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Preface

Some History

The study of random geometrical objects goes back to the famous Buffon needle
problem. Similar to the ideas of Geometric Probability, which can be traced back
to the very origins of probability, the concept of a random set was mentioned for
the first time together with the mathematical foundations of Probability Theory.
A.N. Kolmogorov [493, p. 46] wrote in 1933 (translated from German):

Let G be a measurable region of the plane whose shape depends on chance; in other words,
let us assign to every elementary event � of a field of probability a definite measurable plane
region G. We shall denote by J the area of the region G and by P.x; y/ the probability that
the point .x; y/ belongs to the region G. Then

E.J/ D
“

P.x; y/ dx dy :

One might observe that this is a formulation of Robbins’ theorem and P.x; y/ is the
coverage function of the random set G.

Further progress in the theory of random sets relied on developments in the
following areas:

• studies of random elements in general topological spaces, in groups and semi-
groups, see, e.g., Grenander [326];

• the general theory of stochastic processes, see Dellacherie [220], and the theory
of capacities, see Choquet [172];

• set-valued analysis and multifunctions, see Castaing and Valadier [158];
• advances in image analysis and microscopy that required a satisfactory

mathematical theory of distributions for binary images (or random sets), see
Serra [790].

The mathematical theory of random sets can be traced back to Matheron [581]
and Kendall [454]. The principal new feature is that random sets may have different
shapes and the development of this idea is crucial in the study of random sets.

vii



viii Preface

G. Matheron formulated the very definition of a random closed set and developed
the relevant probabilistic and geometric techniques. D.G. Kendall’s seminal paper
[454] on random sets already contained the first steps into many further directions
such as lattices, weak convergence, spectral representation, infinite divisibility. Most
of these aspects were elaborated later on in connection with relevant ideas in pure
mathematics and classical probability theory. This has made many of the concepts
and the notation used in [454] obsolete, so we will follow instead the modern
terminology that fits better into the system developed by G. Matheron; most of his
notation was taken as the basis for this monograph.

The relationship between random sets and convex geometry later on has been
thoroughly explored within the stochastic geometry literature, mostly in the sta-
tionary setting, see, e.g., Schneider and Weil [780]. Within stochastic geometry,
random sets represent one type of object along with point processes and random
tessellations, see Chiu, Stoyan, Kendall and Mecke [169]. The mathematical
morphology part of G. Matheron’s book gave rise to numerous applications in image
processing (Dougherty [239] and Serra [790]) and abstract studies of operations
with sets, often in the framework of lattice theory (Heijmans [355]).

Since 1975, when G. Matheron’s book [581] was published, the theory of random
sets has enjoyed substantial developments concerning

• relationships to the theories of semigroups and continuous lattices;
• properties of capacities;
• limit theorems for Minkowski sums based upon techniques from probabilities in

Banach spaces;
• limit theorems for unions of random sets in relation to the theory of extreme

values;
• stochastic optimisation ideas in relation to random sets that appear as epigraphs

of random functions;
• properties of level sets and excursions of stochastic processes.

These developments constitute the core of this book, which aims to cast the
theory of random sets into the conventional probabilistic framework that involves
distributional properties, limit theorems and related analytical tools.

Central Topics of the Book

This book concentrates on several basic concepts in the theory of random sets.
The first is the capacity functional that determines the distribution of a random
closed set in a locally compact Hausdorff separable space. Unlike probability
measures, the capacity functional is non-additive. The studies of non-additive set
functions are abundant, especially, in view of game theory applications to describe
the gain attained by a coalition of players, in statistics as belief functions in order
to model situations where the underlying probability measure is uncertain, and in
mathematical finance, where non-additive set functions are essential to assess risk.
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The capacity functional can be used to characterise the weak convergence of
random sets and some properties of their distributions. In particular, this concerns
unions of random closed sets, where the regular variation property of the capacity
functional is of primary importance. However, the capacity functional does not help
to deal with a number of other issues, for instance to define the expectation of a
random closed set.

Here the leading role is taken over by the concept of a selection, which is a
(single-valued) random element that almost surely belongs to a random set. In this
framework, it is convenient to view a random closed set as a multifunction (or set-
valued function) on a probability space and use the well-developed machinery of
set-valued analysis, see, e.g., Hu and Papageorgiou [402]. By taking expectations of
integrable selections, one defines the selection expectation of a random closed set.
The selection expectation of a random set defined on a non-atomic probability space
is always convex and can be alternatively defined as the convex set whose support
function equals the expected support function of a random set. The Minkowski sum
of random sets is introduced as the set of sums of all their points (or all their
selections) and can be equivalently defined using the arithmetic sum of the support
functions. Therefore, limit theorems for Minkowski sums of random sets can be
derived from the existing results for random elements in functional spaces. These
tools make it possible to explore set-valued martingales.

Important examples of random closed sets appear as epigraphs of random lower
semicontinuous functions. Viewing the epigraphs as random closed sets makes it
possible to obtain results for lower semicontinuous functions under the weakest
possible conditions. In particular, this concerns the convergence of minimum values
and minimisers, which is a subject of stochastic optimisation theory.

It is possible to consider the family of closed sets as both a semigroup and a
lattice. Therefore, the results on lattice- or semigroup-valued random elements are
very useful in the theory of random sets.

Plan

Since the concept of a set is central for mathematics, the book is highly inter-
disciplinary and relies on tools from a number of mathematical theories and
concepts: capacities, convex geometry, set-valued analysis, topology, harmonic
analysis on semigroups, continuous lattices, non-additive measures and upper/lower
probabilities, limit theorems in Banach spaces, the general theory of stochastic
processes, extreme values, stochastic optimisation, point processes and random
measures.

The book starts with the definition of a random closed set. The space E which
random sets belong to is very often assumed to be locally compact Hausdorff with
a countable base. The Euclidean space Rd is a generic example. Often we switch
to the more general case of E being a Polish space or Banach space (if a linear
structure is essential). It is convenient to work with random closed sets, which is the
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typical setting in this book, although in some places we mention random open sets
and random Borel sets. Choquet’s theorem concerning the existence of random set
distributions is proved and relationships with set-valued analysis (or multifunctions)
and lattices are explained. The rest of Chap. 1 relies on the concept of the capacity
functional. It highlights relationships between capacity functionals and properties of
random sets, develops some analytic theory, convergence concepts, applications to
point processes and random capacities and finally surveys various interpretations for
capacities that stem from game theory, imprecise probabilities and robust statistics.
Special attention is devoted to the case of random convex compact sets (or convex
bodies if the carrier space is Euclidean).

Chapter 2 concerns expectation concepts for random closed sets. The main part is
devoted to the selection (or Aumann) expectation based on the idea of an integrable
selection. Chapter 3 continues this topic by dealing with Minkowski sums of random
sets. The dual representation of the selection expectation—as the set of expectations
of all selections and as the expectation of the support function—makes it possible to
refer to limit theorems in Banach spaces in order to derive the corresponding results
for random closed sets.

The study of unions for random sets is closely related to extremes of random
variables and further generalisations for pointwise extremes of stochastic processes.
Chapter 4 describes the main results for the unions of random sets and explains the
background ideas that are related to the studies of lattice-valued random elements
and regular variation on abstract spaces.

Chapter 5 is devoted to links between random sets and stochastic processes.
This concerns set-valued processes that develop in time, in particular, set-valued
martingales. Furthermore, this relates to random sets interpretations of conventional
stochastic processes, where random sets appear as graphs, level sets or epigraphs
(hypographs). Several areas related to random sets and stochastic processes are only
mentioned in brief, for instance, the theory of set-indexed processes, where random
sets appear as stopping times (or stopping sets), excursions of random fields, and
potential theory for Markov processes that provides further examples of capacities
related to hitting times and paths of stochastic processes.

The Appendices summarise the necessary mathematical background; it stems
from various parts of mathematics and is normally scattered between various texts.

Second Edition

The period between the first and second editions witnessed the appearance of several
books on stochastic geometry and random sets authored by Nguyen [651], Schneider
and Weil [780], Chiu, Stoyan, Kendall and Mecke [169], on random measures by
Kallenberg [444], Poisson point processes by Last and Penrose [526], and on non-
additive measures by Grabisch [321] and Cuzzolin [196].



Preface xi

The second edition of this book includes new material in the following direc-
tions:

• unbounded and possibly non-closed random sets motivated by applications in
mathematical finance in order to describe set-valued portfolios;

• selections of random sets, motivated by the use of random sets to describe
partially identified models in econometrics;

• random closed (compact) sets in Polish spaces;
• regular variation and stability of random elements in abstract spaces;
• sublinear and superlinear expectations of random sets, motivated by applications

to risk assessment;
• results on transformations of capacities and rearrangement invariant random

closed sets;
• relationships between random sets and multivariate probability theory, mostly

using the concept of zonoids, connections to stable laws and multivariate
extremes, series representations of stable laws;

• for Minkowski sums, a new Marcinkiewicz–Zygmund strong law of large
numbers is proved, and results on large deviations for sums of heavy-tailed
random sets are mentioned;

• continuous time set-valued processed are discussed in depth, including the
separability concept, graphical convergence, and uniform laws of large numbers.

In the second edition, the locally compact and infinite-dimensional settings
are more clearly identified, and it has been made clearer which results hold for
unbounded random closed sets and for non-closed random sets. The measure-
theoretic proof of Choquet’s theorem has been corrected and a new proof following
the idea of relative compactness has been added. The characterisation of selections
is now presented with a full proof. The presentation of the union scheme has
been restructured by the systematic use of regular variation in abstract spaces,
and both the union- and sum-stability concepts are brought in relation to series
representations. The presentation of the selection expectation is accompanied by
the discussion and the proof of the Aumann identity; full proofs of the properties of
conditional expectations are now included, and the generalised selection expectation
is introduced. Results on extremal processes are brought in relation to the recent
work on capacities; a new streamlined proof for the properties of continuous choice
processes is now presented.

The second edition gave a chance to correct numerous misprints, occasional
mistakes and misinterpretations. While the chapter structure remained the same,
the presented material has undergone lots of substantial changes to the extent that
this edition may well be considered a completely rewritten text. It includes also
numerous references to papers on random sets and their applications published since
2005.
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Conventions

The numbering in the second edition follows a three-digit pattern, where the first
digit is the chapter number followed by section. When referring to the Appendices,
the first two digits are replaced by a letter that designates the particular appendix.
The statements in theorems and propositions are mostly designated by Roman
numerals, while the conditions usually follow the Arabic numeration.

Although the main concepts in this book are used throughout the whole text,
it is anticipated that the reader will be able to read the book from the middle. The
concepts are often restated, definitions recalled, and the notational system is set to be
as consistent as possible, taking into account various conventions within a number
of mathematical areas that build up this book.

Future supporting information for this book (e.g., the eventual list of misprints or
comments to open problems) will be available through Springer’s WEB site or from
the author’s personal page, which can easily be found with search engines.
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Chapter 1
Random Closed Sets and Capacity Functionals

1.1 Distributions of Random Sets

1.1.1 Set-Valued Random Elements

Measurability Definition

As the name suggests, a random set is an object with values being sets, so that the
corresponding record space is the space of subsets of a given carrier space. At this
stage, a mere definition of a general random element like a random set presents little
difficulty as soon as a �-algebra on the record space is specified.

Because the family of all sets is rather rich, it is usual to consider random sets
with some extra conditions on their possible values, e.g., closed, open, or convex.
In order to include the case of random singletons (which are closed in topological
spaces satisfying rather mild requirements), it is common to consider random closed
sets. The family of closed subsets of a topological space E is denoted by F , while
K and G denote, respectively, the family of all compact and open subsets of E. It is
often assumed that E is a locally compact Hausdorff second countable topological
space (LCHS space). The Euclidean space Rd is a generic example of such a
space E.

Let us fix a complete probability space .˝;A;P/ which will be used throughout
to define random elements. It is natural to call an F -valued random element a
random closed set. However, one should be more specific about measurability
issues, in other words, when defining a random element it is necessary to specify
which information is available in terms of the observable events from the �-algebra
A in ˝ . It is essential to ensure that the measurability requirement is restrictive
enough, so that all functionals of interest become random variables. At the same
time, the measurability condition must not be too strict in order to include as many
random elements as possible. The following definition describes a rather flexible
and useful concept of a random closed set.

© Springer-Verlag London Ltd. 2017
I. Molchanov, Theory of Random Sets, Probability Theory and Stochastic
Modelling 87, DOI 10.1007/978-1-4471-7349-6_1
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2 1 Random Closed Sets and Capacity Functionals

Definition 1.1.1 (Definition of a random closed set) A map XW˝ 7! F from a
probability space .˝;A;P/ to the family of closed sets in an LCHS space E is
called a random closed set if, for every compact set K in E

f! W X.!/\ K ¤ ;g 2 A: (1.1.1)

Although we will postpone considering of random closed sets in more general
spaces until Sect. 1.3.1, we give here the definition of random closed sets in Polish
spaces, which is equivalent to the above definition if the carrier space E is LCHS.

Definition 1.1.10 A map XW˝ 7! F from a probability space .˝;A;P/ to the
family of closed sets in a Polish space E is called a random closed set if, for every
open set G in E

f! W X.!/\ G ¤ ;g 2 A: (1.1.2)

Condition (1.1.1) means that observing X one can always say if X hits or misses
any given compact set K. In more abstract language, (1.1.1) says that the map
XW˝ 7! F is measurable as a map between the underlying probability space and
the space F equipped with the �-algebra B.F / generated by fF 2 F W F\K ¤ ;g
for K running through the family K of compact subsets of E.

Denote the family of closed sets that hit any given A � E by

FA D fF 2 F W F \ A ¤ ;g;

so that FK is the family of closed sets that hit K 2 K. Since the �-algebra B.F / is
generated by FK for all K from K, this �-algebra clearly contains the complements
to FK . These complements are denoted by

F K D fF 2 F W F \ K D ;g;

so that F K is the family of closed sets missing K.
The topological assumptions on E are important in the following proposition,

which establishes the equivalence of Definition 1.1.1 and Definition 1.1.1’. It
confirms that B.F / coincides with the Effros �-algebra discussed in greater detail
in Sect. 1.3.1 for the case of a general Polish space E.

Proposition 1.1.2 If E is LCHS, then the �-algebraB.F / is countably generated
and coincides with the �-algebra generated by FG for G running through the family
G of open subsets of E

Proof. By Proposition A.1, each K 2 K can be approximated by a sequence of open
sets fGn; n � 1g, so that Gn # K, whence

FK D
\
n�1

FGn :
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Furthermore, for every G from the family G of open sets,

FG D fF 2 F W F \ G ¤ ;g D
[
n

FKn 2 B.F /;

where fKn; n � 1g is a sequence of compact sets such that Kn " G (here the
local compactness of E is essential, see Proposition A.1). Taking relatively compact
sets from a countable base of the topology on E confirms that B.F / is countably
generated. ut
Corollary 1.1.3 Let E be LCHS. A map XW˝ 7! F is a random closed set if and
only if fX \ K ¤ ;g 2 A for all K 2 M, where M is any family of compact sets,
such that any open set appears as a countable union of sets from M.

Proof. Only sufficiency requires a proof. Since each open set G is obtained as the
union of compact sets Kn 2 M, n � 1, we have F G D [nF Kn , so that the result
follows from Proposition 1.1.2. ut

The Fell topology on the family F of closed sets (see Appendix C) is generated
by open sets FG for G 2 G and F K for K 2 K. Therefore, the �-algebra generated
by FK for K 2 K coincides with the Borel �-algebra B.F / generated by the Fell
topology on F . It is possible to reformulate Definition 1.1.1 as follows.

Definition 1.1.100 Assume that E is LCHS. A map XW˝ 7! F is called a random
closed set if X is measurable with respect to the Borel �-algebra on F with respect
to the Fell topology, i.e.

X�1.Y/ D f! W X.!/ 2 Xg 2 A

for each Y 2 B.F /.
Condition (1.1.1) can be reformulated as

X�1.FK/ D f! W X.!/ 2 FKg 2 A: (1.1.3)

It is easy to see that (1.1.3) implies the measurability of a number of further events,
e.g., fX \ G ¤ ;g for every G 2 G as confirmed by Proposition 1.1.2, fX \ F ¤ ;g
and fX � Fg for every F 2 F . Letting F D E yields that fX \E ¤ ;g D fX ¤ ;g
is also measurable.

If two random closed sets X and Y share the same distribution, then we write

X
d� Y. This means P fX 2 Yg D P fY 2 Yg for every measurable family of

closed sets Y 2 B.F /. In the following we see that this is the case if and
only if P fX \ K ¤ ;g D P fY \ K ¤ ;g for all compact sets K (assuming E is
LCHS).
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Examples of Random Closed Sets

Example 1.1.4 (Singleton) If � is a random element in E (measurable with respect
to the Borel �-algebra on E), then the singleton X D f�g is a random closed set.

Example 1.1.5 (Half-line) If � is a random variable, then X D .�1; �� is a random
closed set on the line E D R. Indeed, fX \ K ¤ ;g D f� � infKg is a measurable
event for every K � E. Along the same lines, X D .�1; �1� � � � � � .�1; �d� is a
random closed subset of Rd if .�1; : : : ; �d/ is a d-dimensional random vector.

Example 1.1.6 (Random interval) If � and � are two random variables in R such
that � � � a.s., then the random interval X D Œ�; �� is a random closed set. This can
be checked directly as fX \ K D ;g D f� < infKg [ f� > supKg.
Example 1.1.7 (Random triangle and random ball) If �1; �2; �3 are three random
vectors in Rd, then the triangle with vertices �1; �2 and �3 is a random closed set.
If � is a random vector in Rd and � is a non-negative random variable, then the
random ball B�.�/ of radius � centred at � is a random closed set (Fig. 1.1.1). While
it is possible to deduce this directly from Definition 1.1.1, it is easier to refer to
general results established later on in Theorem 1.3.25.

Example 1.1.8 (Random line) Let .�; �/ be a random point from RC� Œ0; 2�/. The
line in R2 orthogonal to the direction given by � and located at distance � from the
origin is a random closed set. It is obtained by mapping a random singleton to a line
using a set-valued map, see Appendix E. Many other random sets are defined in this
way as M.�/, applying a set-valued function MWRm 7! F to a random vector in Rm.

Example 1.1.9 (Random set in finite space) Let E D fx1; : : : ; xng be a finite space
of cardinality n. Equipped with the discrete topology (so that all its subsets are
closed and open at the same time) it is an LCHS space. Then X is a random set in
E if and only if the vector .1x12X; : : : ; 1xn2X/ of indicators is a random vector with
values in f0; 1gn.
Example 1.1.10 (Levels and excursions of stochastic process) Let �x, x 2 E, be a
real-valued stochastic process on E with continuous sample paths. Then its level set
X D fx 2 E W �x D tg is a random closed set for every t 2 R. Indeed,

fX \ K D ;g D
n

inf
x2K �x > t

o
[
n

sup
x2K

�x < t
o

is measurable. Similarly, fx W �x � tg and fx W �x � tg are random closed sets. If
the stochastic process �x, x 2 E, is not necessarily continuous, then these random
sets are graph measurable and not necessarily closed, see Example 1.3.33.
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Fig. 1.1.1 Simple examples of random closed sets

Random Variables Associated with Random Closed Sets

Example 1.1.11 (Indicator) For every x 2 E, the indicator 1X.x/ (equal to 1 if x 2
X and to zero otherwise) is a random variable.

Example 1.1.12 (Norm) The norm

kXk D supfkxk W x 2 Xg

of an almost surely non-empty random closed set X in E D Rd is a random variable
(with possibly infinite values). The event fkXk > tg means that X hits the open set
G, being the complement of the closed ball of radius t centred at the origin.

Example 1.1.13 Let � be a metric on E. For each x 2 E, the distance function

�.x;X/ D inff�.x; y/ W y 2 Xg; x 2 E;

is a random variable with values in Œ0;1�, where the value1 arises if X is empty.
Indeed, f�.x;X/ � tg D fBt.x/\X ¤ ;g. Considered as a function of x, the distance
function is a continuous stochastic process.

Example 1.1.14 (Measure of random set) If 	 is a �-finite Borel measure on E,
then 	.X/ is a random variable. This follows directly from Fubini’s theorem since
	.X/ D R 1X.x/	.dx/, see Sect. 1.5.3. If E is a finite space and 	.A/ is the number
of points in A, then the random variable

	.X/ D card.X/ D
X
x2E

1x2X

is the cardinality of X. The same applies for the case of a countable E, however,
then the cardinality of X may become infinite.
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Proposition 1.1.15 Let E be LCHS.

(i) The number card.X \B/ of points in X \ B is a random variable (with possibly
infinite values) for each Borel set B in E.

(ii) The number of connected components of a random closed set X is a random
variable (with possibly infinite values).

Proof. (i) It suffices to prove that card.X \ G/ is a random variable for all open
G. Then card.X \ G/ is the supremum of

P
i 1X\Gi¤; over all n � 1 and disjoint

G1;G2; : : : ;Gn from the countable base of the topology and such that Gi � G for
all i. It suffices to note that 1X\Gi¤; is a random variable, and the supremum is taken
over a countable family.
(ii) Let fKn; n � 1g be a sequence of compact sets that grows to E. The number
of connected components of X is the limit of the number of connected components
of X \ Kn, so that it suffices to prove the result for random sets in compact spaces.
The number of connected components in X is at most n if X is covered by the union
of n disjoint open sets. Since E has a countable base and X is compact, these open
disjoint open sets G1; : : : ;Gn may be chosen as finite unions of sets from the base.
Finally, note that the event X � G1 [ � � � [Gn is measurable. ut

A closed set F has reach at least r > 0 if each point y from its r-envelope Fr

(see (A.1)) admits the unique point y 2 F that is nearest to x. The set F is said
to be of positive reach if the supremum of such r (called the reach of F) is strictly
positive. Each convex set has infinite (hence, positive) reach.

Proposition 1.1.16 The reach of a random closed set inRd is a random variable.

Proof. It suffices to show that the family of sets of reach at least r is closed in F
and so is measurable. Let fFn; n � 1g be a sequence of sets of reach at least r, and
let Fn ! F in the Fell topology. By Theorems C.7 and C.14, the distance functions
�.x;Fn/ converge to �.x;F/ uniformly for all x in any compact set. By Federer [264,
Th. 4.13], the limiting set F has reach at least r. ut

1.1.2 Capacity Functionals

Definition

The distribution of a random closed set X is determined by P.Y/ D P fX 2 Yg for
all Y 2 B.F /. The particular choice of Y D FK and P fX 2 FKg D P fX \ K ¤ ;g
is useful since the families FK , K 2 K, generate the Borel �-algebra B.F /.
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Definition 1.1.17 (Capacity functional) The functional TXWK 7! Œ0; 1� given by

TX.K/ D P fX \ K ¤ ;g ; K 2 K; (1.1.4)

is said to be the capacity functional of X. We write T.K/ instead of TX.K/ where no
ambiguity occurs.

Example 1.1.18 (Capacity functionals of simple random sets)
(i) If X D f�g is a random singleton, then TX.K/ D P f� 2 Kg, so that the capacity
functional is the probability distribution of �. If X is f�g with probability p and
otherwise is equal to the whole space E, then TX.K/ D pP f� 2 Kg C .1 � p/1K¤;.
(ii) Let X D f�1; �2g be the set formed by two independent identically distributed
random elements in E (X is a singleton if �1 D �2). Then TX.K/ D 1 � .1 �
P f�1 2 Kg/2. For instance, if �1 and �2 are the numbers shown by two dice, then
X � f1; 2; : : : ; 6g and TX.f6g/ is the probability that at least one die shows six.
(iii) Let X D .�1; �� be a random closed set in R, where � is a random variable.
Then TX.K/ D P f� > infKg for all K 2 K.
(iv) If X D fx 2 E W �x � tg for t 2 R and a real-valued sample continuous
stochastic process �x, x 2 E, then TX.K/ D P fsupx2K �x � tg. The capacity
functional at K D fxg is P f�x � tg.
(v) If X D ft � 0 W wt D 0g is the set of zeros for the standard Brownian motion
wt, then

TX.Œa; b�/ D 2

�
arccos

p
a=b

by the arcsine law, see, e.g., Kallenberg [443, Th. 13.16].
It follows immediately from the definition of T D TX that

T.;/ D 0; (1.1.5)

and

0 � T.K/ � 1; K 2 K: (1.1.6)

It should be noted that P fX \E ¤ ;g D P fX ¤ ;g (which can be viewed as the
value T.E/ of the capacity functional extended to possibly non-compact sets) may
be strictly less than one.

Since FKn # FK as Kn # K, the continuity property of the probability measure P
implies that T is upper semicontinuous (see Proposition E.12), i.e.

T.Kn/ # T.K/ as Kn # K in K: (1.1.7)
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Properties (1.1.5) and (1.1.7) mean that T is a (topological) precapacity that can be
extended to the family of all subsets of E as described in Appendix G.

Complete Alternation

It is easy to see that the capacity functional T is monotone, i.e.

T.K1/ � T.K2/ if K1 � K2:

Moreover, T satisfies a stronger monotonicity property described below. To each
functional T defined on a family of (compact) sets we can associate the following
successive differences:


K1T.K/ D T.K/ � T.K [ K1/; (1.1.8)


Kn � � �
K1T.K/ D 
Kn�1 � � �
K1T.K/

�
Kn�1 � � �
K1T.K [ Kn/; n � 2: (1.1.9)

Note that 
Kn � � �
K1T.K/ is invariant under permutations of K1; : : : ;Kn. If T is the
capacity functional of X, then


K1T.K/ D P fX \ K ¤ ;g � P fX \ .K [ K1/ ¤ ;g
D �P fX \ K1 ¤ ;; X \ K D ;g :

Applying this argument consecutively yields an important relationship between
the higher-order successive differences and the distribution of X

�
Kn � � �
K1T.K/ D P fX \ K D ;; X \ Ki ¤ ;; i D 1; : : : ; ng
D P

˚
X 2 F K

K1;:::;Kn

�
; (1.1.10)

where

F K
K1;:::;Kn

D fF 2 F W F \ K D ;; F \ K1 ¤ ;; : : : ;F \ Kn ¤ ;g
D F K \ FK1 \ � � � \ FKn ;

see Fig. 1.1.2. In particular, (1.1.10) implies


Kn � � �
K1T.K/ � 0 (1.1.11)

for all n � 1 and K;K1; : : : ;Kn 2 K. Equation (1.1.11) establishes the complete
alternation property of the capacity functional T, see Definition 1.1.23.
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Fig. 1.1.2 A set F from
F K
K1;K2;K3 : it misses K and hits

each of K1;K2;K3

Fig. 1.1.3 Random closed
set from Example 1.1.19(ii) z

d

x

b

y
c

aX

Example 1.1.19 (Higher-order differences)
(i) Let X D f�g be a random singleton with distribution P. Then

�
Kn � � �
K1T.K/ D P
˚
� 2 .K1 \ � � � \ Kn \ Kc/

�
:

(ii) Let X D .�1; �1� � .�1; �2� be a random closed set in the plane R2. Then
�
fxgT.fy; zg/ for x D .a; c/, y D .b; c/, z D .a; d/ is the probability that � lies in
the rectangle Œa; b/ � Œc; d/, see Fig. 1.1.3.
(iii) Let X D fx W �x � 0g for a continuous real-valued random function � on E.
Then

�
Kn � � �
K1T.K/ D P

(
sup
x2K

�x < 0; sup
x2Ki

�x � 0; i D 1; : : : ; n
)
:

The properties of the capacity functional T resemble those of the cumulative
distribution function of random vectors. The upper semicontinuity property (1.1.7)
is similar to right-continuity, and (1.1.11) generalises the monotonicity concept.
The complete alternation property (1.1.11) corresponds to the non-negativity of
probability contents of parallelepipeds. While for d-dimensional random vectors
it suffices to check the successive differences up to order d, all orders are needed for
random sets.

In contrast to measures, the functional T is not additive, but only subadditive, i.e.

T.K1 [ K2/ � T.K1/C T.K2/ (1.1.12)

for all compact sets K1 and K2.
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Example 1.1.20 (Non-additive capacity functional) If X D Br.�/ is the ball of
radius r centred at a random point � in Rd, then TX.K/ D P f� 2 Krg is not additive,
since the r-envelopes Kr

1 and Kr
2 are not necessarily disjoint for disjoint K1 and K2.

Inequality (1.1.11) for n D 2 turns into

T.K/C T.K [K1 [K2/ � T.K [K1/C T.K [K2/; K;K1;K2 2 K; (1.1.13)

which yields (1.1.12) if K D ;. By letting K1 be K[K1 and K2 be K[K2 and using
the monotonicity of T, (1.1.13) is equivalent to

T.K1 \ K2/C T.K1 [ K2/ � T.K1/C T.K2/; K1;K2 2 K; (1.1.14)

meaning that T is concave, also called strongly subadditive.

Extension of the Capacity Functional

As explained in Appendix G, a capacity ' defined on compact sets in an LCHS
space can be naturally extended to the family P D P .E/ of all subsets so that it
preserves alternation or the monotonicity properties enjoyed by '. In its application
to capacity functionals of random closed sets, put

T�.G/ D supfT.K/ W K 2 K;K � Gg; G 2 G; (1.1.15)

and

T�.M/ D inffT�.G/ W G 2 G;G 	 Mg; M 2 P : (1.1.16)

Theorem 1.1.21 (Consistency of extension)

(i) T�.K/ D T.K/ for each K 2 K.
(ii) For all Borel sets B in E,

T�.B/ D supfT.K/ W K 2 K; K � Bg:

(iii) The functional T� is completely alternating on the family of all subsets of E.

Proof. The first statement follows from the upper semicontinuity of T. Note that
T�.K/ is a limit of T�.Gn/ for a sequence of open sets Gn # K. By choosing Kn 2
K such that K � Kn � Gn we deduce that T.Kn/ # T�.K/, while at the same
time T.Kn/ # T.K/ since T is upper semicontinuous. The second statement is a
corollary from the more intricate Choquet capacitability theorem, see Theorem G.2.
The complete alternation of the extension follows from Proposition G.6. ut
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Since the extension T� coincides with T on K, in the following we use the same
notation T to denote the extension, i.e. T.G/ or T.B/ denotes the values of the
extended T on open G and Borel B. While T is upper semicontinuous on compact
sets, its extension satisfies T.Gn/ " T.G/ for any sequence of open sets Gn " G.

Theorem 1.1.22 The extended capacity functional satisfies

T.B/ D P fX \ B ¤ ;g

for all Borel B.

Proof. By letting Kn " G 2 G, the continuity property of probability measures
yields that T.G/ D P fX \ G ¤ ;g for all G 2 G. The event fX \ B ¤ ;g
is measurable by Theorem 1.3.3. By (1.1.16), it is possible to find a decreasing
sequence of open sets Gn 	 B such that T.Gn/ # T.B/. By Theorem 1.1.21(ii),
there is an increasing sequence of compact sets Kn � B such that T.Kn/ " T.B/. It
suffices to note that

T.Kn/ � P fX \ B ¤ ;g � T.Gn/: ut

The countable subadditivity property of probability measures yields that the
capacity functional is countably subadditive on Borel sets, that is,

T
�[1

iD1Bi
� �

1X
iD1

T.Bi/ (1.1.17)

for all B1;B2; : : : 2 B.E/.

Complete Alternation and Monotonicity of General Functionals

Because of the importance of the upper semicontinuity property (1.1.7) and the
complete alternation (1.1.11), it is natural to consider general functionals that satisfy
these properties without immediate reference to distributions of random closed sets.

Definition 1.1.23 (Completely alternating and completely [-monotone func-
tionals) Let D be a family of sets which is closed under finite unions (so that
M1 [ M2 2 D if M1;M2 2 D). A real-valued functional ' defined on D is said
to be

(i) completely alternating or completely [-alternating (notation ' 2 A.D/ or ' 2
A[.D/) if


Kn � � �
K1'.K/ � 0; n � 1; K;K1; : : : ;Kn 2 D I (1.1.18)
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(ii) completely [-monotone (notation ' 2 M[.D/) if


Kn � � �
K1'.K/ � 0; n � 1; K;K1; : : : ;Kn 2 D:

Definition 1.1.23(i) with D D K and ' D TX corresponds to the complete
alternation property of the capacity functional. Definition 1.1.23 complies with
Definition I.5 applied to the semigroup D with the union being the semigroup
operation, Therefore, it is possible to use the results of Appendix I within this
context. Theorem I.8 states that ' 2 A[.K/ if and only if e�t' 2 M[.K/ for all
t > 0. Let us formulate one particularly important corollary of this fact.

Proposition 1.1.24 If ' is a completely alternating non-negative functional, then
1 � e�'.K/ is a completely alternating functional with values in Œ0; 1/.

Proposition 1.1.24 is often used to construct a capacity functional from a
completely alternating upper semicontinuous functional that may take values greater
than one.

Example 1.1.25 Every measure 	 is a completely alternating functional, since

�
Kn � � �
K1	.K/ D 	..K1 [ � � � [ Kn/ n K/ � 0:

In particular,
K1	.K/ D �	.K1/ if K and K1 are disjoint.
If (1.1.18) holds for all n � k and some natural number k, then the functional '

is called k-alternating. In particular, ' is increasing if and only if it is 1-alternating,
that is,


K1'.K/ D '.K/� '.K [ K1/ � 0:

Since


K2
K1'.K/ D '.K/� '.K [ K1/ � '.K [ K2/C '.K [ K1 [ K2/;

(1.1.18) for n D 2 turns into

'.K/C '.K [ K1 [ K2/ � '.K [ K1/C '.K [ K2/: (1.1.19)

In particular, if D is closed under finite intersections, contains the empty set, and
'.;/ D 0, then letting K D ; in (1.1.19) yields that

'.K1 [ K2/ � '.K1/C '.K2/; (1.1.20)

meaning that ' is subadditive. For an increasing ', inequality (1.1.19) is equivalent
to

'.K1 \ K2/C '.K1 [ K2/ � '.K1/C '.K2/ (1.1.21)
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for all K1 and K2. A functional ' satisfying (1.1.21) is called concave or strongly
subadditive. Functionals satisfying the reverse inequality in (1.1.21) are called
convex or strongly superadditive. Furthermore, ' is called 2-alternating if
K1'.K/
and 
K2
K1'.K/ are non-positive for all K;K1;K2 2 D. Therefore, ' is 2-
alternating if it is both concave and monotone.

Another natural semigroup operation on sets is intersection, which leads to other
concepts of alternating and monotone functionals. Similarly to the definition of

Kn � � �
K1'.K/, we introduce the following successive differences

rK1'.K/ D '.K/� '.K \ K1/; (1.1.22)

rKn � � � rK1'.K/ D rKn�1 � � � rK1'.K/
� rKn�1 � � � rK1'.K \ Kn/; n � 2: (1.1.23)

The following definition is a direct counterpart of Definition 1.1.23.

Definition 1.1.26 (Completely \-alternating and completely monotone func-
tionals) Let D be a family of sets which is closed under finite intersections. A
real-valued functional ' defined on D is said to be

(i) completely \-alternating (notation ' 2 A\.D/) if

rKn � � � rK1'.K/ � 0; n � 1; K;K1; : : : ;Kn 2 D I

(ii) completely monotone or completely \-monotone (notation ' 2 M.D/ or ' 2
M\.D/) if

rKn � � � rK1'.K/ � 0; n � 1; K;K1; : : : ;Kn 2 D:

When saying that ' is completely alternating we always mean that ' is
completely [-alternating, while calling ' completely monotone means that ' is
completely \-monotone.

If D is closed both under finite unions and under finite intersections, the complete
alternation condition can be equivalently formulated as

'.

n\
iD1

Ki/ �
X

;¤J�f1;:::;ng
.�1/card.J/C1'.

[
i2J

Ki/ (1.1.24)

for all n � 1 and K1; : : : ;Kn 2 D. The complete monotonicity condition is
equivalent to

'.

n[
iD1

Ki/ �
X

;¤J�f1;:::;ng
.�1/card.J/C1'.

\
i2J

Ki/: (1.1.25)
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Proposition 1.1.27 Let 'WD 7! Œ0; 1�. Then,

(i) ' 2 A[.D/ if and only if, for any fixed L 2 D,

�
L'.K/ D '.K [ L/ � '.K/ 2 M[.D/ I

(ii) ' 2 A\.D/ if and only if, for any fixed L 2 D,

�rL'.K/ D '.K \ L/ � '.K/ 2 M\.D/:

(iii) Let 'WD 7! Œ0; 1�. Then ' 2 A[.D/ (respectively, ' 2 A\.D/) if and only if
Q'.K/ 2 M\.D0/ (respectively, Q'.K/ 2 M[.D0/) for the dual functional

Q'.K/ D 1 � '.Kc/; Kc 2 D; (1.1.26)

defined on the familyD0 D fKc W K 2 Dg of complements of the sets from D.

Proof. (i) It suffices to note that


Kn : : : 
K1 .�
L'.K// D �
L
Kn : : : 
K1'.K/

with a similar relationship valid for the successive differences based on intersec-
tions. Statement (ii) is proved similarly. The proof of (iii) is a matter of verification
that


Kn � � �
K1 Q'.K/ D �rKc
n
� � � rKc

1
'.Kc/: ut

Complete Alternation and Positive Definiteness

The family K becomes an abelian semigroup if equipped with the union operation.
This semigroup is idempotent and also 2-divisible, meaning that each element can
be represented as the sum of two identical elements, that is, K D K [ K. In this
case, the family of completely alternating functionals coincides with the family of
negative definite functionals, and the family of completely monotone functionals
is the same as the family of positive definite functionals, see Berg, Christensen and
Ressel [92, Cor. 4.6.8] and Theorem I.6. This fact is presented in the following
theorem.

Theorem 1.1.28 A functional 'WK 7! RC is completely alternating if and only if

nX
iD1

cicj'.Ki [ Kj/ � 0

for all n � 2, K1; : : : ;Kn 2 K, and c1; : : : ; cn 2 R such that
P

ci D 0.


