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Since publication of the first edition of Fuel Cell Systems Explained, three compelling 
drivers have supported the continuing development of fuel‐cell technology, namely:

●● The need to maintain energy security in an energy‐hungry world.
●● The desire to reduce urban air pollution from vehicles.
●● The mitigation of climate change by lowering anthropogenic emissions of carbon 

dioxide.

New materials for fuel cells, together with improvements in the performance and 
lifetimes of stacks, are underpinning the emergence of the first truly commercial 
systems in applications that range from forklift trucks to power sources for mobile phone 
towers. Leading vehicle manufacturers have embraced the use of electric drivetrains 
and now see hydrogen fuel cells complementing the new battery technologies that have 
also emerged over the past few years. After many decades of laboratory development, a 
global — but fragile — fuel‐cell industry is bringing the first products to market.

To assist those who are unfamiliar with fuel‐cell electrochemistry, Chapter 1 of this 
third edition has been expanded to include a more detailed account of the evolution of 
the fuel cell and its accompanying terminology. In the following chapters, extensive 
revision of the preceding publication has removed material that is no longer relevant to 
the understanding of modern fuel‐cell systems and has also introduced the latest 
research findings and technological advances. For example, there are now sections 
devoted to fuel‐cell characterization, new materials for low‐temperature hydrogen 
and liquid‐fuelled systems, and a review of system commercialization. Separate 
chapters on fuel processing and hydrogen storage have been introduced to emphasize 
how hydrogen may gain importance both in future transport systems and in providing 
the means for storing renewable energy.

The objective of each chapter is to encourage the reader to explore the subject in 
more depth. For this reason, references have been included as footnotes when it is 
necessary to substantiate or reinforce the text. To stimulate further interest, however, 
some recommended further reading may be given at the end of a chapter.

There are now several books and electronic resources available to engineers and 
scientists new to fuel‐cell systems. The third edition of Fuel Cell Systems Explained 
does not intend to compete with specialist texts that can easily be accessed via the 
Internet. Rather, it is expected that the book will continue to provide an introduction 
and overview for students and teachers at universities and technical schools and act as 
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a primer for postgraduate researchers who have chosen to enter this field of technology. 
Indeed, it is hoped that all readers — be they practitioners, researchers and students 
in electrical, power, chemical and automotive engineering disciplines — will continue 
to benefit from this essential guide to the principles, design and implementation of 
fuel‐cell systems.

December 2017� Andrew L. Dicks, Brisbane, Australia
David A. J. Rand, Melbourne, Australia
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CSO	 cerium‐samarium oxide (same as SDC)
CSZ	 calcia‐stabilized zirconia
CV	 cyclic voltammetry
CVD	 chemical vapour deposition

DBFC	 direct borohydride fuel cell
DC	 direct current
DCFC	 direct carbon fuel cell
DEFC	 direct ethanol fuel cell
DEGFC	 direct ethylene glycol fuel cell
DFAFC	 direct formic acid fuel cell (also formic acid fuel cell, FAFC)
DFT	 density functional theory
DG	 distributed generator
DIR	 direct internal reforming
DIVRR	 directly irradiated, volumetric receiver–reactor
DLFC	 direct liquid fuel cell
DMFC	 direct methanol fuel cell
DOE	 Department of Energy (United States)
DPFC	 direct propanol fuel cell
DPFC(2)	 direct propan‐2‐ol fuel cell
DSSC	 dye‐sensitized solar cell

EC	 evaporatively cooled
ECN	 Energy Research Centre of the Netherlands
EFOY	 Energy for You
EIS	 electrochemical impedance spectroscopy
EPFL	 Swiss Federal Institute of Technology
EU	 European Union
EVD	 electrochemical vapour deposition
EW	 membrane equivalent weight

FCE	 Fuel Cell Energy Inc.
FCES	 Fuel Cell Energy Solutions GmbH
FCV	 fuel cell vehicle
FRA	 frequency response analyser
FT	 Fischer–Tropsch

GDC	 gadolinium‐doped ceria/gadolinia‐doped ceria (same as CGO)
GDL	 gas-diffusion layer
GE	 General Electric
GHG	 greenhouse gas
GM	 General Motors
GPS	 Global Positioning System
GTL	 gas‐to‐liquid
GTO	 gate turn‐off (thyristor)

HAZID	 hazard identification
HAZOP	 hazard and operability study
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HCNG	 hydrogen-compressed natural gas
HDS	 hydrodesulfurization
HEMFC	 hydroxide‐exchange polymer membrane fuel cell
HEV	 hybrid electric vehicle
HHV	 higher heating value
HOR	 hydrogen oxidation reaction
HPE	 high‐pressure proton‐exchange membrane electrolyser

IBFC	 indirect borohydride fuel cell
ICE	 internal combustion engine
ICEV	 internal combustion engine vehicle
IFC	 International Fuel Cells
IGBT	 insulated‐gate bipolar transistor
IHI	 Ishikawajima‐Harima Heavy Industries Co., Ltd
IHP	 inner Helmholtz plane
IIR	 indirect internal reforming (also known as ‘integrated reforming’)
ITM	 ion transport membrane, also refers to company ITM Power
IT‐SOFC	 intermediate‐temperature solid oxide fuel cell
IUPAC	 International Union of Pure and Applied Chemistry

KEPCO	 Korea Electric Power Corporation
KIST	 Korea Institute of Science and Technology

LAMOX	 lanthanum molybdate (La2Mo2O9)
LCA	� life‐cycle assessment (also known as ‘life‐cycle analysis’ and ‘cradle‐to‐grave 

analysis’)
LCOE	 levelized cost of electricity
LH2	 liquid hydrogen
LHV	 lower heating value
LNG	 liquefied natural gas
LPG	 liquefied petroleum gas
LSCF	 lanthanum strontium cobaltite ferrite
LSCV	 strontium‐doped lanthanum vanadate
LSGM	 lanthanum gallate (LaSrGaMgO3)
LSM	 strontium‐doped lanthanum manganite
LT‐SOFC	 low‐temperature solid oxide fuel cell

MCFC	 molten carbonate fuel cell
MCR	 microchannel reactor
MEA	 membrane–electrode assembly
MEMS	 microelectromechanical systems
METI	 Ministry of Economy, Trade and Industry (Japan)
MFC	 microbial fuel cell
MFF	 mass flow factor
MHPS	 Mitsubishi Hitachi Power Systems
MIEC	 mixed ionic–electronic conductor (oxides)
MOF	 metal–organic framework
MOSFET	 metal‐oxide‐semiconductor field‐effect transistor
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MPMDMS	 (3‐mercaptopropyl)methyldimethoxysilane
MRFC	 mixed‐reactant fuel cell
MSW	 municipal solid waste
MTBF	 mean time between failures
MWCNT	 multiwalled carbon nanotube

NADP	 nicotinamide adenine dinucleotide phosphate
NASA	 National Aeronautics and Space Administration
NCPO	 non-catalytic partial oxidation
NEDO	 New Energy Development Organization (Japan)
NOMO	 Notice of Market Opportunities
NTP	 normal temperature and pressure

OCV	 open‐circuit voltage
OEM	 original equipment manufacturer
OER	 oxygen evolution reaction
OHP	 outer Helmholtz plane
ORR	 oxygen reduction reaction

P2G	 power‐to‐gas
P3MT	 poly(3‐methylthiophene)
PAFC	 phosphoric acid fuel cell
PANI	 polyaniline
PAR	 photosynthetically active radiation
PBI	 polybenzimidazole
PBSS	 poly(benzylsulfonic acid)siloxane
PC	 phthalocyanine
PCT	 pressure composition isotherm
PEC	 photoelectrochemical cell
PEMFC	� proton‐exchange membrane fuel cell (also called ‘polymer electrolyte 

membrane fuel cell’ and same as SPEFC and SPFC)
PET	 polyethylene terephthalate
PF	 power factor, also PFC power factor correction
PFD	 process flow diagram
PFSA	 perfluorinated sulfonic acid
plc	 programmable logic controller
POX	 partial oxidation
PPA	 polyphosphoric acid
PPBP	 poly(1,4‐phenylene), poly(4 phenoxybenzoyl‐1,4‐phenylene)
Ppy	 polypyrrole
PROX	 preferential oxidation
PrOx	 preferential oxidation reactor
PSA	 pressure swing adsorption
PTFE	 polytetrafluoroethylene
PV	 photovoltaic
PWM	 pulse width modulation

QA	 quaternary ammonium
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RDE	 rotating disc electrode
RFB	 redox flow battery
RH	 relative humidity
RHE	 reversible hydrogen electrode
RRDE	 rotating ring‐disc electrode
RSF	 rotational speed factor

SATP	 standard ambient temperature and pressure
SCG	 simulated coal gas
SCT‐CPO	 short contact time catalytic partial oxidation
SDC	 samarium‐doped ceria/samaria‐doped ceria (same as CSO)
SECA	 Solid State Energy Conversion Alliance
SFCM	 standard cubic foot per minute
SHE	 standard hydrogen electrode
SI	 International System of Units (French: Système international d’unités)
SLM	 standard litre per minute
SMR	 steam reforming reaction
SNG	 substitute natural gas (also synthetic natural gas)
SOFC	 solid oxide fuel cell
m-SPAEEN-60	 sulfonated poly(arylene ether ether nitrile)
SPEEK	 sulfonated polyether ether ketone
SPEFC	 solid polymer electrolyte fuel cell (same as PEMFC)
SPFC	 solid polymer fuel cell (same as PEMFC)
SPOF	 single point of failure
STP	 standard temperature and pressure
SWPC	 Siemens Westinghouse Power Corporation

TAA	 tetraazaannulene
THT	 tetrahydrothiophene
TMPP	 tetramethoxyphenylporphyrin
TPP	 tetraphenylporphyrin
TPTZ	 2, 4, 6‐tris(2‐pyridyl)‐1,3,5‐triazine
TTW	 tank‐to‐wheel

UCC	 Union Carbide Corporation
UK	 United Kingdom
ULP	 unleaded petrol
UPS	 uninterruptible power system; also uninterruptible power supply
URFC	 unitized regenerative fuel cell
USA	 United States of America
USB	 universal serial bus
UTC	 United Technologies Corporation
UV	 ultraviolet

WGS	 water–gas shift
WTT	 well‐to‐tank
WTW	 well‐to‐wheels

XPS	 X‐ray photoelectron spectroscopy
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Symbols and Units

Subunits Multiple units

d deci 10−1 k kilo 103

c centi 10−2 M mega 106

m milli 10−3 G giga 109

μ micro 10−6 T tera 1012

n nano 10−9 P peta 1015

A	 ampere
A	� electrode area (cm2), also coefficient in natural logarithm form of the Tafel 

equation
Ah	 ampere hour
a	� chemical activity; also coefficient in base 10 logarithm form of the Tafel 

equation
ax	 chemical activity of species x
atm	 atmosphere (=101.325 kPa)
B	 exergy (J)
ΔB	 change in exergy (J)
bbl	 barrel of oil: 35 imperial gallons (159.113 L), or 42 US gallons (158.987 L)
bar	 unit of pressure (=100 kPa)
bhp	 brake horsepower (=745.7 W)
C	 constant in various equations; also coulomb (=1A s), the unit of electric charge
°C	 degree Celsius
CP	 specific heat capacity at constant pressure (J kg−1 K−1)
CV	 specific heat capacity at constant volume (J kg−1 K−1)
cP 	 molar heat capacity at constant pressure (J mol−1 K−1)
cV 	 molar heat capacity at constant volume (J mol−1 K−1)
cm	 centimetre
Dm	 diffusion coefficient (m2 s−1)
d	 separation of charge layers in a capacitor (mm)
E	 electrode potential (V)
E°	 standard electrode potential (V)
Er	 reversible electrode potential (V)
E r
	 standard reversible electrode potential (V)
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EW	 (membrane) equivalent weight
e−	 electron, or the charge on one electron (=1.602 × 10−19 coulombs)
ΔEact	 activation overpotential (V)
F	 farad, unit of electrical capacitance (s4 A2 m−2 kg−1)
F	 Faraday constant (=96 458 coulombs mol−1)
ft	 foot (linear measurement = 305 mm)
G	 Gibbs free energy (J)
ΔG	 change in Gibbs free energy (J)
ΔG°	 change in standard Gibbs free energy (J)
G f
 	 standard Gibbs free energy of formation (J)

fG 	 change in standard Gibbs free energy of formation (J)
g 	 molar Gibbs free energy (J mol−1)

g 	 change in molar Gibbs free energy (J mol−1)
g 	 change in standard molar Gibbs free energy (J mol−1)

fg 	 change in molar Gibbs free energy of formation (J mol−1)
fg  	 change in standard molar Gibbs free energy of formation (J mol−1)

g	 gram
g	 acceleration due to gravity (m s−2)
H	 enthalpy (J)
ΔH	 change in enthalpy (J)
ΔH°	 change in standard enthalpy (J)
H f
 	 standard enthalpy of formation (J)

fH  	 change in standard enthalpy (heat) of formation (J)
h 	 molar enthalpy (J mol−1)

h 	 change in molar enthalpy (J mol−1)
h 	 change in standard molar enthalpy (J mol−1)

fh 	 change molar enthalpy of formation (J mol−1)
fh  	 change in standard molar enthalpy of formation (J mol−1)

h	 hour
IR e

/	 resistive loss in electrolyte (Ω)
IR t

/	 total resistive loss in electrodes (Ω)
I	 current (A)
i	 current density, i.e., current per unit area (usually expressed in mA cm−2)
ic	 crossover current (A)
il	 limiting current density (usually expressed in mA cm−2)
io	 exchange-current density (usually expressed in mA cm−2)
J	 joule (=1 W s)
K	 kelvin (used as a measure of absolute temperature)
L	 litre
MFF	 mass flow factor (kg s−1 K1/2 bar−1)
m	 metre
ṁ	 mass flow rate, e.g., of gas (kg s−1) or of a liquid (ml min−1)
mx	 mass of substance x (g)
mEq	 milliequivalent (weight) (mg L−1)
mol	� mole, i.e., mass of 6.022 × 1023 elementary units (atoms, molecules, etc.) of a 

substance
N	 newton (unit of force = 1 kg m s−2)
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N	 rotor speed of fan (revolutions per minute)
NA	 Avogadro’s number, 6.022140857 × 1023

N‐m3	 normal cubic metre of gas (i.e., that measured at NTP)
n	� number of units (electrons, atoms, molecules) involved in a chemical or elec-

trochemical reaction; also number of cells in fuel‐cell stack
ni	 number of units or moles of species i
nx 	 molar flow rate of species x (mol s−1)
P	 pressure (in Pa, or bar)
Pe	� power (W), only used when context is clear that pressure is not under discussion
P°	 standard pressure (=100 kPa)
PSAT	 saturated vapour pressure
Px	 partial pressure of species x
Pa	 pascal (1 Pa = 1 N m−2 = 9.869 × 10−6 atm)
ppb	 parts per billion
pH	 numerical scale used to specify the acidity or basicity of an aqueous solution
ppm	 parts per million
R	 gas constant (=8.1345 J K−1 mol−1)
R/	 resistance (Ω)
RDS,on	 internal resistance of a transistor
RH	 relative humidity (%); also denoted by the symbol ϕ (v.i.)
®	 registered trademark/copyright
r	 area specific resistance (Ω cm2)
S	 siemens, unit of conductance (Ω−1)
S	 entropy (J K−1)
ΔS	 change in entropy (J K−1)
ΔS°	 change in standard entropy (J K−1)
S f
 	 standard entropy of formation (J K−1)

fS∆  	 change in standard entropy of formation (J K−1)
s 	 molar entropy (J K−1 mol−1)

s∆ 	 change in molar entropy (J K−1 mol−1)
s 	 change in standard molar entropy (J mol−1)

fs∆ 	 change in molar entropy of formation (J mol−1)
fs∆ 	 change in standard molar entropy of formation (J mol−1)

s	 second
SLM	 standard litre per minute
T	 temperature
TM	 trademark
t	 tonne
t1/2	 half‐life
V	 volt
Vc	 cell voltage (V)
Vr	 reversible cell voltage; also known as ‘open‐circuit voltage’ (V)
Vr
	� reversible cell voltage (V) under standard conditions of temperature (298.15 K) 

and pressure (101.325 kPa)
ΔVgain	 voltage gain (V)
ΔVloss	 voltage loss (V)
vol.%	 volume percent
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W	 work done, e.g., in compressing a gas (J)
W′	 isentropic work (J)
W	 watt
Wel	 watt, electrical power
Wth	 watt, thermal power
Wh	 watt‐hour
wt.%	 weight percent
xi	 mole fraction of species i in solution
Z	 impedance (Ω)
z	� number of units (electrons, atoms, molecules) involved in a chemical or elec-

trochemical reaction

α	 charge transfer coefficient
γ	 ratio of the specific heats of a gas CP:CV
δm	 thickness of proton exchange membrane (cm)
ɛ	 electrical permittivity (F m−1)
ξ	 electro‐osmotic coefficient
η	 electrode overpotential (V); also efficiency (%) (e.g., of a fuel cell)
η+	 overpotential at a positive electrode (V)
η−	 overpotential at a negative electrode (V)
ηC	 isentropic compressor efficiency (%)
ηf	 fuel utilization coefficient (%), a ‘figure of merit’ for DMFCs
ϑ	 phase angle
λ	 stoichiometric ratio
μf	 fuel utilization coefficient
μi	 chemical potential of species i (J kg−1 or J mol−1)
μ	 gas viscosity (centipoise, cP = 0.001 kg m−1 s−1)
ϕ	 relative humidity (usually expressed as a percentage); also denoted by RH
ρ	 gas density (kg m−3)
ω	� humidity ratio, also known as ‘absolute humidity’ and ‘specific humidity’; sym-

bol also used for radial frequency
Ω	 ohm


