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Skylar Tibbits is the founder and co-director (with Jared 
Laucks) of the Self-Assembly Lab at the Massachusetts 
Institute of Technology (MIT), and Assistant Professor of 
Design Research in the Department of Architecture. His 
invention of 4D printing has established a unique area of 
design research focused on programmable materials that can 
sense and actuate in response to internal or external stimuli. 
From self-transforming carbon fi bre to responsive textiles, 
active printed wood and ‘smart’ leather, these have a variety 
of novel material capabilities and industrial applications. 
 His work on self-assembly has demonstrated the 
scalability of this natural construction phenomenon with 
synthetic design and fabrication systems. The research is the 
fi rst to apply the principles of self-assembly to construction 
and manufacturing: for example, a cellphone that can build 
itself, a chair that self-assembles, and the self-construction 
of aerial balloons. Including symmetric and crystalline 
lattices, non-homogenous geometries and differentiated 
complexity, the work has shown autonomous assembly in 
diverse conditions such as fl uid-fi lled tanks, turbulent airfl ow 
chambers and helium-fi lled environments.
 Tibbits has a professional degree in architecture and 
a minor in experimental computation from Philadelphia 
University, and a dual-degree master’s in design computation 
and computer science from MIT. He has worked at a 
number of renowned design offi ces including Zaha Hadid 
Architects, Asymptote Architecture and Point b Design, 
and is the founder of multidisciplinary design practice SJET 
LLC. He has designed and built large-scale installations 
and exhibited in galleries around the world, including the 
Guggenheim Museum in New York. His work has been 
published extensively, for example in the New York Times, 
Wired and Fast Company, as well as in various peer-
reviewed journals and books. He is the author of the book 
Self-Assembly Lab: Experiments in Programming Matter 
(Routledge, 2016), and also Editor-in-Chief of the journal 
3D Printing and Additive Manufacturing.
 Awards include the LinkedIn Next Wave Award for Top 
Professionals under 35 (2016), R&D Innovator of the Year 
(2015), National Geographic Emerging Explorer (2015), 
an Inaugural WIRED Fellowship (2014), the Architectural 
League Prize (2013), Ars Electronica Next Idea Award 
(2013), and a TED Senior Fellowship (2012). In 2008 he was 
named a Revolutionary Mind by SEED magazine.
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INTRODUCTION

7

Maria Yablonina, 
Mobile robotic 
fabrication system 
for filament 
structures, 
ITECH thesis, 
Institute for 
Computational 
Design (ICD), 
University 
of Stuttgart, 
2015

The project demonstrates 
a radically new fabrication 
process with a carbon-fi bre 
composite system based 
on the collaboration of 
multiple semi-autonomous 
wall-climbing robots. 

FROM 
AUTOMATED 
TO 
AUTONOMOUS 
ASSEMBLY
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Construction poses one of the most immediate challenges to architecture as a discipline. With 
tremendous energy consumption, ineffi ciencies, cost, timelines, labour shortages and litigation 
dominating the construction landscape, we urgently need a new perspective on assembly. Since 
the introduction of computation and digital fabrication in the 1950s and 1960s, architects have 
been exploring ideas for automation in design and construction. However, rapid advances in these 
technologies have brought with them a major challenge. Despite the digital fabrication of our new 
customised and highly performative materials, we are still left with the problem of manual assembly, 
where humans or machines spend increasing amounts of costly time and energy laboriously building 
complex structures. 

Many have argued for the free complexity and mass-customisation offered by digital fabrication 
and the effi ciency of industrial robotics,1 an approach that has led to the rise of numerous pavilions 
and bespoke installations, as seen in MoMA’s PS1 in New York and the annual Serpentine Pavilion 
projects in London. Sophisticated software and digital fabrication technologies have enabled young 
architects to build experimental structures that test the limits of our digital and physical capabilities. 
And architects have collectively pushed the boundaries of mass-customised complexities, producing 
thousands of unique components requiring thousands of connections that demand hours, days, 
months or even years of manual assembly. The energy input and man-hours necessary to build these 
structures, however, has generally been overlooked. They have been celebrated with impressive 
simulations, beautifully nested cut-sheets, videos of CNC machines running 24/7 and stunning 
photographs, hiding the assembly problem. 

Spread from 
Popular Science, 
1955

The article illustrated the 
fi rst CNC machine at the 
Massachusetts Institute 
of Technology (MIT). The 
technology led to today’s 
digital fabrication and mass-
customisation capabilities 
that have challenged 
traditional labour-intensive 
construction processes.

Architects have collectively pushed 
the boundaries of mass-customised 
complexities, producing thousands 
of unique components requiring 
thousands of connections that demand 
hours, days, months or even years of 
manual assembly.
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ROBOTICS AND CONSTRUCTION
The introduction of industrial robotics in architecture over the past decade appeared to address the 
manual assembly problem that mass-customisation created in the early 2000s, if only momentarily, 
with the emergence of beautiful and intricate robotically assembled structures. From undulating walls 
to complex pavilions, robots are able to fabricate and build metre-scale constructs. The concept of 
automation has thus been brought to the forefront of the fi eld, and while certainly upon us as a future 
scenario for architecture and construction given rapid urbanisation, increasing demands on housing 
markets and pressure for greater effi ciency, purely automated robotic assembly may lead to just 
another generation of mass-standardised housing or purely effi ciency-driven solutions. Autonomous 
assembly, on the other hand, represents a longer-term vision for fl exible and adaptive construction 
processes where design and assembly coalesce as a means of production; where working from the 
bottom up with robots, materials and humans provides more agency for components in a process of 
collective construction. 

Outside of academia’s recent explorations in industrial robotics, the assembly problem is a much 
greater challenge that cannot be solved by simply bringing in more robots. The construction of our 
built environment is becoming a global issue as it contributes 25 to 40 per cent of the world’s total 
carbon emissions; labour shortages are on the rise; and vast ineffi ciencies are causing increases in 
the cost of building.2 In the US, labour productivity in construction has actually fallen over the last 
40 years, while in many other sectors such as automotive and consumer electronics, effi ciency has 
risen dramatically. Countries around the world are taking note of these challenges. For example, by 
2020 China will construct 30 per cent of its new buildings using prefabricated processes to increase 
productivity and reduce energy-intensive on-site resources.3 Similarly, the UK has as its target a 50 
per cent reduction in greenhouse gas emissions caused by the built environment by 2025. Novel 
approaches to construction such as autonomous assembly are thus required to reduce the negative 
impact on our planet, and to avoid relegating the AEC industries to that of standardised industrial 
production, or creating a greater divide between design and construction. It is imperative that we fi nd 
a new model.

SELF-ASSEMBLY 
In 1957, the British mathematician Lionel Penrose introduced self-reproducing non-electronic 
wooden blocks that could be agitated to promote the passing of information from parent to 
offspring to demonstrate non-biological replication.4 More recently, Hod Lipson demonstrated 
self-replication in robotics, where a number of blocks assembled themselves into a structure that 
could build another self-similar structure with full capability to assemble another.5 And in his 
book An Evolutionary Architecture (1995), John Frazer described his Universal Constructor, a 
working model of an interactive, intelligent environment made up of communicating modules 
that could ‘formulate a coded set of responsive instructions (what we call a “genetic language of 
architecture”)’.6 All of these examples realised physical and synthetic systems, at the macro scale, 
that have some degree of autonomy and functionality. However, in biological systems there is 
autonomy through self-assembly at nearly every scale, from cellular division to human growth and 
repair. Physical components interact with one another as well as with their environment, and come 
together to build higher-order structures in which functionality and design emerge autonomously. 
This process has great potential for the assembling of small- and large-scale structures, yet is hardly 
utilised in current construction models. 

Drawing representing 
Lionel Penrose’s 
self-reproducing 
wooden blocks of 1957

Starting with an initial pattern, 
when the blocks are agitated 
and bump into one another they 
pass information and promote 
the assembly of other pairings 
based on the original. Adapted 
by permission from Macmillan 
Publishers Ltd: Nature, Vol 179, 
8 June 1957.
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NASA, Proposed 
demonstration 
of simple robot 
self-replication, 
1980

Drawing depicting robots 
assembling other robots 
from a library of parts, 
one of the fi rst concepts 
of self-replicating robots 
as a future scenario for 
manufacturing in space.

David S Goodsell, 
Structure of HIV, 
RCSB Protein 
Data Bank, 
2015

Artist’s representation of 
the various components 
that assemble to form the 
HIV virus. This biological 
principle of self-assembly 
can be translated to small- 
and large-scale structures 
as a new model for 
construction. 

This issue of 3 looks at an alternative 
model, of autonomous assembly 
and collective construction whereby 
components can assemble themselves, 
working together with humans and robots. 

10



Since the Industrial Revolution, humans have become particularly adept at building complex 
structures like cars, planes, consumer electronics and even buildings. However, nearly all of our 
human-scale structures are designed and built from the top down, whereby the design is passed to 
humans or machines to rationalise and force materials into place. As the size and complexity of our 
structures increases, a top-down, energy-intensive and time-consuming method no longer works. 
Self-assembly, on the other hand, emerges from the bottom up, and can be found in extremely large-
scale systems such as weather patterns, the formation of geological features and even whole planets, 
as well as in nature and synthetic systems, all of which can help us rethink the construction of our 
built environment.7 

With the introduction of any new tool, we inevitably ask the question of whether it will replace 
humans. Will computer-aided design (CAD) replace draftspeople? Will computation replace architects 
and designers? Will industrial robotics replace construction workers? Sophisticated software and 
computational programs now include optimisation capabilities that are leading to design solutions 
that outperform human concepts.8 Similarly, robots can build 24/7 without getting tired, placing 
components with extreme precision and repeatability. In nearly every manufacturing sector, products 
are being assembled with industrial automation. However, manufacturing remains expensive and 
energy intensive, and manufacturers are thus continually chasing two possible solutions: cheaper 
labour, or more precise and lower-cost robotics that can replace human tasks. This issue of 2 looks at 
an alternative model, of autonomous assembly and collective construction whereby components can 
assemble themselves, working together with humans and robots, to build structures that would not 
otherwise have been possible. 

AUTOMATION IN CONSTRUCTION
Construction is still one of the least automated industries, a technological lag often blamed on issues 
of regulation, scale, complexity, lack of funding or litigation. However, these constraints are often 
just as severe in other industries. The medical and automotive industries, for example, have stringent 
safety regulations. And the aviation industry can produce planes of extreme size using building-scale 
robots and people swarming around the factory to assemble them with unheard-of effi ciency in 
construction. Whatever the reason for its current lack of automation, given the incredible resources, 
time and cost associated with construction today it is important that the sector fi nds the incentives 
and mechanisms to innovate in this area. But automation should not be the only goal; design freedom 
with customisation and greater material performance needs to remain paramount. 

Airbus A380 assembly, 
Toulouse, 
France, 
2014

The process of assembling an 
Airbus A380 with building-scale 
robots, people and structures 
moving around the plane 
during construction.
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One of the fundamental challenges in automated construction is the one-off, highly customised 
nature of architecture compared with industrial manufacturing. Mass-produced, self-similar 
products are manufactured with amazing speed and accuracy, utilising the precision and repetitive 
capabilities of industrial robotics. However, if every product were unique, the robots would need to 
be reprogrammed in between each product change, and the affordance of speed or effi ciency would 
drop dramatically. Similarly, when unknown conditions arise, robots would have diffi culty adapting 
to these on-the-fl y changes as quickly as humans can. 

Another major challenge with robotic construction is limited scalability. A single, very large 
robot could be deployed to build a structure, but it would be restricted by its reach or dexterity for 
minute details. A more scalable approach could use robots that have autonomous mobility, but these 
would need to be sophisticated enough to navigate complex construction sites, communicate with 
one another, and have the ability to adapt to changing environments, unknown conditions and many 
other technical challenges. An alterative method currently being explored is 3D-printed buildings with 
large gantry-style machines; however, this lacks scalability due to the ‘skyscraper problem’: it is not 
practical to build a machine that is the size of a skyscraper to then print a one-off building. Gantry-
style machines that print buildings or objects smaller than themselves are a challenging solution for 
full-scale architecture unless relegated to mass-produced homes or smaller-scale components that are 
then assembled manually. Neither industrial robots nor printed buildings therefore truly address the 
scalability demands of architecture’s highly complex conditions and unstructured environments. A 
more distributed and less centralised approach to assembly is required that also provides robustness 
to failure and adaptation when unknown conditions arise.

Institute for Advanced 
Architecture of 
Catalonia (IAAC), 
Minibuilders, IAAC, 
Barcelona, 2014 

Small robots work collectively to 
print large structures. This model 
proposes a more distributed and 
scalable alternative as a method 
of 3D-printing architecture without 
gantry-style machines.
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AUTONOMOUS VERSUS AUTOMATED
This issue of 2 proposes an approach to construction that is not about automation or replacing 
a specifi c human/robot task, but rather focuses on autonomy, the ability of materials, components 
or even processes to come together independently and have agency. This does not only mean 
autonomous robots assembling buildings; the future of construction might include insect fabrication, 
smart components that can assemble themselves, or collaborative structures with swarms of 
people and new material phenomena. This suggests a completely new model, that of autonomous 
assembly and collective construction by humans, robots and materials. It paints a picture of material 
coalescence rather than top-down component construction processes, where the materials come 
together autonomously not just to be faster, better or cheaper, but rather strive for scalability, 
adaptability, reconfi gurability and any number of the life like qualities found in our bottom-up world.

In their articles, Jose Sanchez (pp 16–21) and Zorana Zeravcic (pp 22–7) introduce new digital 
tools and simulation possibilities needed to design for autonomous assembly. The principles of 
self-assembly are shown through Robin Meier’s work on insect light patterns (pp 38–43), which 
forms the basis of Kirstin Petersen’s and Radhika Nagpal’s work on swarm robotics (pp 44–9), and 
the MIT Self-Assembly Lab’s research on macro-scale self-assembly structures (pp 28–37). Marcelo 
Coelho then demonstrates interaction and pattern formation with human crowds at the stadium 
scale (pp 50–59). Mariana Ibañez and Simon Kim focus on digital-to-physical feedback loops 
in interactive human and material systems (pp 60–65), while Benjamin Aranda and Chris Lasch 
highlight the reconfi guration of material geometries and crystallisation patterns for architectural 
design (pp 66–73).

Mediated Matter Group, 
Silk Pavilion, 
MIT Media Lab, 
Massachusetts 
Institute of 
Technology, 
Cambridge, 
Massachusetts, 
2013
 
Top view of the pavilion as 
approximately 1,500 silkworms 
construct the fi brous composite.
This insect-based construction 
method utilises self-organising 
principles to grow a structure 
without traditional human or 
robot assembly.
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