NANOTECHNOLOGY FOR SUSTAINABLE WATER RESOURCES

Edited By
Ajay Kumar Mishra and Chaudhery Mustansar Hussain

Scrivener Publishing
WILEY
Nanotechnology for Sustainable Water Resources
Nanotechnology for Sustainable Water Resources

Edited by
Ajay Kumar Mishra and Chaudhery Mustansar Hussain

WILEY
Contents

Preface xix

Part I Nanotechnology for Natural Resources

1. **Application of Nanotechnology in Water Treatment, Wastewater Treatment and Other Domains of Environmental Engineering Science – A Broad Scientific Perspective and Critical Review**
 Sukanchan Palit
 1.1 Introduction 4
 1.2 The Vision of the Study 5
 1.3 The Need and the Rationale of the Study 6
 1.4 The Scope of the Study 7
 1.5 Environmental Sustainability, the Vision to Move Forward and the Immense Challenges 7
 1.6 Water and Wastewater Treatment – The Scientific Doctrine and Immense Scientific Cognizance 7
 1.6.1 Nanotechnology and Drinking Water Treatment 8
 1.6.2 Nanotechnology and Industrial Wastewater Treatment 8
 1.7 The Scientific Vision of Membrane Science 9
 1.7.1 Classification of Membrane Separation Processes 9
 1.7.2 A Review of Water Treatment Membrane Technologies 9
 1.8 Recent Scientific Endeavour in the Field of Membrane Separation Processes 11
 1.9 Recent Scientific Pursuit in the Field of Application of Nanotechnology in Water Treatment 11
 1.10 Scientific Motivation and Objectives in Application of Nanotechnology in Wastewater Treatment 15
 1.11 Desalination and the Future of Human Society 16
 1.11.1 Recent Scientific Endeavour in the Field of Desalination Procedure 16
1.11.2 Scientific Motivation and Objectives in Desalination Science

1.12 Nanofiltration Technologies, the Future of Reverse Osmosis and the Scientific Vision of Global Water Issues

1.13 Recent Advances in Membrane Science and Technology in Seawater Desalination

1.14 Recent Scientific Endeavour in the Field of Nanofiltration, Reverse Osmosis, Forward Osmosis and Other Branches of Membrane Science

1.14.1 Scientific Motivation and Technological Objectives in the Field of Nanofiltration, Reverse Osmosis and the Innovative World of Forward Osmosis

1.15 Current and Potential Applications for Water and Wastewater Treatment

1.15.1 Vision of Adsorption Techniques

1.15.2 Potential Application in Water Treatment

1.15.3 The Avenues of Membranes and Membrane Processes

1.15.4 The Science of Disinfection and Microbial Control

1.15.5 Potential Applications in Water Treatment

1.16 Water Treatment Membrane Technologies

1.17 Non-Traditional Advanced Oxidation Techniques and its Wide Vision

1.17.1 Ozonation Technique and its Broad Application in Environmental Engineering Science

1.17.2 Scientific Motivation and Objectives in Ozonation Technique

1.18 Scientific Cognizance, Scientific Vision and the Future Avenues of Nanotechnology

1.18.1 The True Challenge and Vision of Industrial Wastewater Treatment

1.19 Advanced Oxidation Processes, Non-Traditional Environmental Engineering Techniques and its Vision for the Future

1.19.1 Scientific Research Endeavour in the Field of Advanced Oxidation Processes
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.20</td>
<td>Environmental Sustainability, the Futuristic Technologies and the Wide Vision of Nanotechnology</td>
<td>30</td>
</tr>
<tr>
<td>1.20.1</td>
<td>Vision of Science, Avenues of Nanotechnology and the Future of Industrial Pollution Control</td>
<td>30</td>
</tr>
<tr>
<td>1.20.2</td>
<td>Technological Validation, the Science of Industrial Wastewater Treatment and the Vision Towards Future</td>
<td>31</td>
</tr>
<tr>
<td>1.21</td>
<td>Integrated Water Quality Management System and Global Water Issues</td>
<td>31</td>
</tr>
<tr>
<td>1.21.1</td>
<td>Groundwater Remediation and Global Water Initiatives</td>
<td>31</td>
</tr>
<tr>
<td>1.21.2</td>
<td>Arsenic Groundwater Remediation, the Future of Environmental Engineering Science and the Vision for the Future</td>
<td>32</td>
</tr>
<tr>
<td>1.21.3</td>
<td>Scientific Motivation and Objectives in the Field of Arsenic Groundwater Remediation</td>
<td>32</td>
</tr>
<tr>
<td>1.21.4</td>
<td>Vision of Application of Nanoscience and Nanotechnology in Tackling Global Groundwater Quality Issues</td>
<td>33</td>
</tr>
<tr>
<td>1.21.5</td>
<td>Heavy Metal Groundwater Contamination and Solutions</td>
<td>33</td>
</tr>
<tr>
<td>1.21.6</td>
<td>Arsenic Groundwater Contamination and Vision for the Future</td>
<td>34</td>
</tr>
<tr>
<td>1.22</td>
<td>Integrated Groundwater Quality Management System and the Vision for the Future</td>
<td>34</td>
</tr>
<tr>
<td>1.23</td>
<td>Membrane Science and Wastewater Reclamation</td>
<td>34</td>
</tr>
<tr>
<td>1.24</td>
<td>Future of Groundwater Heavy Metal Remediation and Application of Nanotechnology</td>
<td>35</td>
</tr>
<tr>
<td>1.25</td>
<td>Future Research and Development Initiatives in the Field of Nanotechnology Applications in Wastewater Treatment</td>
<td>36</td>
</tr>
<tr>
<td>1.26</td>
<td>Futuristc Vision, the World of Scientific Validation and the Scientific Avenues for the Future</td>
<td>36</td>
</tr>
<tr>
<td>1.27</td>
<td>Future Research and Development Needs</td>
<td>37</td>
</tr>
<tr>
<td>1.28</td>
<td>Conclusions</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>37</td>
</tr>
</tbody>
</table>
Contents

2 Nanotechnology Solutions for Public Water Challenges
Ankita Dhillon and Dinesh Kumar

2.1 Introduction
2.2 Application of Nanotechnology in Water and Wastewater Treatment
 2.2.1 Photocatalysis
 2.2.1.1 Organic Contaminants Remediation
 2.2.1.2 Inorganic Contaminants Remediation
 2.2.1.3 Heavy Metals Remediation
 2.2.1.4 Microbes Remediation
 2.2.2 Nanofiltration
 2.2.2.1 Carbon Nanomaterials
 2.2.2.2 Metal Oxides
 2.2.2.3 Zeolites
 2.2.3 Nanosorbents
 2.2.3.1 Carbon-Based Nanosorbents
 2.2.3.2 Biosorbents
 2.2.3.3 Metal Oxide-Based Nanosorbents
 2.2.3.4 Zeolites-Based Sorbents
 2.3 Effects of Nanotechnology
 2.4 Conclusions

Acknowledgements
References

3 Nanotechnology: An Emerging Field for Sustainable Water Resources
Pradeep Pratap Singh and Ambika

3.1 Introduction
3.2 Classification of Nanomaterials for Wastewater Treatment
 3.2.1 Nanoadsorbents
 3.2.2 Nanocatalysts
 3.2.3 Nanomembranes
3.3 Synthesis of Nanomaterials
 3.3.1 Conventional Approach for the Production of NPs
 3.3.1.1 Physical Method
 3.3.1.2 Chemical Method
 3.3.2 Precipitation of Nanoparticles
 3.3.3 Nanoparticles from Emulsions
 3.3.4 Green Approach for the Synthesis of Nanoparticles
3.4 Application of Nanotechnology in Wastewater Treatment
 3.4.1 Nanoadsorbents
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.1.1 Carbon Nanotubes (CNTs)</td>
<td>78</td>
</tr>
<tr>
<td>3.4.1.2 Graphene-Based Nanomaterials</td>
<td>79</td>
</tr>
<tr>
<td>3.4.1.3 Polymer-Supported Nanosorbents</td>
<td>80</td>
</tr>
<tr>
<td>3.4.1.4 Nanoclays</td>
<td>80</td>
</tr>
<tr>
<td>3.4.2 Nanocatalysts</td>
<td>81</td>
</tr>
<tr>
<td>3.4.2.1 Metal-Based Nanomaterials</td>
<td>81</td>
</tr>
<tr>
<td>3.4.2.2 Metal Oxide-Based Nanomaterials</td>
<td>82</td>
</tr>
<tr>
<td>3.4.2.3 Nanocomposites-Based Nanocatalyst</td>
<td>84</td>
</tr>
<tr>
<td>3.4.2.4 Nanocatalysts as Bioactive Agent</td>
<td>85</td>
</tr>
<tr>
<td>3.4.3 Nanomembranes</td>
<td>86</td>
</tr>
<tr>
<td>3.4.3.1 Nanofiltration Membranes</td>
<td>86</td>
</tr>
<tr>
<td>3.4.3.2 Nanocomposite Membranes</td>
<td>87</td>
</tr>
<tr>
<td>3.4.3.3 Nanofibre Membranes</td>
<td>88</td>
</tr>
<tr>
<td>3.4.4 Miscellaneous Nanomaterials</td>
<td>88</td>
</tr>
<tr>
<td>3.5 Risk of Nanotechnology</td>
<td>89</td>
</tr>
<tr>
<td>3.6 Conclusions</td>
<td>89</td>
</tr>
<tr>
<td>References</td>
<td>90</td>
</tr>
</tbody>
</table>

4 Removal of Hazardous Contaminants from Water or Wastewater Using Polymer Nanocomposites Materials

Felycia Edi Soetaredjo, Suryadi Ismadji, Kuncoro Foe and Gladdy L. Woworuntu

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>103</td>
</tr>
<tr>
<td>4.2 Adsorption of Heavy Metals</td>
<td>104</td>
</tr>
<tr>
<td>4.3 Adsorption of Dyes</td>
<td>106</td>
</tr>
<tr>
<td>4.4 Adsorption of Antibiotics and Other Organic Contaminants</td>
<td>111</td>
</tr>
<tr>
<td>4.5 Processing of Polymer-Based Nanocomposites as Adsorbents</td>
<td>113</td>
</tr>
<tr>
<td>4.5.1 Exfoliation Adsorption</td>
<td>113</td>
</tr>
<tr>
<td>4.5.2 Melt Intercalation</td>
<td>114</td>
</tr>
<tr>
<td>4.5.3 Template Synthesis</td>
<td>115</td>
</tr>
<tr>
<td>4.5.4 In-Situ Polymerization</td>
<td>115</td>
</tr>
<tr>
<td>4.6 Clay–Polymer Nanocomposites</td>
<td>116</td>
</tr>
<tr>
<td>4.7 Carbon Nanotube Polymer Nanocomposites</td>
<td>119</td>
</tr>
<tr>
<td>4.8 Magnetic Polymer Nanocomposites</td>
<td>119</td>
</tr>
<tr>
<td>4.9 Adsorption Equilibrium Studies</td>
<td>120</td>
</tr>
<tr>
<td>4.9.1 Langmuir Isotherm</td>
<td>120</td>
</tr>
<tr>
<td>4.9.2 Freundlich Isotherm</td>
<td>126</td>
</tr>
<tr>
<td>4.9.3 Dubinin Radushkevich</td>
<td>126</td>
</tr>
<tr>
<td>4.9.4 Temkin Adsorption Equation</td>
<td>128</td>
</tr>
</tbody>
</table>
Contents

4.9.5 Sips Isotherm Equation 129
4.9.6 Toth Adsorption Equation 130
4.10 Adsorption Kinetic Studies 130
4.11 Summary 132
Acknowledgment 133
References 133

5 Sustainable Nanocarbons as Potential Sensor for Safe Water 141
Kumud Malika Tripathi, Anupriya Singh, Yusik Myung, TaeYoung Kim, and Sumit Kumar Sonkar
5.1 Introduction 141
5.2 Recent Advancement in Sustainable Nanocarbons 144
5.3 Sustainable Nanocarbons for Safe Water 149
5.3.1 Sensing of Toxic Metal Ions 150
5.3.2 Sensing of Inorganic Pollutants 156
5.3.3 Sensing of Organic Pollutants 161
5.3.4 Sensing of Nanomaterials 165
5.3.5 Sensing of Byproducts 166
5.4 Concluding Remarks and Future Trend 166
Acknowledgment 167
References 167

Part 2 Nanosensors as Tools for Water Resources 179
Ephraim Vunain and A. K. Mishra
6 Nanosensors as Tools for Water Resources 180
6.1 Introduction 180
6.1.1 Water Resources Contamination Due to Heavy Metals 181
6.1.2 Water Resources Contamination Due to Nutrients 182
6.2 Contaminant Monitoring Procedures 183
6.2.1 Electrochemical-Based Sensors 184
6.2.2 Graphene and Carbon Nanotubes (CNTs)-Based Sensors 188
6.2.3 Biosensors 189
6.2.4 Nanoparticles- and Nanocomposites-Based Sensors 189
6.3 Conclusions and Future Perspectives 190
References 191
7 Emerging Nanosensing Strategies for Heavy Metal Detection

S. Varun and S.C.G. Kiruba Daniel

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Introduction</td>
<td>199</td>
</tr>
<tr>
<td>7.2 Recent Trends in Nanosensing Strategies: An Overview</td>
<td>201</td>
</tr>
<tr>
<td>7.2.1 Nanosensors Based on Biosensing Principle</td>
<td>201</td>
</tr>
<tr>
<td>7.2.1.1 Aptasensors</td>
<td>202</td>
</tr>
<tr>
<td>7.2.1.2 DNA Nanoclusters</td>
<td>206</td>
</tr>
<tr>
<td>7.2.2 Nanoparticle-Mediated Electrodes</td>
<td>208</td>
</tr>
<tr>
<td>7.2.2.1 Advanced Nanomaterials and Metal Nanoparticles as Electrodes</td>
<td>209</td>
</tr>
<tr>
<td>7.2.2.2 DNAzyme: New Generation Sensors</td>
<td>211</td>
</tr>
<tr>
<td>7.2.3 Interference Sensing: A New Paradigm</td>
<td>213</td>
</tr>
<tr>
<td>7.3 Microfluidic Nanotechnology: Emerging Platform for Sensing</td>
<td>214</td>
</tr>
<tr>
<td>7.3.1 Microfluidic Sensors</td>
<td>214</td>
</tr>
<tr>
<td>7.3.2 Paper-Based Microfluidic Sensors</td>
<td>214</td>
</tr>
<tr>
<td>7.4 Summary and Outlook</td>
<td>220</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>220</td>
</tr>
<tr>
<td>References</td>
<td>220</td>
</tr>
</tbody>
</table>

8 Capture of Water Contaminants by a New Generation of Sorbents Based on Graphene and Related Materials

Ana L. Cukierman and Pablo R. Bonelli

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Introduction</td>
<td>228</td>
</tr>
<tr>
<td>8.2 Characterization of Physicochemical, Mechanical, and Magnetic Properties of Graphene-Based Materials</td>
<td>229</td>
</tr>
<tr>
<td>8.3 Removal of Inorganic and Water-Soluble Organic Contaminants with Graphene-Based Sorbents</td>
<td>231</td>
</tr>
<tr>
<td>8.3.1 Removal of Inorganic Contaminants: Heavy Metal and Nonmetal Ions</td>
<td>232</td>
</tr>
<tr>
<td>8.3.2 Removal of Water-Soluble Organic Contaminants: Dyes and Pharmaceuticals</td>
<td>241</td>
</tr>
<tr>
<td>8.4 Cleanup of Oil Spills and Other Water-Insoluble Organic Contaminants</td>
<td>255</td>
</tr>
<tr>
<td>8.5 Summary and Outlook</td>
<td>267</td>
</tr>
<tr>
<td>Acknowledgment</td>
<td>268</td>
</tr>
<tr>
<td>References</td>
<td>269</td>
</tr>
</tbody>
</table>
9 Design and Analysis of Carbon-Based Nanomaterials for Removal of Environmental Contaminants

Yoshitaka Fujimoto

9.1 Introduction

9.2 Methodology

9.2.1 First Principles Total Energy Calculation

9.2.2 Formation Energy

9.2.3 Adsorption Energy

9.2.4 Charge Density Difference

9.2.5 Work Function

9.2.6 Scanning Tunneling Microscopy Image

9.2.7 Computational Details

9.3 Substitutionally Doped Graphene Bilayer

9.3.1 Structure

9.3.2 Energetics

9.3.3 Energy Band Structure

9.3.4 Work Function

9.3.5 Scanning Tunneling Microscopy Image

9.4 Gas Adsorption Effect

9.4.1 Structure and Energetics

9.4.2 Energy-Band Structures and Electron States

9.4.3 Total Charge Density

9.4.4 Work Function

9.4.5 Scanning Tunnelling Microscopy Image

9.5 Conclusions

Acknowledgment

References

10 Nanosensors: From Chemical to Green Synthesis for Wastewater Remediation

Priyanka Joshi and Dinesh Kumar

10.1 Introduction

10.2 Synthesis of Nanomaterials

10.2.1 Physical Methods

10.2.2 Chemical Method

10.2.2.1 Sol–Gel Method

10.2.2.2 Microemulsion Method

10.2.2.3 Hydrothermal Method

10.2.2.4 Polyol Method

10.3 Biological Methods

10.3.1 Biomolecule
11 As-Prepared Carbon Nanotubes for Water Purification: Pollutant Removal and Magnetic Separation 329

Jie Ma, Yao Ma and Fei Yu

11.1 Introduction 330
11.2 Experimental Method 331
 11.2.1 Materials 331
 11.2.2 Preparation of Magnetic Carbon Nanotube 331
 11.2.2.1 Preparation of NaClO-Modified Magnetic Carbon Nanotube 331
 11.2.2.2 Preparation of KOH-Activated Magnetic Carbon Nanotube 332
 11.2.2.3 Preparation of Chitason-Grafted Magnetic Carbon Nanotube 333
 11.2.3 Batch Adsorption Experiments 333
 11.2.4 Characterization Method 335
11.3 Removal of Dye from Aqueous Solution by NaClO-Modified Magnetic Carbon Nanotube 336
 11.3.1 Characterization of Adsorbents 336
 11.3.2 Adsorption Properties 340
11.4 Removal of Toluene, Ethylbenzene, and Xylene from Aqueous Solution by KOH-Activated Magnetic Carbon Nanotube 343
 11.4.1 Characterization of Adsorbents 343
 11.4.2 Adsorption Properties 348
11.5 Removal of Organic Pollutants from Aqueous Solution by Chitason-Grafted Magnetic Carbon Nanotube 358
 11.5.1 Characterization of Adsorbents 358
 11.5.2 Adsorption Properties 359
11.6 Summary and Outlook 367
Reference 367
12 Nanoadsorbents: An Approach Towards Wastewater Treatment

Rekha Sharma and Dinesh Kumar

12.1 Introduction

12.2 Classification of Nanomaterials as Nanoadsorbents

12.3 Importance of Nanomaterials in the Preconcentration Process

12.4 Properties and Mechanisms of Nanomaterials as Adsorbents

12.4.1 Innate Surface Properties

12.4.2 External Functionalization

12.5 Nanoparticles for Water and Wastewater Remediation

12.5.1 Nanoparticles of Metal Oxide

12.5.1.1 Al₂O₃ Nanoparticles

12.5.1.2 ZnO Nanoparticles

12.5.1.3 TiO₂ Nanoparticles

12.5.2 Metallic Nanoparticles

12.5.2.1 Au Nanoparticles

12.5.3 Magnetic Nanoparticles

12.5.4 Carbonaceous Nanomaterials

12.5.4.1 Carbon Nanotubes

12.5.5 Silicon Nanomaterials

12.5.5.1 Silica Dioxide Nanoparticles

12.5.5.2 Silica Nanotubes

12.5.6 Nanofibers (NFs)

12.6 Applications in Aqueous Media

12.6.1 Nanoparticles

12.6.1.1 Al₂O₃ Nanoparticles

12.6.1.2 ZnO Nanoparticles

12.6.1.3 TiO₂ Nanoparticles

12.6.1.4 Metallic Nanoparticles

12.6.2 Nanostructured Mixed Oxides

12.6.2.1 Fe–Ti Mixed Oxide Nanoparticles

12.6.2.2 Magnetic Nanoparticles

12.6.3 Carbonaceous Nanomaterials

12.6.3.1 Carbon Nanotubes

12.6.4 Silicon Nanomaterials

12.6.4.1 SiO₂ Nanoparticles

12.6.4.2 Silicon Nanotubes

12.6.5 Nanofibers (NFs)

12.6.5.1 Metal Ions

12.6.5.2 Organic Compounds
Part 3 Nano-Separation Techniques for Water Resources

13 Hybrid Clay Mineral for Anionic Dye Removal and Textile Effluent Treatment 409
Fadhila Ayari
13.1 Introduction 410
13.2 Experimental 411
13.2.1 Clay Adsorbent 411
13.2.1.1 BET Surface Area 411
13.2.1.2 Cationic Exchange Capacity (CEC) 412
13.2.1.3 Point of Zero Proton Charge (PZC) of Purified and Organobentonites Samples 412
13.2.1.4 XRD 413
13.3 Result and Discussion 413
13.3.1 Characterizations of Collected Clay 413
13.3.1.1 Chemical Composition 413
13.3.1.2 X-Ray Diffraction 414
13.3.1.3 Physisorption of Diazote at 77 K and Determination of S_{BET} 414
13.3.1.4 Mass Titration 417
13.3.1.5 Cation Exchange Capacity (CEC) of Arp and Arb 417
13.3.1.6 Grading Study 417
13.3.1.7 Microstructural Characterizations 418
13.3.2 Characterizations of Hybrid Material 420
13.3.2.1 FTIR Analysis 420
13.3.2.2 XRD Analysis 423
13.3.2.3 Surface Charge Density σ_H and PZC 427
13.3.2.4 Scanning Electron Microscope (SEM) 431
13.3.2.5 TEM 431
13.3.2.6 Specific Surface Area S_{BET} and Cation Exchange Capacity (CEC) 432
13.3.2.7 Thermogravimetric Analyses 434
13.3.2.8 X-Ray Photoelectron Spectroscopy (XPS) Characterization 436
13.3.3 Adsorption Studies 436
 13.3.3.1 Dye Characterization 436
 13.3.3.2 Experimental Run 438
 13.3.3.3 Adsorption Kinetics 442
13.3.4 Application to Natural Effluent 451
13.4 Conclusions 452
References 456

14 Nano-Separation Techniques for Water Resources 461

Pashupati Pokharel and Mahesh Joshi

14.1 Current Progress in Nanotechnologies for Water Resources and Wastewater Treatment Processes 462
14.2 Nanomaterials in Nano-Separation Techniques for Water Treatment Process 464
14.3 Biochar-Based Nanocomposites for the Purification of Water Resources and Wastewater 467
 14.3.1 Surface Chemistry and Functionalization of Biochar Material 468
 14.3.2 Pretreatment of Biomass Using Iron/Ion Oxide, Nanometal Oxide/Hydroxide, and Functional Nanoparticles 468
 14.3.3 Post-Treatment of Biochar Using Iron Ion/Oxide, Functional Nanoparticles, Nanometal Oxide/Hydroxide 470
 14.3.4 Adsorption of Heavy Metals 470
 14.3.5 Interaction of Biochar-Based Nanocomposites with Organic Contaminants 471
 14.3.6 Adsorption of Inorganic Contaminants Other than Heavy Metals 472
 14.3.7 Adsorption and Instantaneous Degradation of Organic Contaminants 472
14.4 Conclusions 473
References 473

15 Recent Advances in Nanofiltration Membrane Techniques for Separation of Toxic Metals from Wastewater 477

Akil Ahmad, David Lokhat, Yang Wang, Mohd Rafatullah

15.1 Introduction 478
15.2 Membrane Technology 480
15.3 Nanofiltration Membrane for Metal Removal/Rejection 483
15.4 Summary and Outlook 492
Acknowledgment 493
References 493
16 Bacterial Cellulose Nanofibers for Efficient Removal of Hg$^{2+}$ from Aqueous Solutions 501

Emel Tamahkar, Deniz Türkmen, Semra Akgönüllü, Tahira Qureshi and Adil Denizli

16.1 Introduction 502
16.2 Experimental Method 508
 16.2.1 Materials 508
 16.2.2 Production of BC Nanofibers 508
 16.2.3 Preparation of Cibacron Blue F3GA Attached-Bacterial Cellulose (BC–CB) Nanofibers 508
 16.2.4 Characterization Studies 509
 16.2.5 Batch Adsorption Studies 509
 16.2.6 Competitive Adsorption Studies 510
 16.2.7 Desorption and Reusability Studies 510
16.3 Results and Discussion 511
 16.3.1 Characterization of Bacterial Cellulose Nanofibers 511
 16.3.2 Effect of pH 512
 16.3.3 Effect of Initial Concentration of Hg$^{2+}$ 512
 16.3.4 Competitive Adsorption 515
 16.3.5 Regeneration of BC–CB Nanofibers 515
16.4 Conclusions 516
References 518

Part 4 Sustainable Future with Nanotechnology

17 Nanotechnology Based Separation Systems for Sustainable Water Resources 525

Susmita Dey Sadhu, Meenakshi Garg and Prem Lata Meena

17.1 Introduction and Background 526
17.2 Nanotechnology in Water Treatment 530
17.3 Nanofiltration—A Membranous Technique 533
 17.3.1 What is Filtration? 533
 17.3.2 Membrane Filtration Technology 533
 17.3.3 Nanofiltration 534
 17.3.4 Role of Nanofiltration 535
 17.3.5 Different Polymers and Their Membranes in Nanofiltration 536
17.4 Nanoadsorbents 539
 17.4.1 Types of Adsorbents 539
 17.4.2 Heavy Metal Removal from Wastewater 540
 17.4.2.1 Carbon-Based Nanomaterials 540
Contents

17.4.2.2 Nanoparticles from Metal or Metal Oxides 541
17.4.3 Organic Waste Removal 541
17.5 Nanoparticles 547
 17.5.1 Dendrimer 548
 17.5.2 Metals and Their Oxides 549
 17.5.3 Zeolites 550
 17.5.4 Carbaneous and Carbon Nanotubes 551
17.6 Recent Researches in Nanoseparation Techniques of Wastewater 552
 17.6.1 Graphene from Sugar and its Application in Water Purification 552
 17.6.2 Understanding the Degradation Pathway of the Pesticide, Chlorpyrifos by Noble Metal Nanoparticles 552
 17.6.3 Measuring and Modelling Adsorption of PAHs to Carbon Nanotubes Over a Six Order of Magnitude Wide Concentration Range 553
 17.6.4 “SOS Water” Mobile Water Purifier 553
 17.6.5 An Electrochemical Carbon Nanotube Filter for Water Treatment Applications 554
 17.6.6 High Speed Water Sterilization System for Developing Countries 554
 17.6.7 Metal Nanoparticles on Hierarchical Carbon Structures: New Architecture for Robust Water Purifiers 554
17.7 Conclusions 555
References 555

Index 559
The main purpose of nanotechnology is to improve and develop materials, devices, and systems with fundamentally different properties by exploiting unique properties of molecular and supramolecular systems at the nano level. Nearly all the tools have inspired every field of science and technology, and the ideas of nanotechnology and innovation it brings continues to be made in medical technology, lab-on-a-chip, sensor technology, energy resources, and environmental protection and preservation. The continuous use of nanotechnology and nanomaterials in most of the disciplines is beginning to mature. This current book introduces the reader to the use of nanotechnology to preserve water resources, improve water quality and the social inferences therein that may affect approval or extensive usage.

Nanomaterials are nano-sized structures and have extraordinary physical and chemical properties, such as the unique optical, electrical, thermal, magnetic and adsorption characteristics, etc, due to their ultra-small size. Large specific surface areas of nanomaterials can improve the detection sensitivity and miniaturize the devices. In addition, these nanomaterials of various compositions and morphologies provide powerful tools for improving water quality. Therefore, the nanomaterials-based techniques can play vital roles in many water resources. Moreover, freedom to functionalize the nanomaterials with various chemical groups can also increase their affinity toward target contaminants, which is very much desirable for selective cleaning and detection of target contaminants in urban and industrial waters. In this book, we will summarize recent progresses due to novel nanomaterials for sustainable water resources.

The present book has been divided into four sections. Part 1: “Nanotechnology for Natural Resources” contains the details of preservation of natural resources especially water and long-term sustainable development. Recently, nanomaterials and polymer nanocomposites are researched as one of the prime materials for sustainable development. This section is an overview of the latest development and potential that nanotechnology has generated for water resources. Part 2: “Nano Sensor as Tools for Water Resources” has been described where sensors can be deployed as a standalone unit. One of its creators says that the technology
may one day be adapted for use in deployable water chemistry labs and could help scientists working in pollution cleanup operations. This section presents nanosensors to detect contaminations in water at concentration levels of significance to human health and regulatory compliance. Part 3: “Nanoseparation Techniques for Water Resources” describes the separation technologies and capabilities including a range of techniques, test environments, and related expertise to separate different waste fractions in a form in which they can be used effectively for other applications or disposed of. The techniques range from membrane technologies electrochemically assisted nutrient recovery to sludge treatment and hydrothermal carbonization. Finally, Part 4: “Sustainable Future with Nanotechnology” where water has been presented as core sustainable development and is very critical for environment, healthy ecosystems, and for human survival itself. It is vital to reduce the global burden of disease and improving the health, welfare, and productivity of populations. It is central to the production and preservation of a host of benefits and services for people. Water is also at the heart of adaptation to climate change, serving as the crucial link between the climate system, human society, and the environment. Overall, this book provides a summary of the state-of-the-art knowledge to scientists, engineers, and policy maker, about recent developments in nanotechnology and the sustainable water resources arena. Moreover, up-to-date knowledge on the economy, toxicity, and regulation related to nanotechnology have been presented in detail. In the end, the role of nanotechnology for green and sustainable future has also been briefly discussed.

Ajay Kumar Mishra and Chaudhery Mustansar Hussain
Editors
October 2017
Part I

NANOTECHNOLOGY FOR NATURAL RESOURCES
Application of Nanotechnology in Water Treatment, Wastewater Treatment and Other Domains of Environmental Engineering Science – A Broad Scientific Perspective and Critical Review

Sukanchan Palit

Department of Chemical Engineering, University of Petroleum and Energy Studies Dehradun, Uttarakhand, India

Abstract
Industrial wastewater treatment and drinking water treatment are today witnessing immense scientific challenges. Global vision towards environmental protection and ecological biodiversity has urged the scientific domain to move towards newer innovations and technologies. In this chapter, the author focuses on the research pursuit in nanotechnology in environmental engineering, the vast domain of membrane science and the future trends in water and wastewater treatment. The cornerstones of this chapter are the areas of research pursuit in desalination, advanced oxidation processes, and water treatment. Human civilization and human scientific endeavor are today highly challenged as environmental protection ushers in a new era in science and engineering. Membrane science is opening up new windows of innovation. This chapter delineates the vast scientific success, the scientific landscape and the scientific potential behind nanofiltration and application of nanotechnology in industrial pollution control and water treatment.

Keywords: Water, nanotechnology, vision, desalination, membranes

Corresponding author: sukanchan68@gmail.com; sukanchan92@gmail.com
1.1 Introduction

Science and engineering in today’s visionary world are moving at a vast and drastic pace. Ecological imbalance, global climate change and environmental engineering concerns have geared the scientific domain to yearn for newer realms and surpass visionary frontiers. Man’s wide vision, mankind’s definitive prowess and civilization’s progress will lead a long way in the true emancipation of environmental and energy sustainability. Environmental sustainability today stands in the crossroads of drastic challenges and deep introspection. In such a crucial juncture, application of nanotechnology in water and wastewater treatment is of utmost importance in the future progress of environmental engineering science. This treatise delineates with cogent insight the success of environmental sustainability, the research pursuit of nanotechnology in environmental engineering and the future trends in research areas of water and wastewater treatment. Membrane science and other tertiary treatments such as advanced oxidation processes stands as a major backbone of this scientific research endeavour. The challenge, the vision and the purpose of this treatise widely observes the success of application of nanotechnology in water and wastewater treatment and also discusses the visionary avenues in the field of nanofiltration and other membrane separation processes. The world of engineering science is moving forward towards a newer visionary eon. The challenge of this treatise discusses certain critical scientific questions in membrane science such as fouling phenomenon and the immense scientific barriers linked with it. The world of environmental engineering science and the wide domain of nanotechnology are passing through a challenging phase. Nanotechnology today is surpassing visionary boundaries. The author skillfully attempts with immense foresight the recent trends and future path of scientific endeavour in the field of water and wastewater treatment specifically the domain of application of nanotechnology. This treatise widely observes the success of application of membrane science in the wide avenues of environmental engineering science. A new chapter in the history of application of membrane science is revealed with every step of human life.

Environmental engineering science today stands in the midst of deep introspection and immense crisis. The fate of environment in our human civilization is at an immense distress. March of human civilization today has become retrogressive. Chemical process engineering and environmental engineering are witnessing newer challenges and vast and versatile innovations. Mankind and its scientific research pursuit in the field of water and wastewater treatment need to be re-envisioned with each step of human life. Environmental concerns, the deep challenges of industrial
pollution control and widespread ecological imbalance have brought a new revolutionary change in global scientific research pursuit. The author with cogent insight observes and informs to the wider scientific audience the world of challenges in the success of application of nanotechnology in water and wastewater treatment. The challenge and the vision need to be re-envisioned with each step of human life and each stride of scientific endeavour. Environmental concerns, environmental degradation and the success of environmental sustainability will lead a long way in the true emancipation of science and engineering today.

1.2 The Vision of the Study

The vision behind this well-informed study is wide and versatile. Science and engineering in today’s human civilization and human realm are moving at a drastic pace. Industrial pollution control and environmental degradation are the burning issues facing the scientific domain today [33, 34]. The vision and the challenge need to be readdressed at each step of human scientific research pursuit. Ecological imbalance and success of application of environmental engineering tools will lead a long way in the true emancipation and true realization of environmental sustainability. The vision of this treatise is wide and versatile. The author skillfully delineates the immense success of application of nanotechnology in water and wastewater treatment and the future realization of environmental sustainability. In this treatise, the author also discusses the application of advanced oxidation processes and other non-traditional techniques of wastewater treatment. This area of scientific pursuit is termed as tertiary treatment of industrial wastewater. The other visionary area of endeavour is novel separation processes especially membrane separation processes. Desalination and water treatment are the vexing and enigmatic areas of scientific research endeavour. The vision and purpose of this study widely revisits the murky depths of membrane science and technology. The main areas of thrust in this study are microfiltration and ultrafiltration, both are unexplored and robust areas of membrane science [33, 34].

Providing clean and affordable water to meet human needs is a formid-able challenge of the twenty-first century. Globally, water supply struggles to keep up with the fast growing demand, which is aggravated by immense population growth, global climate change and water quality deterioration. Science of groundwater quality needs re-envisioning. The need for technological innovation to address integrated water quality management cannot be overstated. Globally, a revamping of integrated water quality
management system is the need of the hour. This discussion covers can-
didate nanomaterials, properties and mechanisms that enable the applica-
tions, advantages and limitations as compared with existing processes, and
difficulties and research needs for commercialization. This vision and the
immense scientific candour will lead a long way in the true realization of
environmental sustainability [33, 34].

1.3 The Need and the Rationale of the Study

The world of environmental engineering science and chemical process
engineering today stands in the midst of deep introspection and unimag-
inable challenges. Global water shortage and water crisis have plunged
human civilization to murky depths. The author pointedly attempts to
bring forward to the scientific domain the immense potential of applica-
tion of nanotechnology in water and wastewater treatment. The visionary
prowess of mankind, man’s immense vision and the progress of science
are all the torchbearers towards a greater realization of environmental
sustainability. Global water challenges are the backbone of this vast and
versatile study. Scientific vision and deep scientific understanding are
the pillars of human scientific research pursuit today. The immense need,
the rationale and the importance of this study are to discuss the future
of global water crisis and its alleviation with the help of novel environ-
mental engineering techniques and novel separation processes. Novel
separation processes connote to membrane science. Non-traditional
environmental engineering techniques imply the advanced oxidation
processes. The author pointedly focuses on these two broad areas of
science [33, 34].

Science and technology are moving fast in today’s human civilization.
The road to success is arduous and groundbreaking. Global water crisis,
grave concerns for environment and the cause for scientific validation
will go a long way in the true emancipation of environmental sustain-
ability. The challenge and the vision of science are immense and awe-
some. Environmental protection has a definite cause and vision today.
The rationale of the study unfolds a newer beginning and moves towards
the path of a visionary era of science. Engineering is witnessing one par-
adigmatic shift after another. Global water initiatives are the need of the
hour due to growing concerns over provision of pure drinking water.
The success of human scientific endeavour should reach all people.
Thus, the imminent need of a global water research and development
initiative [33, 34].
1.4 The Scope of the Study

The scope of this visionary study is wide and purposeful. Global water crisis and the concerns of environmental sustainability are witnessing drastic challenges. This study envisions the wide applications of membrane science and advanced oxidation processes to the water and wastewater treatment. In today’s world, technological vision is opening up new vistas of scientific research endeavour. The other facet of this study is to open up new avenues of scientific application of nanotechnology in water and wastewater treatment. The challenge is immense, yet the vision is wide. The author with deep intuition focuses on the application of nanofiltration and other vistas of nanotechnology in water and wastewater treatment. Science and engineering are moving at a rapid pace in this century. Sustainable development is of immense concern. The cause of energy and environmental sustainability need to be re-addressed and re-envisioned at each step of human scientific endeavour. This treatise opens up new challenges and new directions in the futuristic applications of nanotechnology to tackle global water issues.

1.5 Environmental Sustainability, the Vision to Move Forward and the Immense Challenges

Technological and scientific visions are at their helm in today’s scientific generation. Global concern for climate change, the ecological imbalance and the scientific urge to excel are all the pallbearers towards a greater emancipation of environmental sustainability. Water science and water technology in today’s scientific world are linked by an unsevered umbilical cord. Today’s science is a colossus without a definite will of its own. The challenges of environmental engineering techniques are immense today. Industrial water pollution control stands in the midst of deep introspection today. The vision to move forward is arduous and requires immense scientific understanding and scientific astuteness. Environmental sustainability is the backbone of environmental paradigm today. Scientific vision needs to be immensely re-envisioned with the alleviation of global water shortage and global water crisis.

1.6 Water and Wastewater Treatment – The Scientific Doctrine and Immense Scientific Cognizance

The science of water and wastewater treatment needs to be re-envisioned at each step of scientific endeavour. The scientific doctrine and immense
scientific cognizance are paving the path towards a new visionary future. Membrane science and technology is the only answer to the intricate problems of global water crisis and industrial water pollution control. The scientific vision, the scientific fortitude and the scientific astuteness are the pallbearers towards a greater understanding of membrane science. Nanotechnology and its application in water and wastewater treatment are surpassing wide visionary frontiers. The advancement of science and engineering in today’s world is unimaginable. Scientific truth and scientific fortitude need to be re-envisioned and re-addressed at each step of scientific pursuit. This well-informed and well-observed treatise discusses the difficulties and barriers of the applications of nanotechnology in drinking water and industrial wastewater treatment. The challenge of human scientific research pursuit and scientific vision is awesome. In a similar manner, the scientific doctrine and scientific cognizance of nanotechnology and nanofiltration are gaining immense grounds in the wide horizon of chemical process engineering.

1.6.1 Nanotechnology and Drinking Water Treatment

Nanotechnology in today’s scientific world has an unsevered umbilical cord with drinking water treatment. Human civilization and human scientific endeavour are in today’s world moving towards a newer direction. Green chemistry applications, the success of nanotechnology and the visionary world of membrane science will lead a long and positive way in deep emancipation of water science and technology. Provision of clean drinking water stands in the midst of deep crisis. Global water shortage and climate change are the bane of present day human civilization. The author with deep and cogent insight brings to the scientific forefront the intricacies of nanotechnology applications in drinking water treatment. Industrial wastewater treatment is another wide facet of this present scientific endeavour. Technological vision is at its helm at each step of human scientific research pursuit. Drinking water treatment and industrial water pollution control today stand in the midst of deep comprehension and introspection. The challenge of nanotechnology applications in drinking water treatment is veritably widening the scope of science and technology.

1.6.2 Nanotechnology and Industrial Wastewater Treatment

Industrial wastewater treatment is a burning issue in today’s human civilization. The grave concerns of environmental engineering catastrophes have urged human scientific endeavour to gain immense grounds in its path