BALANCED MICROWAVE FILTERS
WILEY SERIES IN MICROWAVE AND OPTICAL ENGINEERING

Professor Kai Chang, Editor
Texas A&M University

A complete list of the titles in this series appears at the end of this volume.
BALANCED MICROWAVE FILTERS

Edited by
FERRAN MARTÍN
LEI ZHU
JIASHENG HONG
FRANCISCO MEDINA
To our families
Anna, Alba, and Arnau
Kai and Haide
Huizheng and Yi Hang
Carmen, Marta, Santos, Juan, and Lola

The editors would like to acknowledge the effort of many people directly or indirectly involved in the preparation and writing of this book, not only the chapter contributors but also the members of their respective groups, without whom this book had never been written.
CONTENTS

LIST OF CONTRIBUTORS
xix

PREFACE
xxiii

PART 1 INTRODUCTION

1 **INTRODUCTION TO BALANCED TRANSMISSION LINES, CIRCUITS, AND NETWORKS**
3
Ferran Martín, Jordi Naqui, Francisco Medina, Lei Zhu, and Jiasheng Hong

1.1 Introduction
3

1.2 Balanced Versus Single-Ended Transmission Lines and Circuits
4

1.3 Common-Mode Noise
5

1.4 Fundamentals of Differential Transmission Lines
6
1.4.1 Topology
6

1.4.2 Propagating Modes
8
1.4.2.1 Even and Odd Mode
8

1.4.2.2 Common and Differential Mode
11
PART 2 BALANCED TRANSMISSION LINES WITH COMMON-MODE NOISE SUPPRESSION 21

2 STRATEGIES FOR COMMON-MODE SUPPRESSION IN BALANCED LINES 23

Ferran Martín, Paris Vélez, Armando Fernández-Prieto, Jordi Naqui, Francisco Medina, and Jiasheng Hong

2.1 Introduction 23
2.2 Selective Mode Suppression in Differential Transmission Lines 25
2.3 Common-Mode Suppression Filters Based on Patterned Ground Planes 27
 2.3.1 Common-Mode Filter Based on Dumbbell-Shaped Patterned Ground Plane 27
 2.3.2 Common-Mode Filter Based on Complementary Split Ring Resonators (CSRRs) 30
 2.3.3 Common-Mode Filter Based on Defected Ground Plane Artificial Line 40
 2.3.4 Common-Mode Filter Based on C-Shaped Patterned Ground Structures 44
2.4 Common-Mode Suppression Filters Based on Electromagnetic Bandgaps (EBGs) 49
 2.4.1 Common-Mode Filter Based on Nonuniform Coupled Lines 50
 2.4.2 Common-Mode Filter Based on Uniplanar Compact Photonic Bandgap (UC-PBG) Structure 55
2.5 Other Approaches for Common-Mode Suppression 55
2.6 Comparison of Common-Mode Filters 60
2.7 Summary 61
Appendix 2.A: Dispersion Relation for Common-Mode Rejection Filters with Coupled CSRRs or DS-CSRRs 61
Appendix 2.B: Dispersion Relation for Common-Mode Rejection Filters with Coupled Patches Grounded through Inductive Strips 64
References 65

3 COUPLED-RESONATOR BALANCED BANDPASS FILTERS WITH COMMON-MODE SUPPRESSION DIFFERENTIAL LINES 73

Armando Fernández-Prieto, Jordi Naqui, Jesús Martel, Ferran Martín, and Francisco Medina

3.1 Introduction 73
3.2 Balanced Coupled-Resonator Filters 74
 3.2.1 Single-Band Balanced Bandpass Filter Based on Folded Stepped-Impedance Resonators 75
 3.2.2 Balanced Filter Loaded with Common-Mode Rejection Sections 79
 3.2.3 Balanced Dual-Band Bandpass Filter Loaded with Common-Mode Rejection Sections 82
3.3 Summary 88
References 88

PART 3 WIDEBAND AND ULTRA-WIDEBAND (UWB) BALANCED BAND PASS FILTERS WITH INTRINSIC COMMON-MODE SUPPRESSION 91

4 WIDEBAND AND UWB BALANCED BANDPASS FILTERS BASED ON BRANCH-LINE TOPOLOGY 93

Teck Beng Lim and Lei Zhu

4.1 Introduction 93
4.2 Branch-Line Balanced Wideband Bandpass Filter 97
4.3 Balanced Bandpass Filter for UWB Application 105
4.4 Balanced Wideband Bandpass Filter with Good Common-Mode Suppression 111
4.5 Highly Selective Balanced Wideband Bandpass Filters 116
4.6 Summary 131
References 131
5 WIDEBAND AND UWB COMMON-MODE SUPPRESSED DIFFERENTIAL-MODE FILTERS BASED ON COUPLED LINE SECTIONS 135

Qing-Xin Chu, Shi-Xuan Zhang, and Fu-Chang Chen

5.1 Balanced UWB Filter by Combining UWB BPF with UWB BSF 135
5.2 Balanced Wideband Bandpass Filter Using Coupled Line Stubs 142
5.3 Balanced Wideband Filter Using Internal Cross-Coupling 148
5.4 Balanced Wideband Filter Using Stub-Loaded Ring Resonator 155
5.5 Balanced Wideband Filter Using Modified Coupled Feed Lines and Coupled Line Stubs 161
5.6 Summary 173
 References 174

6 WIDEBAND DIFFERENTIAL CIRCUITS USING T-SHAPED STRUCTURES AND RING RESONATORS 177

Wenquan Che and Wenjie Feng

6.1 Introduction 177
6.2 Wideband Differential Bandpass Filters Using T-Shaped Resonators 179
 6.2.1 Mixed-Mode S-Parameters for Four-Port Balanced Circuits 179
 6.2.2 T-Shaped Structures with Open/Shorted Stubs 184
 6.2.2.1 T-Shaped Structure with Shorted Stubs 184
 6.2.2.2 T-Shaped Structure with Open Stubs 185
 6.2.3 Wideband Bandpass Filters without Cross Coupling 187
 6.2.3.1 Differential-Mode Excitation 189
 6.2.3.2 Common-Mode Excitation 191
 6.2.4 Wideband Bandpass Filter with Cross Coupling 193
6.3 Wideband Differential Bandpass Filters Using Half-/Full-Wavelength Ring Resonators 201
 6.3.1 Differential Filter Using Half-Wavelength Ring Resonators 201
 6.3.2 Differential Filter Using Full-Wavelength Ring Resonators 206
6.3.3 Differential Filter Using Open/Shorted Coupled Lines 215
6.3.4 Comparisons of Several Wideband Balanced Filters Based on Different Techniques 220
6.4 Wideband Differential Networks Using Marchand Balun 223
6.4.1 S-Parameter for Six-Port Differential Network 223
6.4.2 Wideband In-Phase Differential Network 227
6.4.3 Wideband Out-of-Phase Differential Network 236
6.5 Summary 244
References 245

7 UWB AND NOTCHED-BAND UWB DIFFERENTIAL FILTERS USING MULTILAYER AND DEFECTED GROUND STRUCTURES (DGSS) 249

Jian-Xin Chen, Li-Heng Zhou, and Quan Xue

7.1 Conventional Multilayer Microstrip-to-Slotline Transition (MST) 250
7.2 Differential MST 251
7.2.1 Differential MST with a Two-Layer Structure 251
7.2.2 Differential MST with Three-Layer Structure 252
7.3 UWB Differential Filters Based on the MST 253
7.3.1 Differential Wideband Filters Based on the Conventional MST 253
7.3.2 Differential Wideband Filters Based on the Differential MST 255
7.4 Differential Wideband Filters Based on the Strip-Loaded Slotline Resonator 262
7.4.1 Differential Wideband Filters Using Triple-Mode Slotline Resonator 265
7.4.2 Differential Wideband Filters Using Quadruple-Mode Slotline Resonator 267
7.5 UWB Differential Notched-Band Filter 270
7.5.1 UWB Differential Notched-Band Filter Based on the Traditional MST 270
7.5.2 UWB Differential Notched-Band Filter Based on the Differential MST 272
7.6 Differential UWB Filters with Enhanced Stopband Suppression 277
7.7 Summary 280
References 281
8 APPLICATION OF SIGNAL INTERFERENCE TECHNIQUE TO THE IMPLEMENTATION OF WIDEBAND DIFFERENTIAL FILTERS

Wei Qin and Quan Xue

8.1 Basic Concept of the Signal Interference Technique
 8.1.1 Fundamental Theory
 8.1.2 One Filter Example Based on Ring Resonator
 8.1.3 Simplified Circuit Model

8.2 Signal Interference Technique for Wideband Differential Filters
 8.2.1 Circuit Model of Wideband Differential Bandpass Filter
 8.2.2 S-Matrix for Differential Bandpass Filters

8.3 Several Designs of Wideband Differential Bandpass Filters
 8.3.1 Differential Bandpass Filter Based on Wideband Marchand Baluns
 8.3.2 Differential Bandpass Filter Based on π-Type UWB 180° Phase Shifters
 8.3.3 Differential Bandpass Filter Based on DSPSL UWB 180° Phase Inverter
 8.3.3.1 Differential-Mode Analysis
 8.3.3.2 Common-Mode Analysis
 8.3.3.3 Filter Design and Measurement

8.4 Summary
References

9 WIDEBAND BALANCED FILTERS BASED ON MULTI-SECTION MIRRORED STEPPED IMPEDANCE RESONATORS (SIRs)

Ferran Martín, Jordi Selga, Paris Vélez, Marc Sans, Jordi Bonache, Ana Rodríguez, Vicente E. Boria, Armando Fernández-Prieto, and Francisco Medina

9.1 Introduction
9.2 The Multi-Section Mirrored Stepped Impedance Resonator (SIR)
9.3 Wideband Balanced Bandpass Filters Based on 7-Section Mirrored SIRs Coupled Through Admittance Inverters
 9.3.1 Finding the Optimum Filter Schematic
 9.3.2 Layout Synthesis
9.3.2.1 Resonator Synthesis 325
9.3.2.2 Determination of the Line Width 327
9.3.2.3 Optimization of the Line Length (Filter Cell Synthesis) 327
9.3.3 A Seventh-Order Filter Example 330
9.3.4 Comparison with Other Approaches 334
9.4 Compact Ultra-Wideband (UWB) Balanced Bandpass Filters Based on 5-Section Mirrored SIRs and Patch Capacitors 336
9.4.1 Topology and Circuit Model of the Series Resonators 337
9.4.2 Filter Design 341
9.4.3 Comparison with Other Approaches 345
9.5 Summary 346
Appendix 9.A: General Formulation of Aggressive Space Mapping (ASM) 347
References 349

10 METAMATERIAL-INSPIRED BALANCED FILTERS 353

Ferran Martín, Paris Vélez, Ali Karami-Horestani, Francisco Medina, and Christophe Fumeaux

10.1 Introduction 353
10.2 Balanced Bandpass Filters Based on Open Split Ring Resonators (OSRRs) and Open Complementary Split Ring Resonators (OCSRRs) 354
10.2.1 Topology of the OSRR and OCSRR 354
10.2.2 Filter Design and Illustrative Example 356
10.3 Balanced Filters Based on S-Shaped Complementary Split Ring Resonators (S-CSRRs) 363
10.3.1 Principle for Balanced Bandpass Filter Design and Modeling 365
10.3.2 Illustrative Example 367
10.4 Summary 369
References 369

11 WIDEBAND BALANCED FILTERS ON SLOTLINE RESONATOR WITH INTRINSIC COMMON-MODE REJECTION 373

Xin Guo, Lei Zhu, and Wen Wu

11.1 Introduction 373
11.2 Wideband Balanced Bandpass Filter on Slotline MMR 375
11.2.1 Working Mechanism 375
11.2.2 Synthesis Method 378
11.2.3 Geometry and Layout 382
11.2.4 Fabrication and Experimental Verification 388

11.3 Wideband Balanced BPF on Strip-Loaded Slotline Resonator 392
11.3.1 Strip-Loaded Slotline Resonator 392
11.3.2 Wideband Balanced Bandpass Filters 396
 11.3.2.1 Wideband Balanced BPF on Strip-Loaded Triple-Mode Slotline Resonator 397
 11.3.2.2 Wideband Balanced BPF on Strip-Loaded Quadruple-Mode Slotline Resonator 403

11.4 Wideband Balanced Bandpass Filter on Hybrid MMR 408
 11.4.1 Hybrid MMR 408
 11.4.2 Wideband Balanced Bandpass Filters 416

11.5 Summary 420
References 420

PART 4 NARROWBAND AND DUAL-BAND BALANCED BANDPASS FILTERS WITH INTRINSIC COMMON-MODE SUPPRESSION 423

12 NARROWBAND COUPLED-RESONATOR BALANCED BANDPASS FILTERS AND DIPLEXERS 425

 Armando Fernández-Prieto, Francisco Medina, and Jesús Martel

12.1 Introduction 425
12.2 Coupled-Resonator Balanced Filters with Intrinsic Common-Mode Rejection 426
 12.2.1 Loop and SIR Resonator Filters with Mixed Coupling 427
 12.2.1.1 Quasi-elliptic Response BPF: First Example 428
 12.2.1.2 Quasi-elliptic Response BPF: Second Example 434
 12.2.2 Magnetically Coupled Open-Loop and FSIR Balanced Filters 439
12.2.2.1 Filters with Magnetic Coupling: First Example 439
12.2.2.2 Filters with Magnetic Coupling: Second Example 447
12.2.3 Interdigital Line Resonators Filters 449
12.2.3.1 ILR Filter Design Example 450
12.2.4 Dual-Mode and Dual-Behavior Resonators for Balanced Filter Design 451
12.2.4.1 Dual-Mode Square Patch Resonator Filters 453
12.2.4.2 Filters Based on Dual-Behavior Resonators 458
12.2.5 LTCC-Based Multilayer Balanced Filter 464
12.2.6 Balanced Bandpass Filters Based on Dielectric Resonators 466
12.3 Loaded Resonators for Common-Mode Suppression Improvement 469
12.3.1 Capacitively, Inductively, and Resistively Center-Loaded Resonators 470
12.3.1.1 Open-Loop UIR-Loaded Filter 470
12.3.1.2 Folded SIR Loaded Filter 476
12.3.2 Filters with Defected Ground Structures (DGS) 484
12.3.2.1 Control of the Transmission Zeros 488
12.3.3 Multilayer Loaded Resonators 490
12.3.3.1 Design Example 492
12.4 Coupled Line Balanced Bandpass Filter 493
12.4.1 Type-II Design Example 495
12.5 Balanced Diplexers 499
12.5.1 Unbalanced-to-Balanced Diplexer Based on Uniform Impedance Stub-Loaded Coupled Resonators 500
12.5.1.1 Resonator Geometry 500
12.5.1.2 Unbalanced-to-Balanced Diplexer Design 502
12.5.2 Example Two: Balanced-to-Balanced Diplexer Based on UIRs and Short-Ended Parallel-Coupled Lines 505
12.6 Summary 508
References 510
13 DUAL-BAND BALANCED FILTERS BASED ON LOADED AND COUPLED RESONATORS

Jin Shi and Quan Xue

13.1 Dual-Band Balanced Filter with Loaded Uniform Impedance Resonators
 13.1.1 Center-Loaded Uniform Impedance Resonator
 13.1.2 Dual-Band Balanced Filter Using the Uniform Impedance Resonator with Center-Loaded Lumped Elements
 13.1.3 Dual-Band Balanced Filter Using Stub-Loaded Uniform Impedance Resonators

13.2 Dual-Band Balanced Filter with Loaded Stepped-Impedance Resonators
 13.2.1 Center-Loaded Stepped-Impedance Resonator
 13.2.2 Dual-Band Balanced Filter Using Stepped-Impedance Resonators with Center-Loaded Lumped Elements
 13.2.3 Dual-Band Balanced Filter Using Stub-Loaded Stepped-Impedance Resonators

13.3 Dual-Band Balanced Filter Based on Coupled Resonators
 13.3.1 Dual-Band Balanced Filter with Coupled Stepped-Impedance Resonators
 13.3.2 Dual-Band Balanced Filter with Coupled Stub-Loaded Short-Ended Resonators

13.4 Summary
References

14 DUAL-BAND BALANCED FILTERS IMPLEMENTED IN SUBSTRATE INTEGRATED WAVEGUIDE (SIW) TECHNOLOGY

Wen Wu, Jianpeng Wang, and Chunxia Zhou

14.1 Substrate Integrated Waveguide (SIW) Cavity
14.2 Closely Proximate Dual-Band Balanced Filter Design
14.3 Dual-Band Balanced Filter Design Utilizing High-Order Modes in SIW Cavities

14.4 Summary
References
15 BALANCED POWER DIVIDERS/COMBINERS

Lin-Sheng Wu, Bin Xia, and Jun-Fa Mao

15.1 Introduction 567
15.2 Balanced-to-Balanced Wilkinson Power Divider with Microstrip Line 569
 15.2.1 Mixed-Mode Analysis 569
 15.2.1.1 Mixed-Mode Scattering Matrix of a Balanced-to-Balanced Power Divider 569
 15.2.1.2 Constraint Rules of Balanced-to-Balanced Power Divider 571
 15.2.1.3 Odd- and Even-Mode Scattering Matrices of Balanced-to-Balanced Power Divider 572
 15.2.2 A Transmission-Line Balanced-to-Balanced Power Divider 572
 15.2.2.1 Even-Mode Circuit Model 572
 15.2.2.2 Odd-Mode Circuit Model 573
 15.2.2.3 Scattering Matrix of the Balanced-to-Balanced Power Divider 575
 15.2.3 Theoretical Result 575
 15.2.4 Simulated and Measured Results 576
15.3 Balanced-to-Balanced Gysel Power Divider with Half-Mode Substrate Integrated Waveguide (SIW) 580
 15.3.1 Conversion from Single-Ended Circuit to Balanced Form 580
 15.3.2 Half-Mode SIW Ring Structure 581
 15.3.3 Results and Discussion 583
15.4 Balanced-to-Balanced Gysel Power Divider with Arbitrary Power Division 585
 15.4.1 Analysis and Design 585
 15.4.2 Results and Discussion 587
15.5 Balanced-to-Balanced Gysel Power Divider with Bandpass Filtering Response 590
 15.5.1 Coupled-Resonator Circuit Model 590
 15.5.2 Realization in Transmission Lines 591
 15.5.2.1 Internal Coupling Coefficient 592
 15.5.2.2 External Q Factor 594
15.5.3 Results and Discussion 595
15.6 Filtering Balanced-to-Balanced Power Divider with Unequal Power Division 598
15.7 Dual-Band Balanced-to-Balanced Power Divider 599
 15.7.1 Analysis and Design 599
 15.7.2 Results and Discussion 601
15.8 Summary 603
References 603

16 DIFFERENTIAL-MODE EQUALIZERS WITH COMMON-MODE FILTERING 607

Tzong-Lin Wu and Chiu-Chih Chou

16.1 Introduction 607
16.2 Design Considerations 610
 16.2.1 Equalizer Design 610
 16.2.2 Common-Mode Filter Design 612
16.3 First Design 613
 16.3.1 Proposed Topology 613
 16.3.2 Odd-Mode Analysis 616
 16.3.2.1 Equalizer Optimization in Time Domain 617
 16.3.3 Even-Mode Analysis 623
 16.3.4 Measurement Validation 628
16.4 Second Design 633
 16.4.1 Proposed Circuit and Analysis 633
 16.4.2 Realization and Measurement 637
 16.4.2.1 Realization 637
 16.4.2.2 Common-Mode Noise Suppression 638
 16.4.2.3 Differential-Mode Equalization 640
16.5 Summary 641
References 641

INDEX 645
LIST OF CONTRIBUTORS

JORDI BONACHE, CIMITEC, Departament d’Enginyeria Electrònica, Universitat Autònoma de Barcelona, Bellaterra, Spain

VICENTE E. BORIA, Departamento de Comunicaciones-iTEAM, Universitat Politècnica de València, Valencia, Spain

WENQUAN CHE, Department of Communication Engineering, Nanjing University of Science and Technology, Nanjing, China

FU-CHANG CHEN, School of Electronic and Information Engineering, South China University of Technology, Guangzhou, China

JIAN-XIN CHEN, School of Electronics and Information, Nantong University, Nantong, China

CHIU-CHIH CHOU, Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan

QING-XIN CHU, School of Electronic and Information Engineering, South China University of Technology, Guangzhou, China

WENJIE FENG, Department of Communication Engineering, Nanjing University of Science and Technology, Nanjing, China

ARMANDO FERNÁNDEZ-PRIETO, Departamento de Electrónica y Electromagnetismo, Universidad de Sevilla, Sevilla, Spain
CHRISTOPHE FUMEAUX, School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA, Australia

XIN GUO, Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau SAR; Ministerial Key Laboratory, JGMT, Nanjing University of Science and Technology, Nanjing, China

JIASHENG HONG, Institute of Sensors, Signals and Systems, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK

ALI KARAMI-HORESTANI, School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA, Australia

TECK BENG LIM, School of Engineering, Nanyang Polytechnic, Ang Mo Kio, Singapore

JUN-FA MAO, Key Laboratory of Ministry of Education of Design and Electromagnetic Compatibility of High-Speed Electronic Systems, Shanghai Jiao Tong University, Shanghai, PR China

JESÚS MARTEL, Departamento de Física Aplicada II, Universidad de Sevilla, Sevilla, Spain

FERRAN MARTÍN, CIMITEC, Departament d’Enginyeria Electrònica, Universitat Autònoma de Barcelona, Bellaterra, Spain

FRANCISCO MEDINA, Departamento de Electrónica y Electromagnetismo, Universidad de Sevilla, Sevilla, Spain

JORDI NAQUI, CIMITEC, Departament d’Enginyeria Electrònica, Universitat Autònoma de Barcelona, Bellaterra, Spain

WEI QIN, School of Electronics and Information, Nantong University, Nantong, China

ANA RODRÍGUEZ, Departamento de Comunicaciones-iTEAM, Universitat Politècnica de València, Valencia, Spain

MARC SANS, CIMITEC, Departament d’Enginyeria Electrònica, Universitat Autònoma de Barcelona, Bellaterra, Spain

JORDI SELGA, CIMITEC, Departament d’Enginyeria Electrònica, Universitat Autònoma de Barcelona, Bellaterra, Spain

JIN SHI, School of Electronics and Information, Nantong University, Nantong, China
PARIS VÉLEZ, CIMITEC, Departament d’Enginyeria Electrònica, Universitat Autònoma de Barcelona, Bellaterra, Spain

JIANGPENG WANG, Ministerial Key Laboratory, JGMT, Nanjing University of Science and Technology, Nanjing, China

LIN-SHENG WU, Key Laboratory of Ministry of Education of Design and Electromagnetic Compatibility of High-Speed Electronic Systems, Shanghai Jiao Tong University, Shanghai, PR China

TZONG-LIN WU, Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan

WEN WU, Ministerial Key Laboratory, JGMT, Nanjing University of Science and Technology, Nanjing, China

BIN XIA, Key Laboratory of Ministry of Education of Design and Electromagnetic Compatibility of High-Speed Electronic Systems, Shanghai Jiao Tong University, Shanghai, PR China

QUAN XUE, School of Electronic and Information Engineering, South China University of Technology, Guangzhou, China

SHI-XUAN ZHANG, School of Electronic and Information Engineering, South China University of Technology, Guangzhou, China

CHUNXIA ZHOU, Ministerial Key Laboratory, JGMT, Nanjing University of Science and Technology, Nanjing, China

LI-HENG ZHOU, School of Electronics and Information, Nantong University, Nantong, China

LEI ZHU, Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau SAR, China
Differential, or balanced, transmission lines and circuits have been traditionally applied to low-frequency analog systems and to high-speed digital systems. As compared with single-ended signals, differential-mode signals exhibit lower electromagnetic interference (EMI) and higher immunity to electromagnetic noise and crosstalk. Consequently, a better signal integrity and a higher signal-to-noise ratio (SNR) can be achieved in differential systems. These aspects are especially critical in modern digital systems, where logic signal swing and noise margin have dramatically decreased and hence are less immune to the effects of noise and EMI. However, differential systems are implemented through balanced circuits and transmission lines (interconnects), representing further design and fabrication complexity as compared with single-ended systems. For this main reason, in radiofrequency (RF) and microwave applications, unbalanced structures have dominated the designs for decades, still being more common than differential circuits. Nevertheless, recent technological advances are pushing differential circuits into the RF and microwave frequency domain, and balanced lines and devices are becoming increasingly common not only in high-speed digital circuits but also in modern communication systems.

Despite the inherent advantages of differential signals over their single-ended counterparts, in a real scenario, perfect circuit symmetry cannot be guaranteed, and the applied signals may exhibit certain level of time skew. Therefore, the presence of common-mode noise due to cross-mode coupling (from the differential signals of interest) is almost
unavoidable. This common-mode noise is the source of most of the radiation and EMI problems in differential systems and may degrade the desired differential signals. Therefore, the design of differential lines and circuits should be preferably focused on suppressing the common mode and, at the same time, preserving the integrity of the differential mode within the frequency range of interest.

The increasing research activity devoted to the design of common-mode suppressed balanced transmission lines and microwave circuits (especially filters) in the last decade has motivated this book proposal. Filters are key components in any communication system, and the fact that balanced systems are increasingly penetrating into the high-frequency domain has focused the attention of many microwave researchers working on planar passive components on the design of balanced microwave filters, the main topic of this book. Efficient common-mode suppression preserving the integrity of the differential signals, compact dimensions, wideband and ultra-wideband differential-mode filter responses, multiband functionality and the implementation of more complex devices (e.g., balanced diplexers, power dividers, etc.) are some of the challenging aspects covered by this book. The subject is so wide and the research activity is so intense that this book has been conceived from contributions by the main relevant researchers and groups worldwide working on the topics covered by the different book chapters.

After an introductory chapter (Part I of the book), devoted to the fundamentals of balanced transmission lines, circuits, and networks, the book has been structured by grouping the chapters in further four parts. In Part II, the main strategies for common-mode suppression in balanced transmission lines are reviewed (Chapter 2). It is also shown in this part that these common-mode rejection filters can be applied to enhance the common-mode rejection level of balanced filters with limited common-mode suppression efficiency (Chapter 3).

Part III of the book is focused on the design of balanced filters exhibiting wideband and ultra-wideband differential-mode responses with inherent common-mode rejection. Several strategies to achieve this challenging objective (i.e., the intrinsic and efficient suppression of the common mode over the wide or ultrawide differential-mode transmission bands) are reviewed. The general idea behind the different considered approaches is the conception of filter topologies able to provide the required wide or ultra-wideband differential-mode responses (subjected to certain specifications) and, at the same time, efficient common-mode suppression in the region of interest. This selective mode transmission/suppression is typically achieved by using symmetry
properties and topologies providing opposite behavior for the differential (passband) and common (stopband) modes. Typically, circuit elements insensitive to the differential mode, but providing controllable transmission zeros for the common mode, are used. The different studied approaches/structures include branch-line topologies (Chapter 4), coupled line sections (Chapter 5), T-shaped structures (Chapter 6), multilayer and defect ground structures (Chapter 7), signal interference techniques (Chapter 8), multi-section mirrored stepped-impedance resonators (Chapter 9), metamaterial-inspired resonators (Chapter 10), and slotline resonators (Chapter 11).

In Part IV, several strategies to achieve narrowband and dual-band differential-mode filter responses with inherent common-mode suppression are reviewed. The challenge here is to achieve the maximum possible common-mode suppression covering the differential-mode band, or bands. Strategies based on coupled resonators implemented in planar technology are reviewed in Chapters 12 and 13, whereas in Chapter 14, dual-band balanced filters based on substrate integrated waveguide (SIW) technology are introduced.

Finally, in Part V of the book, different common-mode suppressed balanced circuits are studied for completeness. This includes power dividers/combiners (Chapter 15) and equalizers (Chapter 16).

To end this preface, the book editors would like to mention that the contents of this book have been determined in order to provide a wide and balanced overview of the international activity and state of the art in the field of balanced microwave filters and related topics. Nevertheless, the designated contributors for the different chapters have been given full freedom to conceive and structure their respective assigned chapters at their convenience. For this reason, and because the different book chapters are self-sustaining for easy reading, some (but few) overlapping between different parts of the book has been accepted by the book editors. Some aspects related to the terminology may also vary from chapter to chapter due to the same reason. It is the editors’ hope that the present manuscript constitutes a reference book in the topic of balanced microwave filters and some other passive devices and that the book can be of practical use to students, researchers, and engineers involved in the design/optimization of RF/microwave components and filters.

Barcelona, Spain
Macao, China
Edinburg, UK
Seville, Spain
May, 2017

Ferran Martín
Lei Zhu
Jiasheng Hong
Francisco Medina
PART 1

Introduction