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Since publication of the first edition of Fuel Cell Systems Explained, three compelling 
drivers have supported the continuing development of fuel‐cell technology, namely:

 ● The need to maintain energy security in an energy‐hungry world.
 ● The desire to reduce urban air pollution from vehicles.
 ● The mitigation of climate change by lowering anthropogenic emissions of carbon 

dioxide.

New materials for fuel cells, together with improvements in the performance and 
lifetimes of stacks, are underpinning the emergence of the first truly commercial 
systems in applications that range from forklift trucks to power sources for mobile phone 
towers. Leading vehicle manufacturers have embraced the use of electric drivetrains 
and now see hydrogen fuel cells complementing the new battery technologies that have 
also emerged over the past few years. After many decades of laboratory development, a 
global — but fragile — fuel‐cell industry is bringing the first products to market.

To assist those who are unfamiliar with fuel‐cell electrochemistry, Chapter 1 of this 
third edition has been expanded to include a more detailed account of the evolution of 
the fuel cell and its accompanying terminology. In the following chapters, extensive 
revision of the preceding publication has removed material that is no longer relevant to 
the understanding of modern fuel‐cell systems and has also introduced the latest 
research findings and technological advances. For example, there are now sections 
devoted to fuel‐cell characterization, new materials for low‐temperature hydrogen 
and liquid‐fuelled systems, and a review of system commercialization. Separate 
chapters on fuel processing and hydrogen storage have been introduced to emphasize 
how hydrogen may gain importance both in future transport systems and in providing 
the means for storing renewable energy.

The objective of each chapter is to encourage the reader to explore the subject in 
more depth. For this reason, references have been included as footnotes when it is 
necessary to  substantiate or reinforce the text. To stimulate further interest, however, 
some recommended further reading may be given at the end of a chapter.

There are now several books and electronic resources available to engineers and 
 scientists new to fuel‐cell systems. The third edition of Fuel Cell Systems Explained 
does not intend to compete with specialist texts that can easily be accessed via the 
Internet. Rather, it is expected that the book will continue to provide an introduction 
and overview for students and teachers at universities and technical schools and act as 

Preface
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a primer for postgraduate researchers who have chosen to enter this field of technology. 
Indeed, it is hoped that all readers — be they practitioners, researchers and students 
in electrical, power, chemical and automotive engineering disciplines — will continue 
to benefit from this essential guide to the principles, design and implementation of 
fuel‐cell systems.

December 2017 Andrew L. Dicks, Brisbane, Australia
David A. J. Rand, Melbourne, Australia
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IUPAC International Union of Pure and Applied Chemistry

KEPCO Korea Electric Power Corporation
KIST Korea Institute of Science and Technology

LAMOX lanthanum molybdate (La2Mo2O9)
LCA  life‐cycle assessment (also known as ‘life‐cycle analysis’ and ‘cradle‐to‐grave 

analysis’)
LCOE levelized cost of electricity
LH2 liquid hydrogen
LHV lower heating value
LNG liquefied natural gas
LPG liquefied petroleum gas
LSCF lanthanum strontium cobaltite ferrite
LSCV strontium‐doped lanthanum vanadate
LSGM lanthanum gallate (LaSrGaMgO3)
LSM strontium‐doped lanthanum manganite
LT‐SOFC low‐temperature solid oxide fuel cell

MCFC molten carbonate fuel cell
MCR microchannel reactor
MEA membrane–electrode assembly
MEMS microelectromechanical systems
METI Ministry of Economy, Trade and Industry (Japan)
MFC microbial fuel cell
MFF mass flow factor
MHPS Mitsubishi Hitachi Power Systems
MIEC mixed ionic–electronic conductor (oxides)
MOF metal–organic framework
MOSFET metal‐oxide‐semiconductor field‐effect transistor



xxii Acronyms and Initialisms

MPMDMS (3‐mercaptopropyl)methyldimethoxysilane
MRFC mixed‐reactant fuel cell
MSW municipal solid waste
MTBF mean time between failures
MWCNT multiwalled carbon nanotube

NADP nicotinamide adenine dinucleotide phosphate
NASA National Aeronautics and Space Administration
NCPO non-catalytic partial oxidation
NEDO New Energy Development Organization (Japan)
NOMO Notice of Market Opportunities
NTP normal temperature and pressure

OCV open‐circuit voltage
OEM original equipment manufacturer
OER oxygen evolution reaction
OHP outer Helmholtz plane
ORR oxygen reduction reaction

P2G power‐to‐gas
P3MT poly(3‐methylthiophene)
PAFC phosphoric acid fuel cell
PANI polyaniline
PAR photosynthetically active radiation
PBI polybenzimidazole
PBSS poly(benzylsulfonic acid)siloxane
PC phthalocyanine
PCT pressure composition isotherm
PEC photoelectrochemical cell
PEMFC  proton‐exchange membrane fuel cell (also called ‘polymer electrolyte 

membrane fuel cell’ and same as SPEFC and SPFC)
PET polyethylene terephthalate
PF power factor, also PFC power factor correction
PFD process flow diagram
PFSA perfluorinated sulfonic acid
plc programmable logic controller
POX partial oxidation
PPA polyphosphoric acid
PPBP poly(1,4‐phenylene), poly(4 phenoxybenzoyl‐1,4‐phenylene)
Ppy polypyrrole
PROX preferential oxidation
PrOx preferential oxidation reactor
PSA pressure swing adsorption
PTFE polytetrafluoroethylene
PV photovoltaic
PWM pulse width modulation

QA quaternary ammonium



xxiiiAcronyms and Initialisms  

RDE rotating disc electrode
RFB redox flow battery
RH relative humidity
RHE reversible hydrogen electrode
RRDE rotating ring‐disc electrode
RSF rotational speed factor

SATP standard ambient temperature and pressure
SCG simulated coal gas
SCT‐CPO short contact time catalytic partial oxidation
SDC samarium‐doped ceria/samaria‐doped ceria (same as CSO)
SECA Solid State Energy Conversion Alliance
SFCM standard cubic foot per minute
SHE standard hydrogen electrode
SI International System of Units (French: Système international d’unités)
SLM standard litre per minute
SMR steam reforming reaction
SNG substitute natural gas (also synthetic natural gas)
SOFC solid oxide fuel cell
m-SPAEEN-60 sulfonated poly(arylene ether ether nitrile)
SPEEK sulfonated polyether ether ketone
SPEFC solid polymer electrolyte fuel cell (same as PEMFC)
SPFC solid polymer fuel cell (same as PEMFC)
SPOF single point of failure
STP standard temperature and pressure
SWPC Siemens Westinghouse Power Corporation

TAA tetraazaannulene
THT tetrahydrothiophene
TMPP tetramethoxyphenylporphyrin
TPP tetraphenylporphyrin
TPTZ 2, 4, 6‐tris(2‐pyridyl)‐1,3,5‐triazine
TTW tank‐to‐wheel

UCC Union Carbide Corporation
UK United Kingdom
ULP unleaded petrol
UPS uninterruptible power system; also uninterruptible power supply
URFC unitized regenerative fuel cell
USA United States of America
USB universal serial bus
UTC United Technologies Corporation
UV ultraviolet

WGS water–gas shift
WTT well‐to‐tank
WTW well‐to‐wheels

XPS X‐ray photoelectron spectroscopy





 xxv

 Symbols and Units

Subunits Multiple units

d deci 10−1 k kilo 103

c centi 10−2 M mega 106

m milli 10−3 G giga 109

μ micro 10−6 T tera 1012

n nano 10−9 P peta 1015

A ampere
A  electrode area (cm2), also coefficient in natural logarithm form of the Tafel 

equation
Ah ampere hour
a  chemical activity; also coefficient in base 10 logarithm form of the Tafel 

equation
ax chemical activity of species x
atm atmosphere (=101.325 kPa)
B exergy (J)
ΔB change in exergy (J)
bbl barrel of oil: 35 imperial gallons (159.113 L), or 42 US gallons (158.987 L)
bar unit of pressure (=100 kPa)
bhp brake horsepower (=745.7 W)
C constant in various equations; also coulomb (=1A s), the unit of electric charge
°C degree Celsius
CP specific heat capacity at constant pressure (J kg−1 K−1)
CV specific heat capacity at constant volume (J kg−1 K−1)
cP  molar heat capacity at constant pressure (J mol−1 K−1)
cV  molar heat capacity at constant volume (J mol−1 K−1)
cm centimetre
Dm diffusion coefficient (m2 s−1)
d separation of charge layers in a capacitor (mm)
E electrode potential (V)
E° standard electrode potential (V)
Er reversible electrode potential (V)
E r
 standard reversible electrode potential (V)



xxvi  Symbols and Units

EW (membrane) equivalent weight
e− electron, or the charge on one electron (=1.602 × 10−19 coulombs)
ΔEact activation overpotential (V)
F farad, unit of electrical capacitance (s4 A2 m−2 kg−1)
F Faraday constant (=96 458 coulombs mol−1)
ft foot (linear measurement = 305 mm)
G Gibbs free energy (J)
ΔG change in Gibbs free energy (J)
ΔG° change in standard Gibbs free energy (J)
G f
  standard Gibbs free energy of formation (J)

fG  change in standard Gibbs free energy of formation (J)
g  molar Gibbs free energy (J mol−1)

g  change in molar Gibbs free energy (J mol−1)
g  change in standard molar Gibbs free energy (J mol−1)

fg  change in molar Gibbs free energy of formation (J mol−1)
fg   change in standard molar Gibbs free energy of formation (J mol−1)

g gram
g acceleration due to gravity (m s−2)
H enthalpy (J)
ΔH change in enthalpy (J)
ΔH° change in standard enthalpy (J)
H f
  standard enthalpy of formation (J)

fH   change in standard enthalpy (heat) of formation (J)
h  molar enthalpy (J mol−1)

h  change in molar enthalpy (J mol−1)
h  change in standard molar enthalpy (J mol−1)

fh  change molar enthalpy of formation (J mol−1)
fh   change in standard molar enthalpy of formation (J mol−1)

h hour
IR e

/ resistive loss in electrolyte (Ω)
IR t

/ total resistive loss in electrodes (Ω)
I current (A)
i current density, i.e., current per unit area (usually expressed in mA cm−2)
ic crossover current (A)
il limiting current density (usually expressed in mA cm−2)
io exchange-current density (usually expressed in mA cm−2)
J joule (=1 W s)
K kelvin (used as a measure of absolute temperature)
L litre
MFF mass flow factor (kg s−1 K1/2 bar−1)
m metre
ṁ mass flow rate, e.g., of gas (kg s−1) or of a liquid (ml min−1)
mx mass of substance x (g)
mEq milliequivalent (weight) (mg L−1)
mol  mole, i.e., mass of 6.022 × 1023 elementary units (atoms, molecules, etc.) of a 

substance
N newton (unit of force = 1 kg m s−2)



xxvii Symbols and Units  

N rotor speed of fan (revolutions per minute)
NA Avogadro’s number, 6.022140857 × 1023

N‐m3 normal cubic metre of gas (i.e., that measured at NTP)
n  number of units (electrons, atoms, molecules) involved in a chemical or elec-

trochemical reaction; also number of cells in fuel‐cell stack
ni number of units or moles of species i
nx  molar flow rate of species x (mol s−1)
P pressure (in Pa, or bar)
Pe  power (W), only used when context is clear that pressure is not under discussion
P° standard pressure (=100 kPa)
PSAT saturated vapour pressure
Px partial pressure of species x
Pa pascal (1 Pa = 1 N m−2 = 9.869 × 10−6 atm)
ppb parts per billion
pH numerical scale used to specify the acidity or basicity of an aqueous solution
ppm parts per million
R gas constant (=8.1345 J K−1 mol−1)
R/ resistance (Ω)
RDS,on internal resistance of a transistor
RH relative humidity (%); also denoted by the symbol ϕ (v.i.)
® registered trademark/copyright
r area specific resistance (Ω cm2)
S siemens, unit of conductance (Ω−1)
S entropy (J K−1)
ΔS change in entropy (J K−1)
ΔS° change in standard entropy (J K−1)
S f
  standard entropy of formation (J K−1)

fS∆   change in standard entropy of formation (J K−1)
s  molar entropy (J K−1 mol−1)

s∆  change in molar entropy (J K−1 mol−1)
s  change in standard molar entropy (J mol−1)

fs∆  change in molar entropy of formation (J mol−1)
fs∆  change in standard molar entropy of formation (J mol−1)

s second
SLM standard litre per minute
T temperature
TM trademark
t tonne
t1/2 half‐life
V volt
Vc cell voltage (V)
Vr reversible cell voltage; also known as ‘open‐circuit voltage’ (V)
Vr
  reversible cell voltage (V) under standard conditions of temperature (298.15 K) 

and pressure (101.325 kPa)
ΔVgain voltage gain (V)
ΔVloss voltage loss (V)
vol.% volume percent



xxviii  Symbols and Units

W work done, e.g., in compressing a gas (J)
W′ isentropic work (J)
W watt
Wel watt, electrical power
Wth watt, thermal power
Wh watt‐hour
wt.% weight percent
xi mole fraction of species i in solution
Z impedance (Ω)
z  number of units (electrons, atoms, molecules) involved in a chemical or elec-

trochemical reaction

α charge transfer coefficient
γ ratio of the specific heats of a gas CP:CV
δm thickness of proton exchange membrane (cm)
ɛ electrical permittivity (F m−1)
ξ electro‐osmotic coefficient
η electrode overpotential (V); also efficiency (%) (e.g., of a fuel cell)
η+ overpotential at a positive electrode (V)
η− overpotential at a negative electrode (V)
ηC isentropic compressor efficiency (%)
ηf fuel utilization coefficient (%), a ‘figure of merit’ for DMFCs
ϑ phase angle
λ stoichiometric ratio
μf fuel utilization coefficient
μi chemical potential of species i (J kg−1 or J mol−1)
μ gas viscosity (centipoise, cP = 0.001 kg m−1 s−1)
ϕ relative humidity (usually expressed as a percentage); also denoted by RH
ρ gas density (kg m−3)
ω  humidity ratio, also known as ‘absolute humidity’ and ‘specific humidity’; sym-

bol also used for radial frequency
Ω ohm


