

Edited by Ho Nam Chang

Emerging Areas in Bioengineering

Related Titles

Bisaria, V.S., Kondo, A. (eds.) Bioprocessing of Renewable Resources to Commodity Bioproducts

2014 Print ISBN: 978-1-118-17583-5

Brown, R.C., Brown, T.R.

Biorenewable Resources Engineering New Products from Agriculture

2 Edition 2014 Print ISBN: 978-1-118-52495-4

Clark, J.H., Deswarte, F. (eds.) Introduction to Chemicals from Biomass 2e

2 Edition 2015 Print ISBN: 978-1-118-71448-5

Further Volumes of the "Advanved Biotechnology" Series:

Published:

Villadsen, J. (ed.)

Fundamental Bioengineering

2016 Print ISBN: 978-3-527-33674-6

Love, J. Ch. (ed.) Micro- and Nanosystems for Biotechnology

2016 Print ISBN: 978-3-527-33281-6

Wittmann, Ch., Liao, J.C. (eds.)

Industrial Biotechnology Microorganisms (2 Volumes) 2017

Print ISBN: 978-3-527-34179-5

Wittmann, Ch., Liao, J.C. (eds.) Industrial Biotechnology Products and Processes 2017

Print ISBN: 978-3-527-34181-8

Yoshida, T. (ed.) Applied Bioengineering 2017

Print ISBN: 978-3-527-34075-0

Nielsen, J., Hohmann, S. (eds)

Systems Biology

2017 Print ISBN: 978-3-527-33558-9

Coming soon:

Smolke, C. (ed.) Synthetic Biology 2018 Print ISBN 978-3-527-33075-1

Planned:

G. M. Lee & H. Faustrup Kildegaard (KAIST & DTU)

Cell Culture Engineering

Edited by Ho Nam Chang

Emerging Areas in Bioengineering

Volume 1

Edited by Ho Nam Chang

Emerging Areas in Bioengineering

Volume 2

Volume Editor

Ho Nam Chang

Korea Advanced Institute of Science and Technology (KAIST) Department of Chemical and Bimolecular Engineering Daejeon 34141 Republic of Korea

Series Editors

Sang Yup Lee

KAIST Department of Chemical & Biomolecular Engineering 291 Daehak-ro, Yuseong-gu 34141 Daejeon Republic of Korea

Jens Nielsen

Chalmers University of Technology Department of Biology and Biological Engineering Kemivägen 10 41296 Göteborg Sweden

Gregory Stephanopoulos

Massachusetts Institute of Technology Department of Chemical Engineering 77 Massachusetts Avenue Cambridge, MA 02139 USA

Cover

Test tubes – © fotolia_Schlierner

All books published by **Wiley-VCH** are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>.

© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Print ISBN: 978-3-527-34088-0 ePDF ISBN: 978-3-527-80328-6 ePub ISBN: 978-3-527-80330-9 Mobi ISBN: 978-3-527-80331-6 oBook ISBN: 978-3-527-80329-3

Cover Design Adam-Design, Weinheim, Germany Typesetting SPi Global, Chennai, India Printing and Binding

Printed on acid-free paper

Contents to Volume 1

v

List of Contributors xvii About the Series Editors xxxiii

Part I Biocatalysis 1

1	Introduction to Emerging Areas in Bioengineering 3
	Ho Nam Chang
1.1	Biotechnology 3
1.1.1	Short Histories 3
1.1.2	Application Areas 4
1.1.3	Markets and Industries 5
1.1.4	Scope of Biotechnology 6
1.2	Bioengineering 6
1.2.1	History of Engineering 6
1.2.2	Two Different Bioengineering 7
1.2.3	Chemical Engineering 7
1.2.3.1	The First Chemical Engineer 8
1.2.4	Biochemical Engineering (1945–1978) 8
1.2.4.1	Penicillin Production 8
1.2.4.2	Mass Production of Penicillin 9
1.2.5	Biochemical Engineering Education 10
1.2.6	Biomedical Medical Engineering Activities (before 1970) 11
1.3	Emerging Areas 12
1.3.1	Evolvement (Birth) 12
1.3.2	Biological Engineering 12
1.3.3	Bioengineering/Biological Engineering in Chemical Engineering
	Department 13
1.3.4	Biomaterials 14
1.3.5	Marine Biotechnology 14
1.3.5.1	Marine Biotechnology 15
1.3.6	Environmental Biotechnology 15
1.3.7	Biomedical Engineering 15
1.3.8	Multidisciplinary (OMICS) Approach 17

VI Contents

1.3.8.1 1.3.8.2 1.4	Biomusical Engineering 17 Journal of Bioterrorism and Defense 17 Current Volume 17 Acknowledgments 18 References 19
2	Over-Expression of Functionally Active Inclusion Bodies of Enzymes in Recombinant Escherichia coli 21 Wen-Chien Lee and Shao-Yen Hsu
2.1	Introduction 21
2.2	Formation and Composition of IBs 21
2.3	Enhancement of Protein Quality and Enzymatic Activity in IBs 24
2.4	Applications of Enzyme-Based IBs 25
2.5	An Example of IBs: <i>N</i> -acetyl-D-neuraminic Acid Aldolase 26
2.6	Concluding Remarks 29
	Acknowledgments 30
	References 30
3	Enzymatic Reactions in Ionic Liquids 35 Ngoc Lan Mai and Yoon-Mo Koo
3.1	Introduction 35
3.2	Enzymatic Reactions in Ionic Liquids 37
3.2.1	Hydrolytic Enzymes in Ionic Liquids 39
3.2.2	Nonhydrolytic Enzymes in Ionic Liquids 44
3.2.2.1	Oxidoreductases in Ionic Liquids 44
3.2.2.2	Other Enzymes in Ionic Liquids 46
3.2.3	Whole Cell-Catalyzed Reactions in Ionic Liquids 47
3.3	Factors Affecting Enzymatic Reactions in Ionic Liquids 47
3.4	Methods to Improve Enzyme Activity and Stability in Ionic
3.4.1	Modification of Enzymes 50
3.4.2	Modification of Solvents 51
3.4.3	Designing Enzyme-Compatible Ionic Liquids 52
3.5	Conclusions and Perspectives 52
	Abbreviations of Ionic Liquids 53
	Cations 53
	Anions 53
	References 54
4	Enzyme Immobilization on Nanoparticles: Recent Applications 67 Cheng-Kang Lee and Ai-Nhan Au-Duong
4.1	Introduction 67
4.2	Preparation of Enzyme-Immobilized Nanoparticles 68
4.2.1	Physical Adsorption 68
4.2.2	Encapsulation/Entrapment 69

- 4.2.3 Covalent Attachments 70
- 4.2.4 Cross-Linking 70
- 4.2.5 Bioaffinity Interactions and Other Methods 71
- 4.3 Application of Enzyme Nanoparticles 71
- 4.3.1 EnNP for Biomedical Application 71
- 4.3.1.1 EnNP for Thrombolytic Therapy 72
- 4.3.1.2 EnNP for Inflammation and Oxidative Stress Therapy 72
- 4.3.1.3 EnNP for Antibacterial Treatment 73
- 4.3.2 EnNP for Biosensor Applications 73
- 4.3.3 EnNP for Biofuel Production 75
- 4.4 Conclusion and Perspectives 75 References 76
- 5 Whole Cell Biocatalysts Using Enzymes Displayed on Yeast Cell Surface 81

Kentaro Inokuma, Tomohisa Hasunuma, and Akihiko Kondo Concise Definition of Subject 81

- 5.1 Introduction 81
- 5.2 GPI-Anchoring System 82
- 5.3 C-Terminus Free Display Systems 83
- 5.4 Applications of the Yeast Cell Surface Display System for Biocatalysts 84
- 5.5 Improvement of Catalytic Activity on the Yeast Cell Surface 85
- 5.5.1 Improvement of Gene Cassettes for Cell Surface Display 86
- 5.5.2 Gene Deletion of Host Cells 87
- 5.5.3 Ratio Optimization of Displaying Enzymes 87
- 5.6 Conclusions 88 References 90
- 6 Design of Artificial Supramolecular Protein Assemblies by Enzymatic Bioconjugation for Biocatalytic Reactions 93 Geisa A.L.G. Budinova, Yutaro Mori, and Noriho Kamiya

Concise Definition of Subject 93

- 6.1 Introduction 93
- 6.2 Protein Assembly on a Template with Specific Interaction/Reaction Sites 94
- 6.2.1 Non-covalent Alignment on a Template 94
- 6.2.2 Covalent Attachment to a Template 95
- 6.2.2.1 Enzymes for Site-Specific Covalent Cross-linking of Proteins 95
- 6.2.2.2 Site-Specific Covalent Cross-linking of Enzymes on Nucleic Acid Scaffolds 96
- 6.3 Protein Assembly without a Template: Self-Assembly of Protein Units 97
- 6.3.1 Non-covalent Assembly 97
- 6.3.1.1 Self-Assembly by Peptide Assemblies 97

VIII Contents

6.3.1.2	Site-Specific Ligand–Receptor Interactions 98
6.3.2	Covalent Assembly 98
6.3.2.1	Site-Specific Tyrosyl Radical Formation by Horseradish
	Peroxidase 98
6.4	Future Prospects 100
	Acknowledgment 101
	Conflict of Interest 101
	References 101
7	Production of Valuable Phenolic Compounds from Lignin by
	Biocatalysis: State-of-the-Art Perspective 105
	Somchart Maenpuen, Ruchanok Tinikul, Pirom Chenprakhon, and
	Pimchai Chaiyen
7.1	Lignin and Its Composition 105
7.1.1	Composition of Lignin 105
7.1.2	Process to Convert Lignin into Aromatic Monomers 105
7.1.2.1	Extraction of Lignin from Lignocellulose 105
7.1.2.2	Deconstruction of Lignin Using Physicochemical Processes 107
7.1.2.3	Deconstruction of Lignin Using Biological Processes 107
7.2	Phenol Derivatives Derived from Lignin Deconstruction 112
7.3	Biocatalysis to Increase the Value of Lignin-Derived Phenolic
	Compounds 112
7.3.1	Addition of an Extra Moiety 113
7.3.1.1	Esterification 113
7.3.1.2	Glycosylation 113
7.3.2	Modification of Aromatic Ring Substituent 114
7.3.2.1	Hydroxylation/Monooxygenation 115
7.3.2.2	Methylation 116
7.3.2.3	Demethylation 116
7.3.2.4	Decarboxylation/Carboxylation 117
7.4	Outlook and Future Perspectives 118
	Acknowledgments 118
	References 118
	Part II Biofuels and Renewable Energy from Biomass 125
8	Biofuels, Bio-Power, and Bio-Products from Sustainable Biomass:
	Coupling Energy Crops and Organic Waste with Clean Energy
	Technologies 127
	Servil Guran, Eoster A. Aablevor, and Maraaret Brennan-Tonetta
8.1	Introduction 127
8.2	Sustainable Biomass for Sustainable Development 127
8.2.1	Food – Energy – Water (FEW) Nexus Concept: 128
8211	Sustainable Biomass 128
8212	Determining Riomass Sustainability 120
0.4.1.4	Determining Diomass Sustamability 127

Contents IX

- 8.3 Biorefineries and Bioenergy Conversion Pathways 131
- 8.3.1 Biorefineries 131
- 8.3.2 Biomass-to-Bioenergy and Bio-products Conversion Pathways 132
- 8.3.2.1 Biochemical Conversion Processes 132
- 8.3.2.2 Thermochemical Conversion Processes of Biomass 142
- 8.4 Conclusions 154 References 154 Further Reading/Resources 160
- **9 Potential Lignocellulosic Biomass Resources in ASEAN Countries** *163* Shankar Ramanathan, Madihah Md Salleh, Adibah Yahya, Huszalina Hussin, Wan R.Z. Wan Dagang, Shaza E. Mohamad, Zaharah Ibrahim, Rohaya Mohd Noor, Nursyifaaiyah Abdul Aziz, Zulkefflizan Jamaludin, and Syariffah Nuratiqah Syed Yaacob
- 9.1 Introduction and Characterization of Lignocellulosic Biomass in ASEAN Countries *163*
- 9.2 Forest Residues in ASEAN Countries 165
- 9.3 Herbaceous Plants Residues in ASEAN Countries 165
- 9.4 Agriculture Residue in ASEAN Countries 168
- 9.5 ASEAN Government Programs and Policies on Natural Biomass 169 References 170
- 10 Volatile Fatty Acid Platform: Concept and Application 173
 - Nag-Jong Kim, Seong-Jin Lim, and Ho Nam Chang
- 10.1 Concept of Volatile Fatty Acid Platform 173
- 10.1.1 Platforms for Biofuel Production *173*
- 10.1.1.1 Sugar Platform 173
- 10.1.1.2 Syngas Platform 174
- 10.1.2 Development of Volatile Fatty Acid Platform 175
- 10.1.2.1 Anaerobic Digestion Process 175
- 10.1.2.2 Mixed VFAs Fermentation 176
- 10.1.2.3 VFA Platform Development 177
- 10.1.3 Comparison of Biofuel Production Platforms 177
- 10.1.3.1 Theoretical Comparison of Major Platforms for Ethanol Production *177*
- 10.1.3.2 Biomass Properties Needed for Each Platform 178
- 10.1.3.3 Advantages and Disadvantages of Three Major Platforms 178
- 10.2 Application of VFA Platform 179
- 10.2.1 Pure and Mixed Acids as Chemicals 179
- 10.2.2 VFA Conversion to Value-Added Products 180
- 10.2.2.1 Mixed Alcohols, Esters, and Ketones 182
- 10.2.2.2 Microbial Lipids and Polyhydroxyalkanoate (PHA) *182*
- 10.2.3 VFA Use as a Carbon Source of Denitrification Process 184

X Contents

10.2.4	Cost Analysis of Mixed Alcohol Produced from Various Raw
	Materials 185
10.3	Tasks for Commercialization 186
10.3.1	Technical Bottlenecks in Industrialization of the VFA Platform 186
10.3.2	Commercialization Activities of VFA Platform 187
	References 188
11	Biological Pretreatment of Lignocellulosic Biomass for Volatile Fatty
	Acid Production 191
	Suraini Abd-Aziz, Mohamad F. Ibrahim, and Mohd A. Jenol
11.1	Introduction 191
11.2	Pretreatments to Improve VFA Production 193
11.2.1	Physical Pretreatment 193
11.2.2	Chemical Pretreatment 194
11.2.3	Biological Pretreatment 194
11.2.3.1	Microbial Pretreatment 194
11.2.3.2	Enzymatic Pretreatment 195
11.2.4	Combination Pretreatments 195
11.3	Future Prospect and Recent Technology Development 198
	References 198
12	Microbial Linid Production from Volatile Fatty Acids by Oleaginous
. –	Yeast 203
	Gwon W. Park. Naa-Jona Kim. and Ho Nam Chana
12.1	Introduction 203
12.1.1	Background 203
12.1.2	Oleaginous Yeast 204
12.1.2.1	History 204
12.1.2.2	Metabolic Pathway 204
12.1.3	Biofuel Platforms 205
12.2	VFAs as a Carbon Source 207
12.3	Quality of Yeast Lipid 209
12.3.1	Cetane Number 209
12.3.2	Oleic Acid Component 209
12.3.3	Microbial Lipid Cost Assessment 210
12.3.4	Comparison with Oleaginous Yeast and Other Microorganisms 210
12.4	Conclusion 210
	Acknowledgments 211
	References 211
13	Gasification Technologies for Lignocellulosic Riomass 215
	Su J. Jeon, Soo H. Jeona, Beom J. Kim, and Uen D. Lee
13.1	Introduction 215
13.2	Gasification of Lignocellulosic Biomass 215

Contents XI

- 13.3 Overview of Gasification Technologies of Lignocellulosic Biomass 217
- 13.4 Classification of Gasification Technologies 218
- 13.5 Types of Gasification Systems 219
- Direct or Autothermal Gasifiers 219 13.5.1
- 13.5.1.1 Auger-Type Gasifiers 221
- 13.5.1.2 Fixed (Moving) Bed Gasifiers 221
- Entrained Flow Gasifiers 221 13.5.1.3
- Fluidized Bed Gasifiers 223 13.5.1.4
- Indirect or Allo-Thermal Gasifiers 224 13.5.2
- 13.5.2.1 Plasma or Plasma-Assisted Gasifiers 224
- 13.5.2.2 Dual fluidized Bed Gasifiers 226
- Heat Pipe Gasifiers 228 13.5.2.3
- Advanced Gasifiers 229 13.5.3
- Performance Evaluation of Biomass Gasifiers 230 13.6
- 13.6.1 Fixed (Moving) Bed Gasifiers 233
- 13.6.2 Bubbling Fluidized Bed (BFB) Gasifiers 234
- Circulating Fluidized Bed (CFB) Gasifier 239 13.6.3
- Dual Fluidized Bed (DFB) Gasifiers 241 13.6.4
- Industrial Biomass Gasification Plants 245 13.7
- 13.8 Conclusion 248
 - References 248

14 Separation of Butanol, Acetone, and Ethanol 255

Di Cai, Song Hu, Peiyong Qin, and Tianwei Tan

- 14.1 Gas Stripping 256
- 14.2Liquid-Liquid Extraction 260
- 14.3 Adsorption 262
- 14.4Pervaporation 266
- Distillation 271 14.5
- 14.6 Conclusion 278 References 278

15 Overview of Microalgae-Based Carbon Capture and Utilization 28	87
---	----

Ye Sol Shin, Jaoon Y. H. Kim, and Sang Jun Sim

- 15.1 Introduction 287
- 15.2Capturing of Inorganic Carbon Using Photosynthesis 287
- Microalgal Biofuel Production 289 15.3
- 15.3.1 Upstream Process: Strain Selection and Cultivation of the Selected Strain 289
- 15.3.1.1 Strain Selection 289
- 15.3.1.2 Cultivation Condition 290
- Downstream Process: Harvesting, Dewatering, Disruption, 15.3.2 Extraction, and Transesterification 291
- 15.4Application of Microalgal By-Products 291

XII Contents

15.4.1	Bioproducts	291
15.5	Conclusion	292
	References	292

16	Bioengineering of Microbial Fuel Cells: From Extracellular Electron
	Transfer Pathway to Electroactive Biofilm 295
	Yang-Yang Yu, Dan-Dan Zhai, and Yang-Chun Yong

- 16.1 Microbial Fuel Cells: General Concept and Extracellular Electron Transfer 295
- 16.2 Electroactive Biofilm Meets with Biocompatible Materials 297
- 16.3 Bioengineering of Electroactive Biofilm: From Bacteria to Ecosystem 298
- 16.3.1 Engineering EET Pathways for Improved Electron Transfer 298
- 16.3.2 Engineering of Electroactive Biofilm in Microbial Fuel Cells 299
- 16.4 Conclusions and Future Perspectives 300 Acknowledgments 301 References 301

Part III Synthetic Biology and Metabolic Engineering 305

- 17 Genome Editing Tools for *Escherichia coli* and Their Application in Metabolic Engineering and Synthetic Biology 307 Chandran Sathesh-Prabu and Sung K. Lee
- 17.1 Introduction 307
- 17.2 Homologous Recombination-Mediated Tools 308
- 17.2.1 Antibiotic Resistance-Based Methods 308
- 17.2.2 Double-Stranded DNA Break Repair System-Based Methods 309
- 17.2.2.1 ZFNs/TALENs-Based Methods 310
- 17.2.2.2 CRISPR/Cas9-Mediated Genome Engineering 310
- 17.3 Single-Strand DNA-Mediated Recombination *312*
- 17.3.1 Multiplex Automated Genome Engineering (MAGE) 312
- 17.3.2 Modified MAGE *313*
- 17.4 Conclusion 314
 - References 314
- 18 Synthetic Biology for Corynebacterium glutamicum: An Industrial Host for White Biotechnology 321 Han Min Woo
- 18.1 Introduction 321
- 18.2 Synthetic Elements of Synthetic Biology for *C. glutamicum* 323
- 18.2.1 DNA Parts and Plasmids of Synthetic Biology for *C. glutamicum* 323
- 18.2.1.1 DNA Parts for *C. glutamicum* 323
- 18.2.1.2 Synthetic Platform of Plasmids for *C. glutamicum* 324

Contents XIII

- 18.2.2 Devices and Genetic Biosensors of Synthetic Biology for C. glutamicum 324
- Synthetic Biology of a Chassis for *C. glutamicum* 326 18.2.3
- Conclusion and Outlook 326 18.3 References 327
- 19 Metabolic Engineering of Solventogenic Clostridia for Butanol Production 331
 - Sang-Hyun Lee and Kyoung Heon Kim
- Introduction 331 19.1
- 19.1.1 History of Solventogenic Clostridia 331
- 19.1.2 Challenges for ABE Production by Fermentation 332
- Biomass and Its Metabolism 333 19.2
- General Characteristics of Sugar Metabolism 333 19.2.1
- 19.2.2 Lignocellulose 334
- 19.2.3 Glycerol 334
- 19.2.4 Marine Macroalgae 335
- 19.2.5 Syngas 335
- Protein Waste 336 19.2.6
- Metabolic Engineering of Clostridia 19.3 336
- 19.3.1 Genetic Tools for Clostridia 336
- 19.3.2 Improvement of Butanol Titer, Yield, Productivity, and Selectivity 337
- 19.3.3 Improvement of Pentose Utilization 339
- Sporulation and Solvent Production by Clostridia 339 19.3.4
- 19.3.5 Metabolomics as a Tool for Engineering Clostridia 341
- 19.4 Concluding Remarks and Future Perspectives 341 References 341
- Metabolic Engineering of Microorganisms for the Production of 20 Lactate-Containing Polyesters 349 Yokimiko David, Sang Yup Lee, and Si Jae Park Acknowledgments 355 References 355
- 21 Microbial Metabolic Engineering for Production of Food Ingredients 359
 - Eun J. Oh, Yong-Su Jin, and Jin-Ho Seo
- 21.1 Metabolic Engineering 359
- Rational Approaches for Metabolic Engineering 359 21.1.1
- 21.1.2 Combinatorial Approaches for Metabolic Engineering 360
- 21.2 Biological Production of Functional Food Materials 361
- Microbial Metabolic Engineering to Produce Human Milk 21.2.1 Oligosaccharides (HMOs) 361
- 21.2.1.1 2-Fucosyllactose (2-FL) 361

XIV Contents

- 21.2.1.2 Lacto-N-oligosaccharide Derivatives 365
- 21.2.2 Microbial Metabolic Engineering to Produce Sugar Alcohols 365
- 21.2.2.1 Xylitol 366
- 21.2.2.2 Sorbitol 367
- 21.2.3 Microbial Metabolic Engineering to Produce Vitamins 367
- 21.2.3.1 Riboflavin 368
- 21.2.3.2 Folate 368
- 21.3 Future Prospects 369

References 369

Contents to Volume 2

List of Contributors xixAbout the Series Editors xxxv

Part IV Products 373

- 22 Application of Lactic Acid Bacteria for Food Biotechnology 375 Ling Li and Nam Soo Han
- 23 Biopolymers Based on Raw Materials from Biomass 399 Jonggeon Jegal
- 24 Bacterial Biofertilizers: High Density Cultivation 429 S. Mutturi and Virendra S. Bisaria
- 25 Current Research in Korean Herbal Cosmetics 441 Jun S. Park, Ga Y. Cho, and Sung-II Park

Part V Biosensing and Nanobiotechnology 463

- 26 Advanced Genetic Engineering of Microbial Cells for Biosensing Applications 465 Do Hyun Kim, Byung Jo Yu, and Moon II Kim
- 27 Bioelectronic Nose 477 Hwi Jin Ko, Eun Hae Oh, and Tai Hyun Park
- 28 Noninvasive Optical Imaging Techniques in Clinical Application 497 Uk Kang and Soo-Jin Bae
- 29 Advanced Short Tandem Repeat Genotyping for Forensic Human Identification 509 Yong T. Kim, Hyun Y. Heo, and Tae S. Seo

Contents XV

30	DNA Microarray-Based Technologies to Genotype Single Nucleotide Polymorphisms 531 Jung H. Park, Ye L. Jung, Kyungmee Lee, Changyeol Lee, Batule Bhagwan, and Hyun G. Park
31	Advanced Applications of Nanoscale Measuring System for Biosensors 557 Jong M. Kim and Sang-Mok Chang
32	Biosynthesis and Applications of Silver Nanoparticles 579 Bipinchandra K. Salunke and Beom Soo Kim
	Part VI Biomedical Engineering and Biopharmaceuticals 591
33	Smart Drug Delivery Devices and Implants 593 Ki Su Kim, Ho Sang Jung, Hyunsik Choi, Songeun Beack, Hyemin Kim, Jong Hwan Mun, Myeong Hwan Shin, Do Hee Keum, Heebeom Koo, Seok Hyun Yun, and Sei Kwang Hahn
34	Controlled Delivery Systems of Protein and Peptide Therapeutics 607 Hwiwon Lee, Minsoo Cho, Jeong Ho Lee, Jong Hwan Mun, Byung Woo Hwang, Hyemin Kim, and Sei Kwang Hahn
35	Cell Delivery Systems Using Biomaterials 617 Youngro Byun and Jee-Heon Jeong
36	Bioengineered Cell-Derived Vesicles as Drug Delivery Carriers 631 Vipul Gujrati and Sangyong Jon
37	Advanced Genetic Fusion Techniques for Improving the Pharmacokinetic Properties of Biologics 645 Seung R. Hwang and Jin W. Park
38	Mussel-Mimetic Biomaterials for Tissue Engineering Applications 655 Yun Kee Jo, Hyo Jeong Kim, Eun Yeong Jeon, Bong-Hyuk Choi, and Hyung Joon Cha
39	Mass Production of Full-Length IgG Monoclonal Antibodies from Mammalian, Yeast, and Bacterial Hosts 679 Sang T. Jung and Dong-Il Kim
40	Recent Advances in Mass Spectrometry-Based Proteomic Methods for Discovery of Protein Biomarkers for Complex Human Diseases 697 Sangchul Rho, Hyobin Jeong, Sehyun Chae, Hee-Jung Jung, Sanghyun Ahn, Yun-Hwa Kim, Ju-Young Lee, Soyoung Choi, and Daehee Hwang

XVI Contents

	Part VIIComputer-Aided Bioprocess Design and SystemsBiology713
41	Overview on Bioprocess Simulation 715 Shin Je Lee, Dae Shik Kim, Jong Min Lee and Chonghun Han
42	Bioprocess Simulation and Scheduling 723 Doug Carmichael, Charles Siletti, Alexandros Koulouris, and Demetri Petrides
43	Metabolism-Combined Growth Model Construction and Its Application to Optimal Bioreactor Operation 761 Dong H. Jeong, Jung H. Kim, and Jong M. Lee
44	Software Applications for Phenotype Analysis and Strain Design of Cellular Systems 771 Meiyappan Lakshmanan, Lokanand Koduru, and Dong-Yup Lee
45	Metabolic Network Modeling for Computer-Aided Design of Microbial Interactions 793 Hyun-Seob Song, William C. Nelson, Joon-Yong Lee, Ronald C. Taylor, Christopher S. Henry, Alexander S. Beliaev, Doraiswami Ramkrishna, and Hans C. Bernstein

Index 803

Contents to Volume 1

List of Contributors xvii About the Series Editors xxxiii

Part I Biocatalysis 1

- 1 Introduction to Emerging Areas in Bioengineering 3 Ho Nam Chang
- 2 Over-Expression of Functionally Active Inclusion Bodies of Enzymes in Recombinant Escherichia coli 21 Wen-Chien Lee and Shao-Yen Hsu
- 3 Enzymatic Reactions in Ionic Liquids 35 Ngoc Lan Mai and Yoon-Mo Koo
- 4 Enzyme Immobilization on Nanoparticles: Recent Applications 67 Cheng-Kang Lee and Ai-Nhan Au-Duong
- 5 Whole Cell Biocatalysts Using Enzymes Displayed on Yeast Cell Surface 81 Kentaro Inokuma, Tomohisa Hasunuma, and Akihiko Kondo
- 6 Design of Artificial Supramolecular Protein Assemblies by Enzymatic Bioconjugation for Biocatalytic Reactions 93 Geisa A.L.G. Budinova, Yutaro Mori, and Noriho Kamiya
- 7 Production of Valuable Phenolic Compounds from Lignin by Biocatalysis: State-of-the-Art Perspective 105 Somchart Maenpuen, Ruchanok Tinikul, Pirom Chenprakhon, and Pimchai Chaiyen

۱v

VI Contents

·	Part II Biofuels and Renewable Energy from Biomass 125
8	Biofuels, Bio-Power, and Bio-Products from Sustainable Biomass: Coupling Energy Crops and Organic Waste with Clean Energy Technologies 127 Serpil Guran, Foster A. Agblevor, and Margaret Brennan-Tonetta
9	Potential Lignocellulosic Biomass Resources in ASEAN Countries 163 Shankar Ramanathan, Madihah Md Salleh, Adibah Yahya, Huszalina Hussin, Wan R.Z. Wan Dagang, Shaza E. Mohamad, Zaharah Ibrahim, Rohaya Mohd Noor, Nursyifaaiyah Abdul Aziz, Zulkefflizan Jamaludin, and Syariffah Nuratiqah Syed Yaacob
10	Volatile Fatty Acid Platform: Concept and Application 173 Nag-Jong Kim, Seong-Jin Lim, and Ho Nam Chang
11	Biological Pretreatment of Lignocellulosic Biomass for Volatile Fatty Acid Production 191 Suraini Abd-Aziz, Mohamad F. Ibrahim, and Mohd A. Jenol
12	Microbial Lipid Production from Volatile Fatty Acids by Oleaginous Yeast 203 Gwon W. Park, Nag-Jong Kim, and Ho Nam Chang
13	Gasification Technologies for Lignocellulosic Biomass 215 Su J. Jeon, Soo H. Jeong, Beom J. Kim, and Uen D. Lee
14	Separation of Butanol, Acetone, and Ethanol 255 Di Cai, Song Hu, Peiyong Qin, and Tianwei Tan
15	Overview of Microalgae-Based Carbon Capture and Utilization 287 Ye Sol Shin, Jaoon Y. H. Kim, and Sang Jun Sim
16	Bioengineering of Microbial Fuel Cells: From Extracellular Electron Transfer Pathway to Electroactive Biofilm 295 Yang-Yang Yu, Dan-Dan Zhai, and Yang-Chun Yong
	Part III Synthetic Biology and Metabolic Engineering 305
17	Genome Editing Tools for <i>Escherichia coli</i> and Their Application in Metabolic Engineering and Synthetic Biology 307 Chandran Sathesh-Prabu and Sung K. Lee
18	Synthetic Biology for Corynebacterium glutamicum: An Industrial Host for White Biotechnology 321 Han Min Woo

Contents VII

- 19
 Metabolic Engineering of Solventogenic Clostridia for Butanol

 Production
 331

 Sang-Hyun Lee and Kyoung Heon Kim
- 20 Metabolic Engineering of Microorganisms for the Production of Lactate-Containing Polyesters 349 Yokimiko David, Sang Yup Lee, and Si Jae Park
- 21 Microbial Metabolic Engineering for Production of Food Ingredients 359 Eun J. Oh, Yong-Su Jin, and Jin-Ho Seo

Contents to Volume 2

List of Contributors xixAbout the Series Editors xxxv

Part IV Products 373

22	Application of Lactic Acid Bacteria for Food Biotechnology 375
	Ling Li and Nam Soo Han
	Concise Definition of Subject and Its Importance 375
22.1	Lactic Acid Bacteria 375
22.2	Expression Systems in LAB 376
22.2.1	Constitutive Expression System 376
22.2.2	Inducible Gene Expression System 378
22.2.3	Secretion System 380
22.2.4	Food-Grade Gene Expression System 381
22.2.4.1	Dominant Selection Markers 381
22.2.4.2	Complementation Selection Markers 381
22.3	In silico Metabolic Pathway Model for LAB 382
22.3.1	Lactic Acid Production 384
22.3.2	Diacetyl Production 384
22.3.3	L-Alanine Production 385
22.3.4	Acetaldehyde Production 385
22.3.5	Mannitol Production 386
22.3.6	Folate Production 386
22.3.7	Production of Polysaccharides 387
22.4	The Prospect: Lactic Acid Bacteria as an Edible Therapeutic
	Probiotics 387
	References 390

VIII Contents

23	Biopolymers Based on Raw Materials from Biomass 399
	Jonggeon Jegal
23.1	Introduction 399
23.2	Poly(butylene succinate) 400
23.2.1	Synthesis 400
23.2.2	Physical Properties 402
23.2.2.1	Thermal Properties 402
23.2.2.2	Mechanical Properties 402
23.2.2.3	Hydrophilicity 404
23.2.3	Biodegradability 405
23.2.3.1	Biodegradation in Compost 405
23.2.4	Modification of PBS 407
23.2.4.1	Modification with Inorganic Fillers 407
23.2.4.2	Modification with Natural Fibers 413
23.3	Conclusion 419
	References 420
24	Bacterial Biofertilizers: High Density Cultivation 429
	S. Mutturi and Virendra S. Bisaria
24.1	Introduction 429
24.2	Cultivation Strategies for a Few Important Bacterial Inoculants 430
24.2.1	Azospirillum sp. 430
24.2.2	Azotobacter spp. 431
24.2.3	Bacillus spp. 432
24.2.4	Pseudomonas spp. 434
24.2.5	Rhizohia spp. 435
211210	Conflict of Interest 436
	References 436
25	Current Research in Korean Herbal Cosmetics 441
	Jun S. Park, Ga Y. Cho, and Sung-II Park
25.1	Introduction 441
25.2	Korean Herbal Medicine and Bioscience 442
25.2.1	Characteristics of Korean Herbal Cosmetics 442
25.2.2	The Dermatological Effects of Medicinal Herbs 442
25.2.3	Processing Methods to Strengthen Efficacy 443
25.2.4	Traditional Korean Medical Principles in Cosmetics and Recent
	Research 445
25.3	Bioprocessing of Natural Compounds in Traditional Herbal
	Medicine 446
25.3.1	Enzymatic Deglycosylation of Green Tea Seed Flavonol
	Glycoside 446
25.3.1.1	Purification and Identification of Compounds in Green Tea Seed <u>447</u>
25.3.1.2	Kaempferol Production from GTSE Using Glycolytic Enzymes 448

Contents IX

- 25.3.1.3 DPPH Scavenging Activities of Two Tea Seed Flavonoids and Kaempferol 449
- 25.3.2 Microbial Hydroxylation of Isoflavone in Soybean 450
- 25.3.2.1 Purification and Identification of Compounds in KFS 451
- 25.3.2.2 In Vitro Study of Anti-Melanogenesis Effect 453
- 25.4 Skin Delivery Systems in Cosmetics 454
- 25.4.1 Liposomes as Drug Carriers 455
- 25.4.2 Polymer Micelles and Polymersomes 456
- 25.4.3 Surface Modification of Liposomes Using Polymers 457
- 25.4.4 Cosmetic Applications for Solid Lipid Nanoparticles 458
- 25.5 Conclusions 458 References 459
 - Part V Biosensing and Nanobiotechnology 463
- 26 Advanced Genetic Engineering of Microbial Cells for Biosensing Applications 465
 - Do Hyun Kim, Byung Jo Yu, and Moon II Kim
- 26.1 Introduction 465
- 26.2 Genetic Engineering of Microbial Reporter Cells 466
- 26.3 Methods to Immobilize Cells and Maintain Cell Viability 468
- 26.4 Microbial Biosensors Based on Transducers 469
- 26.4.1 Optical Microbial Biosensors 469
- 26.4.2 Electrochemical Microbial Biosensors 471
- 26.5 Conclusion and Future Prospects 472 Acknowledgments 473 References 473
- 27 Bioelectronic Nose 477

Hwi Jin Ko, Eun Hae Oh, and Tai Hyun Park

- 27.1 Introduction 477
- 27.2 Concept of Bioelectronic Nose 478
- 27.2.1 Primary Transducer 478
- 27.2.2 Secondary Transducer 479
- 27.3 Primary Transducer for Bioelectronic Nose 479
- 27.3.1 Olfactory Receptor Protein 479
- 27.3.2 Nanovesicle Containing Olfactory Receptor 479
- 27.3.3 Peptide Derived from Olfactory Receptor Protein 483
- 27.4 Secondary Transducer for Bioelectronic Nose 485
- 27.4.1 Quartz Crystal Microbalance 485
- 27.4.2 Surface Plasmon Resonance 486
- 27.4.3 Field Effect Transistor 486
- 27.5 Applications 487
- 27.5.1 Medical Applications 488
- 27.5.2 Food Quality 490

- 1	
	Contonto
. 1	Contents

27.5.3	Environmental Monitoring 490
27.5.4	Other Applications 492
27.6	Conclusion 492
	Acknowledgment 493
	References 494
28	Noninvasive Optical Imaging Techniques in Clinical Application 497
00.1	Uk Kang and Soo-Jin Bae
28.1	Fluorescence Diagnosis of Skin or Mucosa 498
28.1.1	Skin Disease 498
28.1.2	Cervical Cancer 499
28.2	Fluorescence Endoscopic Surgery 501
28.2.1	Bladder Cancer 501
28.2.2	Sentinel Lymph Node 502
28.3	Fluorescence Image-Guided Intraoperative Open Surgery 503
28.4	Conclusion 505
	Acknowledgments 507
	References 507
29	Advanced Short Tandem Repeat Genotyping for Forensic Human
	Identification 509
	Yong T. Kim, Hyun Y. Heo, and Tae S. Seo
29.1	DNA Sample Sources and Collection 510
29.2	DNA Extraction from Biological Sources 511
29.2.1	Off-Chip-Based DNA Extraction 511
29.2.2	On-Chip-Based DNA Extraction 512
29.2.3	DNA Quantification 514
29.3	Short Tandem Repeat Markers and Commercial Kits 515
29.3.1	STR Markers Used in Forensic DNA Testing 515
29.3.2	Commercial Autosomal and Y-STR STR Kits 516
29.4	Amplification of STR Loci 517
29.4.1	Off-Chip-Based STR Amplification 517
29.4.2	On-Chip-Based STR Amplification 518
29.5	Capillary Electrophoretic Separation of STR Amplicons 519
29.5.1	Off-Chip-Based Capillary Electrophoretic Separation of STR
	Amplicons 519
29.5.2	On-Chip-Based Capillary Electrophoretic Separation of STR
	Amplicons 521
29.6	Total Integrated Forensic STR Typing System 523
29.6.1	Commercialized Total STR Analysis System 523
29.6.2	A Fully Integrated Microdevice for STR Typing 524
29.7	Conclusion 525
	References 526

x

Contents XI

30	DNA Microarray-Based Technologies to Genotype Single Nucleotide
	Polymorphisms 531
	Jung H. Park, Ye L. Jung, Kyungmee Lee, Changyeol Lee, Batule Bhagwan, and
	Hyun G. Park
30.1	Allele-Specific Oligonucleotide Competitive Hybridization
	(ASOCH) 532
30.1.1	Basic Principles 532
30.1.2	Applications 532
30.1.3	Key Issues and Limitations 533
30.2	Zip-Code Microarray 534
30.2.1	Basic Principles 534
30.2.2	Ligation-Based Method 536
30.2.3	SBE-Based Method 538
30.2.4	SSS Cleavage Reaction-Based Method 540
30.3	Universal Amplification-Based Technology 542
30.3.1	MIP Technology 542
30.3.1	GoldenGate Assay 545
20.2.2	ASLD Tachnology 546
20.2.4	Discussion 549
20.3.4	Discussion 540
20.4 20.4 1	Besis Dringinles 540
20.4.1	A same Distformer 550
30.4.2 20.5	Assay Platorms 550
30.5	Conclusion 551
	Keierences 552
21	Advanced Applications of Nanoscalo Measuring System for
21	Pieconsore 557
	long M Vim and Sang Mok Chang
	Chapter Outling 557
21.1	Nanascale Cravimatric Measuring System for Chiral
51.1	Decognition 559
21 1 1	Recognition 550
01.1.1 01.1.0	Macauria Setur for Non-server Order Chirolity Detection 500
31.1.2 31.1.2	Measuring Setup for Nanogram Order Chirality Detection 560
31.1.3	Immobilization of Chiral Selector on QCM Surface 560
31.1.4	Kesults 561
31.1.4.1	Chiral Recognition by the L-Phe-Modified QCM in the Gas
01140	Phase 561
31.1.4.2	Chiral Recognition by L-MA Derivative-Modified QCM Sensor in
	the Liquid Phase 562
31.1.4.3	Chiral Recognition Analysis Using F – R Diagram Model 563
31.1.4.4	Affinity Force Analysis by L-Phe-Modified Probe Tip 563
31.2	Nanoscale Measuring System Using Two-Photon-Adsorbed
	Photopolymerization for Biosensors 564
31.2.1	Photopolymerization for Biosensors 564 Principle of TPAP and its Application as an AFM Imaging Tool 564

31.2.2 Results 565

XII Contents

31.2.2.1	Hydrophobic Polymeric Tips for Imaging 565
31.3	Nanoscale Measuring Systems Using AFM for Biosensors 567
31.3.1	Principle of AFM 568
31.3.2	Experimental Scheme and Procedure 568
31.3.2.1	Measuring Cu Ion-Binding Force between Histidine Molecules 568
31.3.2.2	Utilizing Peptide Probes for Measuring Protein – Protein Interaction
	Force 569
31.3.2.3	Actin Antibody-Modified Microsphere Probe 570
31.3.3	Results 570
31.3.3.1	Evaluation of Interaction between Histidine-Binding Cu ²⁺ Ion and
	Histidine by AFM 570
31.3.3.2	Comparison of the Force Curve between the Peptide Probe and
	Cofilin Protein to Actin 571
31.3.3.3	Interaction Force in the Large Area between Actin-Modified Surface
	and Actin Antibody-Modified Microsphere Probe 572
31.4	Nanoscale Measuring Systems with Nanoscale Motion
	Detection 573
31.4.1	Principles of AC Electric Field 573
31.4.2	Novel AC Microelectrophoresis in a Microflow Channel 574
31.4.3	Preparation of Biofunctional Microspheres 574
31.4.3.1	Preparation of IgG- and Biotin-IgG-Modified Microspheres 574
31.4.3.2	Preparation of Profilin-Modified Microspheres with or Without
	Actin 575
31.4.3.3	Preparation of Biotin-IgG and IgG Beads Mixed Samples With or
	Without Sav 575
31.4.4	Result 576
31.4.4.1	Affinity Evaluation of Proteins to Protein-Modified
	Microspheres 576
	References 577
32	Biosynthesis and Applications of Silver Nanoparticles 579
	Bipinchandra K. Salunke and Beom Soo Kim
	Concise Definition of Subject 579
32.1	Introduction 579
32.2	Silver Nanoparticles 582
32.3	Plants in Nanoparticle Synthesis 582
32.4	Parameters Affecting Synthesis of AgNPs 583
32.4.1	Effect of pH 583
32.4.2	Reaction Time, Precursor to Plant Extract Ratio, and Reaction
	Rate 583
32.4.3	Effect of Temperature 584
32.5	Mechanism of AgNP Synthesis 584
32.6	Applications of AgNPs 585
32.7	Conclusion 585
	References 586

Part VI Biomedical Engineering and Biopharmaceuticals 591

- 33 Smart Drug Delivery Devices and Implants 593
 - Ki Su Kim, Ho Sang Jung, Hyunsik Choi, Songeun Beack, Hyemin Kim, Jong Hwan Mun, Myeong Hwan Shin, Do Hee Keum, Heebeom Koo, Seok Hyun Yun, and Sei Kwang Hahn
- 33.1 Introduction 593
- 33.2 External Drug Delivery Devices 594
- 33.2.1 Microneedle Drug Delivery Devices 594
- 33.2.2 Drug-Eluting Contact Lenses 595
- 33.2.3 Wearable Drug Delivery Devices 595
- 33.3 Internal Drug Delivery Implants 597
- 33.3.1 Drug-Eluting Stent 597
- 33.3.2 Programmable Drug Delivery Implants 598
- 33.3.3 Intelligent Drug Delivery Implant 599
- 33.4 Image-Guided Drug Delivery Systems 600
- 33.5 Summary and Perspectives 602
 - Acknowledgments 602 References 603
- **34 Controlled Delivery Systems of Protein and Peptide Therapeutics** 607 Hwiwon Lee, Minsoo Cho, Jeong Ho Lee, Jong Hwan Mun, Byung Woo
 - Hwang, Hyemin Kim, and Sei Kwang Hahn
- 34.1 Introduction 607
- 34.2 Drug Delivery Systems for Protein and Peptide Therapeutics 608
- 34.2.1 Polymer-Conjugated Drug Delivery Systems 609
- 34.2.1.1 PEGylated System 609
- 34.2.1.2 Hyaluronate-Conjugated System 609
- 34.2.2 Drug Depot Systems 609
- 34.2.2.1 Polymeric Micro/Nanoparticle Depot System 609
- 34.2.2.2 Hydrogel Depot System 610
- 34.2.3 Nanoparticle-Based Systems 611
- 34.2.3.1 Gold Nanoparticle System 611
- 34.2.3.2 Magnetic Nanoparticle System 612
- 34.2.4 Targeted Drug Delivery Systems 612
- 34.2.4.1 Antibody-Based Target-Specific Drug Delivery 612
- 34.2.4.2 Peptide-Based Target-Specific Drug Delivery *613*
- 34.3 Clinical Development of Protein and Peptide Delivery Systems 613
- 34.4 Summary and Perspectives 614 References 615
- 35 Cell Delivery Systems Using Biomaterials 617
 - Youngro Byun and Jee-Heon Jeong
- 35.1 Introduction to Cell-Based Therapeutics 617

XIV Contents

35.2	Biomaterials as Cell Delivery Vehicles 617
35.3	Cell Delivery Strategies 618
35.3.1	Surface Modification 618
25 2 1 1	Camouflage of Surface Antigens 618
25 2 1 2	Prevention of Immediate Blood-Mediated Inflammatory
55.5.1.2	Reaction 619
35.3.1.3	Protection of Cells against Physical Stress 620
35.3.1.4	Mimicking the Cell Microenvironment 620
35.3.2	Scaffold-Based Cell Delivery 620
35.3.2.1	Scaffold in Pancreatic Islets Delivery 621
35.3.2.2	Scaffold in Stem Cell Delivery 622
35.3.3	Hvdrogel-Based Cell Delivery 623
35.3.3.1	Hydrogel in Pancreatic Islets Delivery 623
35.3.3.2	Hydrogel in Stem Cells Delivery 625
35.4	Conclusion and Future Perspective 626
	References 626
36	Bioengineered Cell-Derived Vesicles as Drug Delivery Carriers 631
	Vipul Guirati and Sanavona Jon
36.1	Introduction 631
36.2	Prokarvotic Cell-Derived Nanocarriers 632
36.2.1	Bacterial Minicells as Drug Carrier 632
36.2.2	Bioengineered Bacterial Outer Membrane Vesicles for Cancer
	Targeting and Drug Delivery 632
36.3	Eukaryotic Cell-Derived Nanocarriers 633
36.3.1	Bioengineered Yeast for Development of Nanocarriers 633
36.3.2	Bioengineered Extracellular Vesicles for the Development of a Drug
	Delivery Platform 634
36.4	Cell Membrane-Camouflaged Nanoparticles 638
36.4.1	Erythrocyte Membrane-Coated Nanocarriers 638
36.4.2	Leukocyte Membrane-Camouflaged Nanoparticles 639
36.4.3	Platelet Membrane-Camouflaged Nanoparticles 639
36.4.4	Cancer Cell Membrane-Camouflaged Nanoparticles 640
36.5	Conclusions 641
	Acknowledgments 641
	References 641
37	Advanced Genetic Fusion Techniques for Improving the
	Pharmacokinetic Properties of Biologics 645
	Seung R. Hwang and Jin W. Park
	Concise Definition of the Subject 645
37.1	Background 645
37.2	Fc-Fusion Technology 647
37.3	Albumin Fusion Technology 648

Contents XV

37.4	Transferrin Fusion Technology 650
37.5	CTP Fusion Technology 651
37.6	Summary 652
	References 652
38	Mussel-Mimetic Biomaterials for Tissue Engineering
	Applications 655
	run kee Jo, Hyo Jeong Kim, Eun reong Jeon, Bong-Hyuk Choi, ana Hyung Joon Cha
38.1	Introduction 655
38.2	Synthetic and Natural Polymer-Based Mussel-Mimetic
50.2	Biomaterials 656
38.3	Tissue Adhesives 657
38.3.1	Soft Tissue Adhesives 657
38.3.2	Hard Tissue Adhesives 661
38.4	Biomolecule Immobilization and Drug Delivery 664
38.5	Concluding Remarks 669
	Acknowledgments 670
	References 670
39	Mass Production of Full-Length IgG Monoclonal Antibodies from
	Mammalian, Yeast, and Bacterial Hosts 679
20.1	Sang T. Jung and Dong-Il Kim
39.1	Sang T. Jung and Dong-II Kim Mass Production of Biosimilar Monoclonal Antibodies in
39.1	Sang T. Jung and Dong-Il Kim Mass Production of Biosimilar Monoclonal Antibodies in Mammalian Cells 680
39.1 39.1.1	Sang T. Jung and Dong-II Kim Mass Production of Biosimilar Monoclonal Antibodies in Mammalian Cells 680 Manufacturing 680 Process Davelopment 681
39.1 39.1.1 39.1.1.1 39.1.1.2	Sang T. Jung and Dong-II Kim Mass Production of Biosimilar Monoclonal Antibodies in Mammalian Cells 680 Manufacturing 680 Process Development 681 Large Scale Cell Culture 682
39.1 39.1.1 39.1.1.1 39.1.1.2 39.1.1.3	Sang T. Jung and Dong-II Kim Mass Production of Biosimilar Monoclonal Antibodies in Mammalian Cells 680 Manufacturing 680 Process Development 681 Large-Scale Cell Culture 682 Large-Scale Purification 682
 39.1 39.1.1 39.1.1.1 39.1.1.2 39.1.1.3 39.1.1.4 	Sang T. Jung and Dong-II Kim Mass Production of Biosimilar Monoclonal Antibodies in Mammalian Cells 680 Manufacturing 680 Process Development 681 Large-Scale Cell Culture 682 Large-Scale Purification 682 Formulation and Filling Processes 683
 39.1 39.1.1 39.1.1.1 39.1.1.2 39.1.1.3 39.1.1.4 39.1.1.5 	Sang T. Jung and Dong-II Kim Mass Production of Biosimilar Monoclonal Antibodies in Mammalian Cells 680 Manufacturing 680 Process Development 681 Large-Scale Cell Culture 682 Large-Scale Purification 682 Formulation and Filling Processes 683 Physicochemical and Functional Analyses 683
 39.1 39.1.1 39.1.1.1 39.1.1.2 39.1.1.3 39.1.1.4 39.1.1.5 39.1.1.6 	Sang T. Jung and Dong-II Kim Mass Production of Biosimilar Monoclonal Antibodies in Mammalian Cells 680 Manufacturing 680 Process Development 681 Large-Scale Cell Culture 682 Large-Scale Purification 682 Formulation and Filling Processes 683 Physicochemical and Functional Analyses 683 Preclinical and Clinical Evaluations 686
 39.1 39.1.1 39.1.1.1 39.1.1.2 39.1.1.3 39.1.1.4 39.1.1.5 39.1.1.6 39.2 	Sang T. Jung and Dong-II Kim Mass Production of Biosimilar Monoclonal Antibodies in Mammalian Cells 680 Manufacturing 680 Process Development 681 Large-Scale Cell Culture 682 Large-Scale Purification 682 Formulation and Filling Processes 683 Physicochemical and Functional Analyses 683 Preclinical and Clinical Evaluations 686 Mass Production of Monoclonal Antibodies in Yeast 686
39.1 39.1.1 39.1.1.1 39.1.1.2 39.1.1.3 39.1.1.3 39.1.1.4 39.1.1.5 39.1.1.6 39.2 39.3	Sang T. Jung and Dong-II Kim Mass Production of Biosimilar Monoclonal Antibodies in Mammalian Cells 680 Manufacturing 680 Process Development 681 Large-Scale Cell Culture 682 Large-Scale Purification 682 Formulation and Filling Processes 683 Physicochemical and Functional Analyses 683 Preclinical and Clinical Evaluations 686 Mass Production of Monoclonal Antibodies in Yeast 686 Mass Production of Monoclonal Antibodies in
 39.1 39.1.1 39.1.1.1 39.1.1.2 39.1.1.3 39.1.1.4 39.1.1.5 39.1.1.6 39.2 39.3 	Sang T. Jung and Dong-II Kim Mass Production of Biosimilar Monoclonal Antibodies in Mammalian Cells 680 Manufacturing 680 Process Development 681 Large-Scale Cell Culture 682 Large-Scale Purification 682 Formulation and Filling Processes 683 Physicochemical and Functional Analyses 683 Preclinical and Clinical Evaluations 686 Mass Production of Monoclonal Antibodies in Yeast 686 Mass Production of Monoclonal Antibodies in Escherichia coli 687
 39.1 39.1.1 39.1.1.1 39.1.1.2 39.1.1.3 39.1.1.4 39.1.1.5 39.1.1.6 39.2 39.3 39.3.1 	Sang T. Jung and Dong-Il KimMass Production of Biosimilar Monoclonal Antibodies inMammalian Cells680Manufacturing680Process Development681Large-Scale Cell Culture682Large-Scale Purification682Formulation and Filling Processes683Physicochemical and Functional Analyses683Preclinical and Clinical Evaluations686Mass Production of Monoclonal Antibodies in Yeast687Expression of Full-Length IgG Antibodies in <i>E. coli</i> 687
 39.1 39.1.1 39.1.1.1 39.1.1.2 39.1.1.3 39.1.1.4 39.1.1.5 39.1.1.6 39.2 39.3 39.3.1 39.3.1 39.3.2 	Sang T. Jung and Dong-Il KimMass Production of Biosimilar Monoclonal Antibodies inMammalian Cells680Manufacturing680Process Development681Large-Scale Cell Culture682Large-Scale Purification682Formulation and Filling Processes683Physicochemical and Functional Analyses683Preclinical and Clinical Evaluations686Mass Production of Monoclonal Antibodies in Yeast687Expression of Full-Length IgG Antibodies in <i>E. coli</i> 687Aglycosylated Full-Length IgG Antibodies under
 39.1 39.1.1 39.1.1.1 39.1.1.2 39.1.1.3 39.1.1.4 39.1.1.5 39.1.1.6 39.2 39.3 39.3.1 39.3.1 39.3.2 	Sang T. Jung and Dong-II KimMass Production of Biosimilar Monoclonal Antibodies inMammalian Cells680Manufacturing680Process Development681Large-Scale Cell Culture682Formulation and Filling Processes683Physicochemical and Functional Analyses683Preclinical and Clinical Evaluations686Mass Production of Monoclonal Antibodies in Yeast687Expression of Full-Length IgG Antibodies in E. coli687Aglycosylated Full-Length IgG Antibodies underClinical Trials688
 39.1 39.1.1 39.1.1.1 39.1.1.2 39.1.1.3 39.1.1.4 39.1.1.5 39.1.1.6 39.2 39.3 39.3.1 39.3.2 39.3.3 	Sang T. Jung and Dong-Il KimMass Production of Biosimilar Monoclonal Antibodies inMammalian Cells680Manufacturing680Process Development681Large-Scale Cell Culture682Large-Scale Purification682Formulation and Filling Processes683Physicochemical and Functional Analyses683Preclinical and Clinical Evaluations686Mass Production of Monoclonal Antibodies in Yeast686Mass Production of Monoclonal Antibodies inEscherichia coliExpression of Full-Length IgG Antibodies in E. coli687Aglycosylated Full-Length IgG Antibodies underClinical TrialsClinical Trials688Engineering Aglycosylated Fc Domain for Effector Functional
 39.1 39.1.1 39.1.1.1 39.1.1.2 39.1.1.3 39.1.1.3 39.1.1.5 39.1.1.6 39.2 39.3 39.3.1 39.3.2 39.3.3 	Sang T. Jung and Dong-II KimMass Production of Biosimilar Monoclonal Antibodies inMammalian Cells680Manufacturing680Process Development681Large-Scale Cell Culture682Large-Scale Purification682Formulation and Filling Processes683Physicochemical and Functional Analyses683Preclinical and Clinical Evaluations686Mass Production of Monoclonal Antibodies in Yeast687Expression of Full-Length IgG Antibodies in E. coli687Aglycosylated Full-Length IgG Antibodies underClinical Trials688Engineering Aglycosylated Fc Domain for Effector FunctionalAntibodies in E. coli689
 39.1 39.1.1 39.1.1.1 39.1.1.2 39.1.1.3 39.1.1.4 39.1.1.5 39.1.1.6 39.2 39.3 39.3.1 39.3.2 39.3.3 39.4 	Sang T. Jung and Dong-II KimMass Production of Biosimilar Monoclonal Antibodies inMammalian Cells 680Manufacturing 680Process Development 681Large-Scale Cell Culture 682Large-Scale Purification 682Formulation and Filling Processes 683Physicochemical and Functional Analyses 683Preclinical and Clinical Evaluations 686Mass Production of Monoclonal Antibodies in Yeast 686Mass Production of Monoclonal Antibodies inEscherichia coli 687Expression of Full-Length IgG Antibodies in E. coli 687Aglycosylated Full-Length IgG Antibodies underClinical Trials 688Engineering Aglycosylated Fc Domain for Effector FunctionalAntibodies in E. coli 689Conclusion 691