Life Sciences, Information Sciences

Edited by
Thierry Gaudin, Dominique Lacroix
Marie-Christine Maurel
and Jean-Charles Pomerol
Life Sciences, Information Sciences
Contents

Preface ... xv
Selection of Publications xix
Introduction ... xxiii

Part 1. From Gene to Species: Variability, Randomness and Stability .. 1

Chapter 1. The Emergence of Life: Some Notes on the Origin of Biological Information 3
Antonio LAZCANO
 1.1. Acknowledgments .. 12
 1.2. Bibliography ... 12

Chapter 2. Fluctuating RNA .. 17
Giuseppe ZACCAI, Marie-Christine MAUREL and Ada YONATH
 2.1. The ribosome ... 17
 2.2. Ribosome dynamics 18
 2.3. Primitive RNA, ribozymes and viroids 20
 2.4. The proto-ribosome 21
 2.5. Bibliography ... 22

Chapter 3. Artificial Darwinian Evolution of Nucleic Acids .. 23
Frédéric DUCONGÉ
 3.1. Refresher on Darwin’s theory of evolution 23
 3.2. The molecular mechanisms of evolution 24
3.3. Molecular evolution external to the being 25
3.4. Imagery of molecular evolution 26
3.5. Conclusion .. 27
3.6. Acknowledgments ... 27
3.7. Bibliography .. 27

Chapter 4. Information and Epigenetics 29
András PÁLDI

4.1. Bibliography .. 34

Chapter 5. Molecular Forces and Motion in the Transmission of Information in Biology 37
Giuseppe ZACCAI

5.1. The dynamics–function hypothesis 37
5.2. From thermodynamics to molecular forces 38
5.3. Like the devil, biology is in the details 39
5.4. The guitar in the river: theoretical MD 40
5.5. Experimental MD ... 40
5.6. Measuring average MD in whole cells 41
5.7. Dynamics response to stress ... 41
5.8. Conclusion: evolution “is obliged” to select dynamics 42
5.9. Bibliography .. 42

Chapter 6. Decline and Contingency, Bases of Biological Evolution 45
Bernard DUJON

6.1. Introduction ... 45
6.2. Too many genes in the genomes 46
6.3. Parasitism and symbiosis ... 48
6.4. Asexual eukaryotes .. 49
6.5. Yeasts ... 50
6.6. Conclusion ... 52
6.7. Bibliography .. 52

Chapter 7. Conservation, Co-evolution and Dynamics: From Sequence to Function 55
Alessandra CARBONE

7.1. Introduction ... 55
7.2. Reverse engineering: from the protein described in a single dimension to its 3D properties 56
7.3. Before any modeling, the geometric and physical properties, the behavior and history of proteins are characterized 57
7.3.1. Proteins are dynamic objects ... 57
7.3.2. Proteins have a history .. 57
7.3.3. Some proteins share the same evolutionary history 57
7.4. Chance and selection govern the generation of observed sequences 58
7.5. Conservation and interaction sites of proteins 59
7.6. Co-evolution: identification of contacts that can occur at different moments in the lifetime of a protein 60
7.7. Co-evolution used to reconstruct protein–protein interaction networks in viruses ... 61
7.8. Molecular modeling of several partners used to reconstruct protein–protein interaction networks for prokaryotic and eukaryotic organisms ... 63
7.9. Dynamics and function .. 64
7.10. Conclusions .. 64
7.11. Acknowledgments ... 65
7.12. Bibliography ... 65

Chapter 8. Localization of the Morphodynamic Information in Amniote Formation ... 69
Vincent FLEURY
8.1. Introduction ... 69
8.2. Schematic view of an amniote .. 70
8.3. Mechanism of amniote formation ... 74
8.4. Additional features ... 77
8.5. Discussion and conclusion ... 78
8.6. Bibliography ... 79

Chapter 9. From the Century of the Gene to that of the Organism: Introduction to New Theoretical Perspectives .. 81
Maël MONTÉVIL, Giuseppe LONGO and Ana SOTO
9.1. Introduction ... 81
9.2. Philosophical positions ... 87
9.3. From the inert to the living .. 87
9.4. Cell theory: a starting point toward a theory of organisms 88
9.5. The founding principles: from entanglement to integration? 89
9.5.1. Genealogy of the three proposed principles: the default state, the principle of organization and the principle of variation 89
9.5.2. How to organize these principles into a coherent ensemble? 90
Chapter 10. The Game of Survival, Chance and Complexity
Philippe KOURILSKY

10.1. Introduction .. 99
10.2. Complex systems .. 100
 10.2.1. Definition .. 100
 10.2.2. How to evaluate the complexity of a system? 102
 10.2.3. The notion of robustness 102
10.3. Chance and robustness in living organisms 103
 10.3.1. The system of natural defenses in living organisms .. 103
 10.3.2. Natural defenses and robustness 103
 10.3.3. Natural defenses, chance and hazards 104
10.4. Evolution and chance .. 105
 10.4.1. On the links between robustness and evolution 105
 10.4.2. On human evolution 106
10.5. Conclusion: the logic of the living 107
10.6. Bibliography .. 108

Chapter 11. Life from the Origins to Homo sapiens
Jean FOURTAUX

11.1. Setting the scene .. 109
11.2. The conquest of solid earth by the vertebrates 110
11.3. A few insights on evolution 111
 11.3.1. The horse .. 112
 11.3.2. Eagle and vulture 112
 11.3.3. The cetaceans .. 112
 11.3.4. The Red Queen ... 112
 11.3.5. The spotted hyena 112
11.4. Primates and humans ... 113

Chapter 12. Plankton Chronicles and the Tara Expeditions
Christian SARDET

12.1. Plankton .. 117
12.2. Plankton and climate .. 118
12.3. The Tara Oceans expedition 121
12.4. Bibliography .. 123
Chapter 13. The Living Species is Not a Natural Kind but an Intellectual Construction

Philippe GRANDCOLAS

13.1. Introduction .. 125
13.2. Two ways to study evolution: genealogy versus phylogeny 126
13.3. Three main families of concepts of species 128
13.4. Reconciling the different concepts: pragmatism or essentialism? ... 130
13.5. The species and the taxon name 131
13.6. The nature of species: a salutary philosophical exercise 132
13.7. Bibliography ... 135

Chapter 14. The Boxes and their Content: What to Do with Invariants in Biology?

Guillaume LECOINTRE

14.1. Natural history .. 139
14.2. Natural history and evolution 141
14.3. The species ... 142
14.4. The grade .. 146
14.5. Genetic information 146
14.6. The body plan ... 148
14.7. On the misuse of convergences 149
14.8. Conclusion ... 151
14.9. Bibliography .. 151

Chapter 15. Probability, Sense and Evolution (Promenade)

Cédric VILLANI

15.1. Introduction ... 153
15.2. Difficult dialogue 154
15.3. Knowledge and big data 155
15.4. The probabilities 156
15.5. A few striking examples 157
15.5.1. Pagerank ... 157
15.5.2. Decoding ... 157
15.5.3. Reconstitution of preferences 157
15.5.4. Correspondence between genotype and phenotype 158
15.5.5. Phylogeny .. 158
15.5.6. Automatic recognition 160
15.5.7. Autopilot ... 160
15.5.8. Imitation of styles 160
15.5.9. And all the rest. 160
15.6. The MCMC method 160
Part 2. Program and Life: Individuation and Interaction

Chapter 16. Towards an Algorithmic Approach to Life Sciences
Gérard BERRY

16.1. Prologue
16.3. Medical imaging
16.4. The simulation of the living
16.5. Computer modeling and its levels of abstraction
16.6. The role of embedded computing
16.7. Other subjects
16.8. But is all this without danger?
16.9. The importance of training

Chapter 17. Where Does the Notion of Function Come From?
Heinz WISMANN

Chapter 18. The Contribution of Artificial Life to Theoretical Biology
Hugues BERSINI

François FAGES and Guillaume LE GULUDEC
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.2.3. Example of MAPK signaling networks</td>
<td>203</td>
</tr>
<tr>
<td>19.3. Behavioral logical specifications</td>
<td>205</td>
</tr>
<tr>
<td>19.4. Analog specifications</td>
<td>206</td>
</tr>
<tr>
<td>19.4.1. Computability and analog complexity theory</td>
<td>206</td>
</tr>
<tr>
<td>19.4.2. Computability and biochemical algorithmic complexity</td>
<td>208</td>
</tr>
<tr>
<td>19.4.3. GPAC biochemical compilation</td>
<td>210</td>
</tr>
<tr>
<td>19.4.4. Analog–digital converter compared to MAPK</td>
<td>211</td>
</tr>
<tr>
<td>19.5. Biochemical compilation of sequentiality and cell cycle</td>
<td>212</td>
</tr>
<tr>
<td>19.6. Discussion</td>
<td>213</td>
</tr>
<tr>
<td>19.7. Bibliography</td>
<td>214</td>
</tr>
</tbody>
</table>

Chapter 20. From Computational Physics to the Origins of Life

A. Marco Saïtta

20.1. Prebiotic emergence of the basic bricks of life | 217 |
20.2. Computational approaches and simulations in chemistry | 219 |
20.3. Computational approaches and simulations in prebiotic chemistry | 220 |
20.4. New challenges in modeling: reaction networks | 222 |
20.5. At the frontiers of modeling in prebiotic chemistry: | 224 |
 topological approaches | 224 |
20.6. Conclusion and perspectives | 227 |
20.7. Bibliography | 227 |

Chapter 21. Computing and the Temptation of Babel

Kavé Salamatian

21.1. Introduction | 232 |
21.2. The role of information technologies | 233 |
21.3. On conflicts of rationality and more specifically | 236 |
 on rationality in biology | 236 |
21.4. Information and its role in biology | 239 |
21.5. Conclusion | 241 |
21.6. Acknowledgments | 241 |
21.7. Bibliography | 241 |

Chapter 22. Big Data, Knowledge and Biology

Giuseppe Longo and Maël Montévil

22.1. Introduction | 243 |
22.2. Big databases, prediction and chance | 245 |
22.3. Bibliography | 247 |
Chapter 23. Natural Language, Formal Language and the Description of the Living World

Régine VIGNES LEBBE

23.1. Introduction .. 249
23.2. Describing the living world. 250
 23.2.1. The objects in the description of the living world 250
 23.2.2. Describing specimens 251
 23.2.3. Describing taxa 252
23.3. Formal language ... 253
 23.3.1. Semantic step ... 253
 23.3.2. The characters: several concepts 254
 23.3.3. Structured computerization of knowledge. 255
23.4. Conclusion .. 256
23.5. Bibliography ... 257

Chapter 24. Vital Individuation and Morphogenetic Information

Vincent BONTEMES

24.1. Introduction .. 259
24.2. The theory of vital individuation 261
24.3. Lamarck’s ghost ... 263
24.4. DNA and its transductions 266
24.5. Schrödinger’s flower 269

Chapter 25. How to Account for Interspecies Socio-cultural Phenomena? An Evolutionist and Interactionist Model

Dominique GUILLO

25.1. The difficult dialogue between social sciences and life sciences... 273
25.2. The empire of the principle of identity in theories of society and culture. ... 274
25.3. A field of neglected social and cultural phenomena 276
25.4. Linking social sciences and life sciences. 279
25.5. Bibliography .. 281

Chapter 26. Life: A Simplex Whirlwind between Matter, Energy and Information

Jean-Claude BARREY

26.1. Introduction .. 283
26.2. The Craig–Lorenz principle, traditional base of animal and human behavior. ... 284
26.3. The formulations incompatible with modern systemic biology 284
26.4. Lorenz’s principle reformulated based on current biological data 287
26.5. Ethosociological interpretation of the reformulated principle 287
 26.5.1. Ontogenesis, sociogenesis and phylogensis 287
26.6. Regulating societies through economy: ethoeconomy 289
26.7. The bioethological stages of a social evolution 292
26.8. Conclusion .. 293
26.9. Bibliography ... 293

Chapter 27. Nutritional Interactions through the Living:
from Individuals to Societies and Beyond 295
Mathieu LIHOREAU

27.1. The living: a complex nutritional system 295
27.2. Nutrition at the individual level 296
27.3. Nutrition at the collective level 297
 27.3.1. Mass migrations 298
 27.3.2. Collective decisions 299
 27.3.3. Parental care 299
 27.3.4. Cooperative foraging 300
 27.3.5. Division of labor 300
 27.3.6. Interactions between species 301
27.4. Toward a multilevel theory of nutrition? 302
27.5. Bibliography ... 303

Chapter 28. Epigenetic Regulation of Protein Biosynthesis
by Scale Resonance: Study of the Reduction of ESCA Effects
on Vines in Field Applications – Summary 2016 305
Pedro FERRANDIZ, Michel DUHAMEL and Joël STERNHEIMER

28.1. Introduction ... 305
28.2. Materials and methods 307
28.3. 2003–2011 results .. 308
28.4. Results 2012 .. 310
28.5. Results 2013 .. 311
28.6. Results 2014 .. 312
28.7. Results 2015 .. 313
28.8. Results 2016 .. 314
28.9. Conclusions .. 315

Chapter 29. Quantum and Multiverse Inflation 317
Michel CASSÉ

29.1. Copernican and anti-Copernican revolutions 318
29.2. Selection criteria for the number of dimensions of space and time . 318
29.3. Why is time monodimensional? 320
29.4. The bones of the void .. 320
29.5. The buzz effect of inflation 322
29.6. The eye hears and recognizes the fundamental and harmonic 325

Chapter 30. Reontologization of the World and of Life 329
Jean-Gabriel GANASCIA

30.1. Philosophy of information 329
30.2. Method and levels of abstraction 330
30.3. “Inforgs” and infosphere 332
30.4. Originality of the infosphere 333
30.5. Reontologization .. 335
30.6. Ethics of information .. 336
30.7. Bibliography ... 337

Chapter 31. Redesigning Life, a Serious and Credible Research Agenda? 339
Bernadette BENSAUDE VINCENT

31.1. Introduction .. 339
31.2. Favorite metaphors .. 341
31.3. Inappropriate metaphors 343
31.4. Ethical challenges and metaphysics 345
31.5. Bibliography ... 347

Chapter 32. Transhumanism and the Future of Negation 349
Jean-Michel BESNIER

List of Authors ... 359

Index ... 363
The Centre Culturel International de Cerisy proposes, each year from the end of May to early October and within the welcoming context of a 17th-Century castle, an historic monument, meetings to bring together artists, researchers, teachers, students, social and economical actors, as well as the wider public interested in cultural and scientific exchanges.
A long cultural tradition

– Between 1910 and 1939, Paul Desjardins organized the famous “decades” in Pontigny abbey, to unite eminent personalities for debates on literary, social and political themes.

– In 1952, Anne Heurgon-Desjardins, while repairing the castle, created the Centre Culturel and continued, with her own personal touch, the work of her father.

– From 1977 to 2006, her daughters, Catherine Peyrou and Edith Heurgon, took the lead and brought a new dimension to the activities.

– Today, after the departure of Catherine and then of Jacques Peyrou, Cerisy continues under the management of Edith Heurgon and Dominique Peyrou, supported by Anne Peyrou-Bas and Christian Peyrou, also part of Cerisy castle’s Civil Society, as well as with the support of an efficient and dedicated team led by Philippe Kister.

A like-minded original project

– They receive, in a prestigious setting far removed from urban disturbances and for a relatively long time period, people who are animated by the same attraction for discussion, in order to, through communal contemplation, invent new ideas and weave lasting connections.

– The Civil Society graciously puts the premises at the disposal of the Association des Amis de Pontigny-Cerisy, with no lucrative purpose and recognized for its public interest, currently presided over by Jean-Baptiste de Foucauld, the inspector general of finances.

A regularly supported action

– The Centre Culturel, the main means of action of the Association, has organized nearly 750 symposiums broaching, through completely independent routes, the most diverse of themes. These symposiums have given rise, through various editors, to the publication of approximately 550 books.

– The Centre National du Livre ensures continuous support to the organization and publication of the symposiums. The territorial collectivities (Normandy Region, department Council of the Manche, Coutances Mer and Bocage) and the regional directorate of cultural affairs bring their support to the Center, which also organizes, alongside the Universities of Caen and Rennes 2, encounters on themes concerning Normandy and the Great West.
– A Cercle des Partenaires, circle of partners, formed of enterprises, local collectives and public bodies, supports and even initiates prospective encounters on the main contemporary challenges.

Since 2012, a new modern and accessible conference room has allowed for a new formula: the “Entretiens de la Laiterie”, days for exchanges and debates, a collaborative effort from the partners of the Association.

Information:
CCIC, Le Château, 50210 Cerisy-la-Salle, France
Tel.: 02 33 46 91 66
Fax: 02 33 46 11 39
Website: www.ccic-cerisy.asso.fr; email: info.cerisy@ccic-cerisy.asso.fr

Déterminismes et complexités (autour d’Henri Atlan), La Découverte, 2008.

Bachelard, UGE, 10-18, réédition, Hermann, 2011.

Connaissance, activité, organisation, La Découverte, 2005.

Imaginaire, industrie, innovation, Manucius, 2016.

L’industrie, notre avenir, Eyrolles, 2015.

Intelligence de la complexité, L’Aube, réédition Hermann, 2013.

One Hundred Years of Intuitionism (1907-2007), Birkhäuser Verlag AG, 2008.

Des possibles de la pensée (itinéraire philosophique de F. Jullien), Hermann, 2014.

Ouvrir la logique au monde, Hermann, 2009.

Temps et devenir (autour d’Ilya Prigogine), Patiño, réédition, Hermann, 2012.

Logos et théorie des catastrophes (autour de René Thom), Patiño, 1988.

Introduction

The organizers of the Cerisy SVSI (*Sciences de la vie, sciences de l’information*) week wagered that high-caliber researchers from different disciplines, ranging from life sciences on the one hand to information sciences on the other, would have subject material to discuss in *Château de Cerisy* - this exceptional location conducive to reflection – and would be happy to exchange their respective thoughts on the fundamental question of the link between life and information, an intangible element that is even more elusive than life. Several philosophers and ethologists have also brought us their vision. We hope that you will agree, by reading this book, that the wager paid off.

This book begins by questioning the link between the information contained within the genome and the resulting phenotype. This challenging question does not have a simple and unambiguous answer as was initially thought following the discovery of DNA’s double helix. Indeed, Antonio LaZcano reminded us that, shortly after its discovery, Crick said to his son: “The gene is a code”. This is based on the assumption that a cell follows the program written with the four letters of the genome. It is, however, not so simple, as we now know that the follow-up of the process of genome to individual is in no way a straightforward path. Since the 1960s, we have begun to understand that the environment affects gene expression and that in consequence, in a certain sense, the environment influences the phenotype. With the progresses made in epigenetics, it is now well established that methylation affects gene activation and that, in consequence, the same genome can lead to different genotypic traits.
Let us remind ourselves that genes contain sequences of nucleotides, assembled three by three in messenger RNA (transcribed from DNA), and are the “control signals” for any transfer RNA (tRNA), which in turn carry an amino acid. Transported by tRNA to the ribosome, amino acids bind to each other and form a protein. This correspondence system that we call the “genetic code” is “globally deterministic”, but at each stage remains subject to the physiochemical variations of molecules and to the fact that a tRNA can recognize several well-defined nucleic bases (wobble pairing).

We are far from the working principle of a von Neumann computer program, or more precisely a series of instructions (program) transformed by a compiler into machine language that controls elementary operations on data (input) and produces a result (output) or an action. To spell out this analogy, DNA is the program (the instructions); a compiler, tRNA, reads the instructions that are carried out in an assembly machine (the ribosome), which then puts the material (amino acids) together. The proteins represent the result of the program. Unlike von Neumann’s program, as we saw during this symposium, there are many variations that come between DNA and proteins. It is more like a software program, *horresco referens*, which randomly jumps or modifies some instructions, a compiler so poorly made that it is sensitive to external interventions, but so roundabout that it always leads to the production of machine instructions and therefore results!

To return to biology, the first thing that Bernard Dujon demonstrated was that the genome contains a lot of other “information” than the nucleic bases use for their immediate function. It contains ancient “relic” sequences, redundant parts, forgotten parts and bits of genes of undetermined origins. Bernard Dujon’s presentation gives an idea of the immense mish-mash that is the genome. If software programs were like this, not a single application would work!

Bernard Dujon also showed us that evolution mostly works through regression events, a far cry from notions of “progress” and from the linear phylums often cited from a determinist-finalist perspective and in graphic representations of evolution. Bernard Dujon gave us a simple number to show that the size of the genome does not indicate its place in evolution nor the organism’s complexity – *Paramecium* has 49,000 genes whereas *Homo sapiens* have 23,000.

Giuseppe Zaccai, Marie-Christine Maurel, Ada Yonath, András Páldi, Alessandra Carbone and Frédéric Ducongé’s presentations demonstrated the complexity of the

1 Here, we refer only of protein-coding genes, since there are other genes whose products remain in the form of RNA that are very important at the functional level in cells, but that are never translated into proteins.
operations from DNA to protein and to phenotype. The DNA \rightarrow RNA \rightarrow protein \rightarrow phenotype pathway, although globally deterministic, undergoes undeniable variations due to the external environment and internal chaos due to inevitable anomalies arising from such a complex process. As such, in each DNA to RNA, RNA to protein and protein to phenotype pathway, information from outside of the genome sequence has a role. The environment plays a part in the DNA to RNA process by acting on gene expression, the organism’s external environment and the cell environment. In particular, several papers highlighted the role of physical constraints, thermodynamics and molecular arrangement and pairing dynamics (Giuseppe Zaccai, Alessandra Carbone and Vincent Fleury’s papers). Antonio Lazcano, for his part, demonstrated the essential role of RNA in the origin of life. To finish, Jean Fourtaux paints a rapid picture of evolution whose richness is illustrated by the prodigious diversity of planktonic life, discovered by the “Tara” expedition presented by Christian Sardet.

The second part of these presentations revolves around the notion of variability, randomness, probability and species. As András Páldi wrote: “Variation is an intrinsic property of the living […]. It is stability that must be explained”. This opinion is shared by Philippe Kourilsky who returns to the evolutionary consequences of the principle of variation, the central focus of Maël Montévil, Giuseppe Longo and Ana Soto’s presentations who also remind us that, in Philippe Kourilsky’s words, it is a matter of “freedom under constraint”. We often forget, as Guillaume Lecointre pointed out, that the preservation of species through individual variation is one of the concepts underlaid by Darwin’s famous book on the origin of species. It must be said that the role of randomness in biology is often poorly understood, so what can be said about probability? This is one of the subjects touched on by Cédric Villani.

Since variability is intrinsic to life, it is not surprising that the notion of a species becomes difficult to define, as shown by Philippe Grandcolas. Computer science teaches us that the class, like the species, is a category (Guillaume Lecointre) or a representation, according to Kavé Salamatian, whose term is useful for simplifying the work of programmers or scientists. We are in full nominalism, as reminded by Guillaume Lecointre. However, categories or species are just simplifications, with no tangible existence, and Kavé Salamatian warns us against (Babel’s) temptation of considering programming as a universal representation, which would be very limiting. To avoid intentional categorization, all the elements of a category should be enumerated, for example all elephants with an electronic chip. It is exactly this enumeration that we wish to avoid, despite its potential for certain species on their way to rarefaction! To return to the notion of a species, it is therefore not surprising that several papers returned to this problematic (Philippe Grandcolas, Régine Vignes Lebbe and Guillaume Lecointre). Although it seems very complicated, it is simply because we cannot say that there is an exact correspondence between the genome and the species. Bernard Dujon reminds us that the genomes of two
representatives of the same species are not exactly identical, although they have approximately 95% of their base pairs in common.

From another viewpoint, computer scientists interpret any program as a function that combines an output with all inputs in a determinist manner, following a more or less complicated algorithm. For a given input, regardless of the machine and the environment, the output will always be the same. As pointed out by Gérard Berry, what characterizes this algorithm is its independence from the machine, just as the information is independent of the medium. The algorithm is non-substantial according to Heinz Wismann. He explains how the notion of function arose in the Middle Ages to allow the transmission of ecclesiastic rights at the death of the holder, such as with episcopal function. There is a dialectic between a non-substantiality and incorporation, which refers to the materialization of the function-program on any machine. Cédric Villani returns to this important notion of function by questioning the specific function expressed in a network of neurons, a function that is neither analytical nor definable by extension (contrary to the role of a bishop) because it contains several thousand parameters. What epistemological status should we give to such functions that explain nothing, but that are now widely used?

The property of non-dependence of information on a medium makes it such that, as illustrated by Gérard Berry in his report, algorithms are everywhere, including in life sciences (images, three-dimensional representations, models). Although gigantic, databases do not create knowledge or good representations without algorithms (Maël Montévil and Giuseppe Longo, Régine Vignes Lebbe, Cédric Villani). However, modeling in life sciences poses very specific problems, since life has but very distant links with the automatons of artificial life described by Hugues Bersini, despite some spectacular convergences of form. Life is not totally “determinist” in the traditional sense of the term. It is much more “analogue” than discrete, hence the great interest in research on analogical simulators such as those presented by François Fages and Guillaume Le Guludec, and from which the importance placed on computer reconstructions of chemical reactions (A. Marco Saitta) that shed precious light on prebiotic reactions.

If we return to the cell, there is no doubt that it expresses its genes, but with sufficient variability that we cannot seriously support the analogy with a computer software program. It is a return to function, because even if the DNA molecule is perfectly defined at the chemical level, in the cell its function is subject to the variations in all the other molecules present in the cell, unlike computer programs that are also based on function, but are not subject to variation but to potential errors! It is precisely the conservation through variation that makes the cell different to the machine. The machine’s motto would more likely be: “Conservation through immutability”. Cédric Villani, from his standpoint, also insists on the differences between biology and mathematics in terms of sciences.
However, the process of reproduction as a whole is robust: the daughter yeast resembles the mother yeast and assumes the same functions, the \(n \)th generation drosophila resembles its distant ancestor as though they were two drops of water. This being said, although we can say that one drop of water resembles another, there are still many differences at the macro and nano levels. Life is stable in its variation (Guillaume Lecointre), that is to say variability is the very source of robustness. With all its more or less successful proteins, more or less folded, there will always be some, or often one, that binds to the right place, as demonstrated by Alessandra Carbone.

An overview of the presentations led to the idea that the emergence of life and its development are the result of constant trial and error, devoid of sense, in which what “works” best has the ability to supplant the other inhabitants of a niche and last there as long as there are nutritional resources within it. As we were told by Giuseppe Zaccai, “in physics there are laws, in biology there are only exceptions”.

We return to Darwinism at this stage, but at the heart of the organism at the cell level, this cellular Darwinism opens up therapeutic perspectives in the fight against cancer as indicated by Guillaume Lecointre. However, as Philippe Kourilsky says, this trial and error has its rules (as we have just mentioned) and its constraints (notably that of its environment). It is therefore necessary to complete Giuseppe Zaccai’s comment by saying that the exceptions do however obey laws and are subject to constraints.

In terms of evolution, as evoked by Bernard Dujon, there is a lot of destruction and creation of species through crises. The analogy that springs to mind is that of the creative destruction of Schumpeter. If we were to latch back onto programming, evolution is like an algorithm of simulated annealing, aptly named genetic algorithm. We optimize locally and, from time to time, we jostle the system randomly to prevent from finding ourselves trapped in a minimum local (let us call this an evolutionary impasse). On this topic, Cédric Villani spoke of the “Metropolis” algorithm that is a precursor of genetic algorithms. He did, however, also underline the limitations of simulations and Monte Carlo type algorithms: in the end, what can we understand without a model?

Between DNA and the individual, there are many variations, leading to the question of individuality from a Simondonian perspective. This reflection is introduced by Vincent Bontems. In the process of individualization, several presentations insisted on the role of interaction and instruction. Dominique Guillo introduced the notion of interspecies interaction and the transmission of associated knowledge. Mathieu Lihoreau, Jean-Claude Barrey and Pedro Ferrandiz, Michel Duhamel and Joël Sternheimer team put these exchange processes back into an ecological and ethological perspective.
Such rich exchanges between different disciplines lead to astronomical queries (Michel Cassé) and philosophizing on the roles of the living and the artificial (inforgs) that populate the infosphere (Jean-Gabriel Ganascia). The philosophers question themselves on the possibility of creating informational organisms (inforg) with the attributes of life: is it feasible? Desirable? The answers from Bernadette Bensaude Vincent and Jean-Michel Besnier are clearly and resolutely negative. As we are reminded by Jean-Michel Besnier, in a well established philosophical tradition, humanism is the power to say “no”. Coming from the symposium, there was a desire to add that individualization is, in this sense, the obligate passage of humanism and this power to say “no” begins in the cell with the possibility to not completely obey the genes. From this single action, the cell is most definitely not an automaton.

In a metaphorical sense, let us say that life appears to constitute tremendous trial and error, an intense handiwork fluctuating with the whims of Darwinian selection and varying interactions in a limited and unstable environment. We are very far from a program, but what appears clear is that it is just as important to have information as it is to have matter and that the information is not read the same way at each level. At the genome and cellular levels, there is information that resembles a code but is not one in terms of its execution, which is neither essential nor certain. It is the passage of DNA to phenotype and, finally, to that which characterizes a species, that is the object of the first part of this book: From Gene to Species.

The programming vision is formulated around the notion of an algorithm as explained by Gérard Berry. The algorithm does not vary (or according to another algorithm), which differentiates it radically from the living. Unvarying, it does not individualize itself and this leads to reflections on the notion of individualization and the individual uniqueness in life sciences. This draws a boundary between the automaton and the living, even if they are each informational organisms that interact in the infosphere. The interaction then becomes a central concept in the construction of knowledge. From program to life passing through individualization, interaction and philosophy, such is the main thread for the second part of this book.

Acknowledgments

In addition to the countless individual encouragements and support, the organizers would like to thank the following institutions without whose support this symposium could not have occurred: Électricité de France (Region of Paris), Centre National de la Recherche Scientifique (CNRS), Commissariat à l’énergie atomique (CEA), Institut National de Recherche en Informatique et en Automatique (INRIA), Association Reso, Délégation Générale à la Langue Française et aux Langues de France (DGLFLF), Centre des Monuments Nationaux (Administration de l’Abbaye du Mont Saint-Michel) and ISTE Group.