inferior alveolar nerve? How much bleeding is normal? What should I do if there’s infection?” You probably asked similar questions with your first injection, filling, root canal, or crown. Now those procedures are routine. The removal of third molars, including impactions, will also become routine.

It’s estimated that 10 million wisdom teeth are removed in the United States every year. Imagine a dentist who refers only one third molar patient per month for the removal of four third molars. If the cost per patient averaged $1500, including sedation, this dentist would refer $360,000 in 20 years! Conversely, the dentist could have treated his own patients and used the $360,000 to fund a retirement plan, pay off a mortgage, or send his or her children to college.

Your patients don’t want to be referred out of your office. They prefer to stay with a doctor and staff that they know and trust.
Preface

Prophylactic Removal of Third Molars Controversy

There is no debate about the removal of third molars when pain or pathology is present. However, the prophylactic removal of third molars is controversial. There are many studies published to support either side of this controversy. However, the author believes common sense would support prophylactic removal.

Most patients with retained third molars will develop pathology. Third molars are difficult to keep clean. Every hygienist routinely records deep pockets near retained third molars. Caries are commonly found on third molars or the distal of second molars.

It is well documented that early removal of wisdom teeth results in fewer surgical complications. The incidence of postoperative infections and dry socket is also reduced.

Intended Audience

This book is intended for general dentists who would like to predictably, safely, and efficiently remove impacted third molars. It can be read cover to cover or by selected areas of interest. Emphasis has been placed on practical and useful information that can be readily applied in the general dentistry office.
About the Companion Website

Don’t forget to visit the companion website for this book:

www.wiley.com/go/wayland/molars

There you will find valuable material designed to enhance your learning, including:

- Videos clips explaining the procedures
- Figures

Scan this QR code to visit the companion website
1

Anatomy

Third molar surgical complications can be minimized or eliminated with proper case selection, surgical protocol, and a thorough knowledge of oral anatomy. Removal of third molars, including impactions, can become routine. A brief review of oral anatomy related to third molars is the first step in your journey to become proficient in the safe removal of impacted third molars. The structures relevant in the safe removal of third molars are the following:

1) Nerves
2) Blood vessels
3) Buccal fat pad
4) Submandibular fossa
5) Maxillary sinus
6) Infratemporal fossa

Nerves

In classical anatomy there are 12 paired cranial nerves (I–XII) providing sensory and motor innervation to the head and neck (see Figure 1.1).

The trigeminal nerve (V), the fifth cranial nerve, is responsible for sensations of the face and motor functions of the muscles of mastication. This cranial nerve derives its name from the fact that each trigeminal nerve (one on each side of the pons) has three major branches: the ophthalmic nerve (V₁), the maxillary nerve (V₂), and the mandibular nerve (V₃) (see Figure 1.2). The ophthalmic and maxillary nerves are purely sensory, while the mandibular nerve has sensory and motor functions (see Figure 1.3).

The mandibular nerve (V₃) is the largest of the three branches or divisions of the trigeminal nerve, the fifth (V) cranial nerve. It is made up of a large sensory root and a small motor root. The mandibular nerve exits the cranium through the foramen ovale and divides into an anterior and posterior trunk in the infratemporal fossa. The mandibular nerve divides further into nine main branches, five sensory and four motor (see Figure 1.4).

The five sensory branches of the mandibular nerve control sensation to teeth, tongue, mucosa, skin, and dura.
Impacted Third Molars

Figure 1.1 The 12 cranial nerves emerge from the ventral side of the brain. Source: Courtesy of Michael Brooks.

Figure 1.2 The 5th cranial nerve and three branches of the trigeminal nerve: (1) the ophthalmic nerve, (2) the maxillary nerve, and (3) the mandibular nerve. (By Henry Vandyke Carter, via Wikimedia Common.)
1) Inferior alveolar—exits the mental foramen as the mental nerve and continues as the incisive nerve
 • The nerve to the mylohyoid is a motor and sensory branch of the inferior alveolar nerve.
 • Mean inferior alveolar nerve diameter is 4.7 mm.¹
2) Lingual—lies under the lateral pterygoid muscle, medial to and in front of the inferior alveolar nerve
 • Carries the chorda tympani nerve, affecting taste and salivary flow.
 • May be round, oval, or flat and varies in size from 1.53 mm to 4.5 mm.²
 • Average diameter of the main trunk of the lingual nerve is 3.5 mm.³
3) Auriculotemporal—innervation to the skin on the side of the head
4) Buccal or long buccal—innervation to the cheek and second and third molar mucosa
5) Meningeal—innervation to dura mater.

The four motor branches of the mandibular nerve control the movement of eight muscles, including the four muscles of mastication: masseter, temporal, medial pterygoid, and lateral pterygoid. The other four muscles are the tensor veli palatini, tensor tympani, mylohyoid, and anterior belly of the digastric. Nerves to the tensor veli tympani and tensor veli palatini are branches of the medial pterygoid nerve. Nerves to the mylohyoid (motor and sensory) muscle and anterior belly of the digastric (motor only) muscle are branches of the inferior alveolar nerve. The nerve to the anterior belly of the digastric muscle is a motor branch of the inferior alveolar nerve.
Nerve Complications Following the Removal of Impacted Third Molars

Injury to the inferior alveolar, lingual, mylohyoid, and buccal nerves may cause altered or complete loss of sensation of the lower third of the face on the affected side.

The majority of serious nerve complications result from inferior alveolar or lingual nerve injuries. Most surgical injuries to the inferior alveolar nerve and lingual nerve cause temporary sensory change, but in some cases they can be permanent. Injury to these nerves can cause anesthesia (loss of sensation), paresthesia (abnormal sensation), hypoesthesia (reduced sensation), or dysesthesia (unpleasant abnormal sensation). Injury to the lingual nerve and associated chorda tympani nerve can also cause loss of taste of the anterior two-thirds of the tongue.

Damage to the mylohyoid nerve has been reported to be as high as 1.5% following lower third molar removal, but this is probably due to the use of lingual retraction. Most third molars can be removed by utilizing a purely buccal technique. Utilizing this technique, it is not necessary to encroach on the lingual tissues or to remove distal or lingual bone.

A search of the literature found no specific reports of long buccal nerve involvement (AAOMS white paper, March 2007), although one article did note long buccal involvement when the anatomical position was aberrant. In this case, the long buccal nerve was coming off the inferior alveolar nerve once it was already in the canal and coming out through a separate foramen on the buccal side of the mandible. Long buccal nerve branches are probably frequently cut during the incision process, but the effects are generally not noted.

Blood Vessels

Life-threatening hemorrhage resulting from the surgical removal of third molars is rare. However, copious bleeding from soft tissue is relatively common. One source of bleeding during the surgical removal of third molars is the inferior alveolar artery or vein. These central vessels can be cut during sectioning of third molars, leading to profuse bleeding. The path of vessels leading to the inferior alveolar neurovascular bundle begins with the common carotid arteries and the heart.

The common carotid arteries originate close to the heart and divide to form the internal and external carotid arteries. The left and right external carotid arteries provide oxygenated blood to the areas of the head and neck outside the cranium. These arteries divide within the parotid gland into the superficial temporal artery and the maxillary artery. The maxillary artery has three portions: maxillary, pterygoid, and pterygomaxillary (see Figures 1.5a and 1.5b).

The first portion of the maxillary artery divides into five branches. The inferior alveolar artery is one of the five branches of the first part of the maxillary artery. The inferior alveolar artery joins the inferior alveolar nerve and vein to form the inferior alveolar neurovascular bundle within the mandible. Three studies confirm that the inferior alveolar vein lies superior to the nerve and that there are often multiple veins. The artery appears to be solitary and lies on the lingual side of the nerve, slightly above the horizontal position.
Figure 1.5 (a) The maxillary artery. (by Henry Gray, 1918, via Wikimedia Commons.) (b) Branches of the maxillary artery depicting maxillary, pterygoid, and pterygomaxillary portions. (By Henry Vandyke Carter, via Wikimedia Commons.)
Bleeding during and after third molar impaction surgery is expected. Local factors resulting from soft-tissue and vessel injury represent the most common cause of postoperative bleeding. Systemic causes of bleeding are not common, and routine preoperative blood testing of patients, without a relevant medical history, is not recommended.

Hemorrhage from mandibular molars is more common than bleeding from maxillary molars (80% and 20%, respectively), because the floor of the mouth is highly vascular. The distal lingual aspect of mandibular third molars is especially vascular and an accessory artery in this area can be cut leading to profuse bleeding. The most immediate danger for a healthy patient with severe postextraction hemorrhage is airway compromise.

Most bleeding following third molar impaction surgery can be controlled with pressure. Methods for hemostasis will be discussed further in Chapter 3.

Buccal Fat Pad

The buccal fat pad is a structure that may be encountered when removing impacted third molars. It is most often seen when flap incisions are made too far distal to maxillary second molars. It is a deep fat pad located on either side of the face and is surrounded by the following structures (see Figure 1.6):

- Anterior—angle of the mouth
- Posterior—masseter muscle
- Medial—buccinator muscle
- Lateral—platysma muscle, subcutaneous tissue, and skin

![Buccal Fat Pad](https://clinanat.com/mtd/833-buccal-fat-pad-of-bichat)

- Superior—zygomaticus muscles
- Inferior—depressor anguli oris muscle and the attachment of the deep fascia to the mandible

Zhang, Yan, Wi, Wang, and Liu reviewed the anatomical structures of the buccal fat pad in 11 head specimens (i.e., 22 sides of the face). They found the following:

The enveloping, fixed tissues and the source of the nutritional vessels to the buccal fat pad and its relationship with surrounding structures were observed in detail. Dissections showed that the buccal fat pad can be divided into three lobes—anterior, intermediate, and posterior, according to the structure of the lobar envelopes, the formation of the ligaments, and the source of the nutritional vessels. Buccal, pterygoid, pterygopalatine, and temporal extensions are derived from the posterior lobe. The buccal fat pad is fixed by six ligaments to the maxilla, posterior zygoma, and inner and outer rim of the infraorbital fissure, temporals tendon, or buccinator membrane. Several nutritional vessels exist in each lobe and in the subcapsular vascular plexus. The buccal fat pads function to fill the deep tissue spaces, to act as gliding pads when masticatory and mimetic muscles contract, and to cushion important structures from the extrusion of muscle contraction or outer force impulsion. The volume of the buccal fat pad may change throughout a person’s life.15

Submandibular Fossa

The submandibular fossa is a bilateral space located medial to the body of the mandible and below the mylohyoid line (see Figure 1.7). It contains the submandibular salivary gland, which produces 65% to 70% of our saliva.

Third molar roots are often located in close proximity to the submandibular space (see Figure 1.8). The lingual cortex in this area may be thin or missing entirely. Therefore, excessive or misplaced force can dislodge root fragments or even an entire tooth into the adjacent submandibular space.16

![Figure 1.7 Submandibular fossa. Source: Adapted from Henry Vandyke Carter, via Wikimedia Commons.](image-url)
Patients presenting with partially impacted third molars can develop pericoronitis. This localized infection can spread to the submandibular, sublingual, and submental spaces. Bilateral infection of these spaces is known as Ludwigs Angina. Prior to the advent of antibiotics, this infection was often fatal due to concomitant swelling and compromised airway.

Maxillary Sinus

The maxillary sinus is a bilateral empty space located within the maxilla, above the maxillary posterior teeth. It is pyramidal in shape and consists of an apex, base, and four walls (see Figure 1.9 and Box 1.1).

The size and shape of the maxillary sinus vary widely among individuals and within the same individual. The average volume of a sinus is about 15 ml (range between 4.5 and 35.2 ml). Maxillary third molar teeth and roots are often in close proximity to the maxillary sinus. The distance between the root apices of the maxillary posterior teeth and the sinus is sometimes less than 1 mm. Complications related to the removal of maxillary third molars include sinus openings, displacement of roots or teeth into the sinus, and postoperative sinus infections.

Infratemporal Fossa

The infratemporal fossa is an irregularly shaped space located inferior to the zygomatic arch and posterior to the maxilla. Six structures form its boundaries (see Figure 1.10 and Box 1.2).
Although rare, there are documented cases of maxillary third molars displaced into the infratemporal fossa. This complication is most likely to occur during the early removal of deeply impacted third molars positioned near the palate.

Unlike the maxillary sinus, the infratemporal fossa is not an empty space. It contains many vital structures, including nerves, arteries, and veins. A third molar displaced into the infratemporal fossa is considered a major complication. Dentists removing impacted maxillary third molars should understand the anatomy of the infratemporal fossa.

This chapter is not intended to be a comprehensive review of oral anatomy but instead a review of structures relevant to third molars. This knowledge is essential to avoid surgical complications. Although no surgical procedure is without risk, most impacted third molars can be removed safely and predictably.
An important key to avoid complications is deciding when to refer to an oral surgeon. This will be different for each dentist depending on experience and training. When to refer may be the most important factor to consider prior to treating your patients. Case selection, including surgical risk and difficulty, is discussed in the next chapter.

References

Case Selection

The best way to avoid complications when removing impacted third molars is to select patients and surgeries that are commensurate with your level of training and experience. Will you treat medically compromised patients? Or will you only remove impacted third molars from healthy teens? Have you removed thousands of impactions? Or are you about to remove your first maxillary soft tissue impaction? This chapter will help you decide which third molar surgery patients should be referred to a maxillofacial surgeon or kept in your office. It will also help you know when you are ready to move to the next level of difficulty.

Medical Evaluation

The medical evaluation includes a complete health history/patient interview, physical assessment, clinical exam, and psychological evaluation of the patient. The removal of impacted third molars is an invasive surgical procedure with risk of complications higher than most dental procedures. Furthermore, patients are often apprehensive and have anxiety about the procedure.

Health History and Patient Interview

A thorough health history and patient interview should be completed prior to treatment. The primary purpose of a patient's health history is to attempt to find out as much about each patient as possible, so that the patient can be treated safely and knowledgeably. A health history form, completed by the patient, should be reviewed before interviewing the patient. The American Dental Association's 2014 Health History form is provided as an example (see Figure 2.1).

The patient's health history can be subpoenaed in court cases, such as a malpractice suit or when disciplinary action is taken against a dental professional by a regulatory board. Medical evaluation documents can be used as legal evidence and must be thorough and comprehensive.

The patient interview is an essential part of a medical evaluation. It's not uncommon to have an unremarkable health history, only to learn during the interview that the patient has a history of health issues and medication. Good interview technique requires open-ended questions and active listening. Open-ended questions always begin with