

Materials, Chemicals and Methods for Dental Applications

Johannes Karl Fink

 Scrivener
Publishing

WILEY

Materials, Chemicals and Methods for Dental Applications

Scrivener Publishing
100 Cummings Center, Suite 541J
Beverly, MA 01915-6106

Publishers at Scrivener
Martin Scrivener (martin@scrivenerpublishing.com)
Phillip Carmical (pcarmical@scrivenerpublishing.com)

Materials, Chemicals and Methods for Dental Applications

Johannes Karl Fink

WILEY

This edition first published 2018 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA

© 2018 Scrivener Publishing LLC

For more information about Scrivener publications please visit www.scrivenerpublishing.com.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at <http://www.wiley.com/go/permissions>.

Wiley Global Headquarters

111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials, or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read.

Library of Congress Cataloging-in-Publication Data

ISBN 978-1-119-51031-4

Cover images: Pixabay.Com

Cover design by: Russell Richardson

Set in size of 11pt and Minion Pro by Exeter Premedia Services Private Ltd., Chennai, India

Printed in the USA

10 9 8 7 6 5 4 3 2 1

Contents

Preface	xi
1 Dental Materials	1
1.1 History	1
1.2 Properties	2
1.2.1 Acronyms for Compounds in Dental Compounds	2
1.2.2 Standards in Dentistry	2
1.2.3 Adhesion in Restorative Dentistry	11
1.2.4 Fracture Toughness	12
1.2.5 Biocompatibility of Dental Adhesives	12
1.2.6 Testing the Cytotoxicity	13
1.2.7 Degradation of Dental Polymers	14
1.2.8 Effect of Modulated Photoactivation on Polymerization Shrinkage	15
1.2.9 Ceramics Versus Resin Composites	16
1.3 Materials	17
1.3.1 Provisional Restoratives	17
1.3.2 Restorative Material Kit	18
1.3.3 Polyhedral Oligomeric Silsesquioxane	27
1.3.4 Fiber Reinforced Dental Composites	28
1.3.5 Polymer-Coated Glass Filler	29
1.3.6 Glass Ionomers	32
1.3.7 Bioactive Glass	36
1.3.8 Restorative Dental Glass Ceramics	38
1.3.9 Curable Acrylate Polymer Compositions	39
1.3.10 Hydrophilic Polymer Sponge Structures	40
1.3.11 Hybrid Polymer Network Compositions for Artificial Teeth	42
1.3.12 Urethane Macromers	43
1.3.13 Catechol-Functionalized Polymer	43
1.3.14 High Refractive Index Monomers	44
1.3.15 Antibacterial Polymers for Dental Adhesives	45

1.3.16	Chemical Composition of Contemporary Dental Adhesives	49
1.3.17	Nanostructured Antibacterial and Remineralizing Dental Bonding Agents	50
1.3.18	Rechargeable Calcium Phosphate-Containing Dental Materials	51
1.3.19	Dental Alloys	53
1.3.20	Tooth Desensitizing Oral Care Compositions	54
1.3.21	Commercially Available Compositions	55
1.4	Special Fabrication Methods	60
1.4.1	Photoinitiator System for Hybrid Polymers	60
1.4.2	Nanotechnology	61
1.4.3	Extensive Dark Curing	63
1.4.4	Oral Implantology	70
1.4.5	Dental Inlays	74
	References	75
2	Implants	85
2.1	Dental Restoration Methods	86
2.2	Implant Designs	88
2.3	Dental Restoration Composition	89
2.3.1	Heparin	102
2.4	Hybrid Implants	103
2.4.1	Electrophoretically Prepared Hybrid Materials	104
2.5	CAD/CAM Implants	107
2.5.1	CAD/CAM Implant-Supported Crown	107
2.5.2	High-Density Polymer CAD/CAM Interim Restorations	109
2.5.3	Biocompatibility of Polymer-Infiltrated-Ceramic-Network	110
2.6	Powder Injection Molding	110
2.7	Composite Bone Grafts	112
2.8	Sphene Biocoating on cp-Ti Substrates	113
2.9	Cell-Material Interactions	114
2.9.1	Temperature Changes in One-Piece Implants	114
2.10	Dental Implant with Porous Body	116
2.10.1	Porous Coatings	116
2.10.2	Porous Implant Material	117
2.11	Implant with a Polymeric Post	118
2.12	Short Dental Implants Versus Standard Dental Implants	122
2.13	Adjustable Dental Implants	123

2.14	Materials for Implants	124
2.14.1	Poly(ether ether ketone)	124
2.14.2	Expandable Polymer Dental Implant	135
2.14.3	Endosseous Dental Implant Assembly	136
2.14.4	Titanium-Polymer Composites	138
2.14.5	Titanium Implant Functionalization with Phosphate-Containing Polymers	139
2.14.6	Zirconia Dental Implants	139
2.14.7	Shape-Memory Polymers	143
2.14.8	Tetracycline Polymer Nanofiber Modified Titanium Disks	145
2.14.9	Biopolymers	146
	References	150
3	Dentures	157
3.1	Properties	157
3.1.1	Plaque Index	157
3.1.2	Inhibition of Denture Plaque Deposition	158
3.2	Materials	160
3.2.1	Longevity of Fiber Reinforced Composite	160
3.2.2	Denture Tooth and Material	160
3.2.3	Fixed Partial Dentures Made from Fiber Reinforced Polymer	163
3.2.4	Denture Adhesives	163
3.3	Fabrication Methods	171
3.3.1	Rapid Prototyping in Dentistry	171
3.3.2	Computer-Aided System	172
3.3.3	Two-Step Impression for Complete Denture Fabrication	173
3.3.4	Gingival Retraction Methods	173
	References	174
4	Toothpaste Compositions	177
4.1	History	178
4.2	Ingredients for Toothpastes	179
4.2.1	Abrasive Materials	179
4.2.2	Fluoride	183
4.2.3	Detergents	184
4.2.4	Humectants	184
4.2.5	Thickeners	184
4.2.6	Sweeteners	184
4.2.7	Coloring Agents	192

4.2.8	Organic Antimicrobial Agents	192
4.2.9	Bad Breath Reduction Agents	198
4.2.10	Flavoring Agents	198
4.3	Compositions	198
4.3.1	Processes for Preparing Toothpaste Compositions	198
4.3.2	Non-fluorinated Compositions	205
4.3.3	Alkyl Sulfate and Orthophosphate Free Composition	209
4.3.4	Thin Film Toothpaste Strip	213
4.3.5	Enamel Protectant and Repair Toothpaste	214
4.3.6	Striped Toothpastes	215
4.3.7	Color Changing Compositions	218
4.3.8	Two Phase Toothpaste	220
4.3.9	Composition with Diamond Particles	221
4.3.10	Compositions with Improved Rheology	224
4.3.11	Toothpaste Composition with Improved Shelf Life	225
4.3.12	Bleach-Stable Toothpaste	229
4.3.13	Antibiotic Toothpaste	232
4.3.14	Compositions with Zinc Ions and Polyphosphate Ions	234
4.3.15	Abradable Films	239
4.3.16	Silica Abrasive-Free Composition	239
4.3.17	Toothpaste with Bioadhesive Submicron Emulsion	239
4.3.18	Antiplaque Toothpaste Composition	242
4.3.19	Saponin	245
4.3.20	Foamable Fluoride Oral Care Composition	248
	References	251
5	Mouth Rinses	257
5.1	Mouth Rinses with Hydrogen Peroxide	257
5.1.1	Enhanced Activity of Peroxides	258
5.1.2	Antiplaque Mouth Rinse	260
5.1.3	Method of Treating Mucositis	262
5.1.4	Formulations for Use with Toothbrush Delivery Device	263
5.1.5	Antibacterial Mouthwash	265
5.1.6	Prevention of Periodontal Diseases	266
5.1.7	Alcohol-Free Compositions	267
5.1.8	Dual Phase Mouthwash	269
5.1.9	Non-alcohol Bioactive Essential Oil Mouth Rinses	270

5.2	Properties	272
5.2.1	Periodontal Disease	272
5.2.2	Biological Activity of Antimicrobials	273
5.2.3	Effect on the Microhardness	274
5.2.4	Efficacy of Chlorhexidine	275
5.2.5	Reduction of Breath Malodor	276
5.2.6	Oral Care Composition Containing Ionic Liquids	277
5.2.7	Composition with Propolis Extract	277
	References	279
6	Toothbrushes and Dental Floss	281
6.1	Toothbrushes	281
6.1.1	History	281
6.1.2	Types of Toothbrushes	282
6.1.3	Portable Interdental Toothbrush	284
6.1.4	Tapered Bristle Filaments	285
6.1.5	Free-Moving Flexible Bristles	286
6.1.6	Full-Text Contour-Adjustable Toothbrush	286
6.1.7	Poly(trimethylene terephthalate) Bristles	287
6.2	Dental Floss	288
6.2.1	History	288
6.2.2	Poly(amide) Poly(ethylene oxide) Composites	289
6.2.3	Elastomeric Dental Floss	289
6.2.4	Bristled Dental Floss	291
6.2.5	Star-Shaped Microfiber Dental Floss	291
6.2.6	Dental Floss Inside a Dental Tubule	293
6.2.7	Surface Treated Dental Floss	293
6.2.8	Relationship Between the Use of Dental Floss and the Development of Peri-implantitis	294
6.2.9	Efficacy of an Unwaxed Dental Floss Impregnated with 2% Chlorhexidine	295
6.2.10	Mechanical and Physical Properties of Various Types of Dental Floss	295
	References	296
Index		299
	Acronyms	299
	Chemicals	301
	General Index	310

Preface

This book focuses on the materials used for dental applications. The text focuses on the basic issues and also the literature of the past decade. The book provides a broad overview of dental materials.

Chemicals that are used for the preparation and fabrication of dental materials are explained. Also, the desired properties of these materials are discussed. The relevance of the chemical, physical, and mechanical properties is elucidated.

Methods for the characterization and classification, as well as clinical studies are reviewed here. In particular, materials for dental crowns, implants, toothpaste compositions, mouth rinses, and also materials for toothbrushes and dental floss are discussed.

For example, in toothpaste compositions several classes of materials are incorporated, such as abrasives, detergents, humectants, thickeners, sweeteners, coloring agents, bad breath reduction agents, flavoring agents, tartar control agents, and others. These chemicals are detailed in the text and the chemical structures for a lot of these chemicals are also shown in the figures.

This text may be of importance for students of dental hygiene, therapy and nursing. An increase of knowledge regarding the chemical issues in this field is expected. Also, chemists and other scientists that are interested in these topics could be interested in reading this text to expand their basic knowledge.

How to Use This Book

Utmost care has been taken to present reliable data. Because of the vast variety of material presented here, however, the text cannot be complete in all aspects, and it is recommended that the reader study the original literature for more complete information.

Index

There are three indices: an index of acronyms, an index of chemicals, and a general index. In the index of chemicals, compounds that occur extensively, are not included at every occurrence, but rather when they appear in an important context. When a compound is found in a figure, the entry is marked in boldface letters in the chemical index.

Acknowledgements

I am indebted to our university librarians, Dr. Christian Hasen-hüttl, Dr. Johann Delanoy, Franz Jurek, Margit Keshmiri, Dolores Knabl Steinhäufl, Friedrich Scheer, Christian Slamenik, Renate Tschabuschnig, and Elisabeth Groß for their support in literature acquisition. Many thanks to Dr. Gerhard Kindermann, and coworkers, who inspired me to write this book in the course of my dental treatment there, and in particular thanks to Carmen Piribauer, who checked the manuscript. In addition, many thanks to the head of my department, Professor Wolfgang Kern, for his interest and permission to prepare this text.

I also want to express my gratitude to all the scientists who have carefully published their results concerning the topics dealt with herein. This book could not have been otherwise compiled.

Last, but not least, I want to thank the publisher, Martin Scrivener, for his abiding interest and help in the preparation of the text. In addition, my thanks go to Jean Markovic, who made the final copyedit with utmost care.

Johannes Fink
Leoben, 6th February 2018

1

Dental Materials

The basic materials used in dentistry are metals, ceramics and polymers. There are monographs concerning the materials used in dental applications (1, 2).

1.1 History

The early polymeric materials for dental usage were chemically cured, two-component systems (3). These tooth-colored materials provided a better esthetics than amalgam.

However, initially there were many remaining issues left concerning the chemical and physical properties required to withstand the aggressive oral environment. In particular, high shrinkage, high wear, color changes and lack of bonding to tooth surfaces were the issues associated with these early materials.

The history of dental polymeric materials is shown in Table 1.1.

Adhesive systems have been developed that adhere well not only to enamel, but even to moist dentin. In addition, composites have been made stronger, with a higher wear resistance and color stability. Furthermore, both composites and adhesives have been modified to be curable on demand by exposure to light (3).

Improvements on the composite side were achieved, to a great extent, by optimizing the fillers, while the chemistry behind the organic resin matrix remained essentially the same since the pioneering work of R. L. Bowen in the 1960s. Practically all composites employ dimethacrylates such as TEGDMA, Bis-GMA or UDMA, which are radically polymerized as the primary resin.

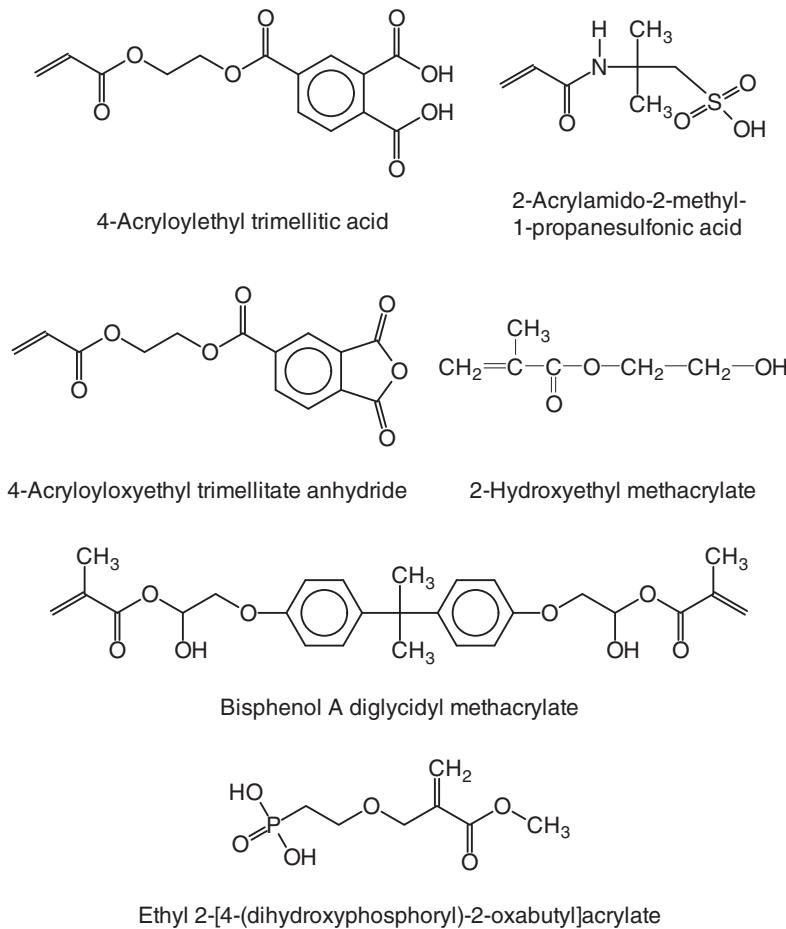
2 MATERIALS, CHEMICALS AND METHODS FOR DENTAL APPLICATIONS

Table 1.1 History of dental polymeric materials (3).

Event	Date
Synthesis and polymerization of methyl methacrylate	1901
Use of poly(methyl methacrylate) (PMMA) as denture base resin (Germany)	1930
First acrylic filling material	1944
Addition of inorganic fillers (non-bonded) to direct filling materials	1951
Investigation of epoxy resins as direct filling materials	1955
Acid-etch technique introduced (Buonocore)	1955
Dimethacrylates (Bis-GMA) and silanized inorganic filler investigated as direct filling material (Bowen)	1958
Bis-GMA composites marketed	1964
Development of polymeric coatings on fillers (Dental Fillings Ltd)	1968
UV-cured dimethacrylate composite resins	1973
Visible-light-cured dimethacrylate composite resins	1977
Introduction of Filtek™ Silorane System to the market	2007

1.2 Properties

1.2.1 *Acronyms for Compounds in Dental Compounds*


Common acronyms for compounds used in dental formulations are collected in Tables 1.2 and 1.3. Some of these compounds are shown in Figure 1.1. Initiators and inhibitors are shown in Figure 1.2.

1.2.2 *Standards in Dentistry*

Standards that are used in dentistry are summarized in Table 1.4.

Color stability is an important characteristic of dental materials and it is expected that the test methods in this International Standard ISO 7491:2000 will be referred to in the International Standards specifying such materials (5).

ISO 10477:2004 classifies polymer-based dental crown and bridge materials and also specifies their requirements. In addition, this standard specifies the test methods to be used to determine the compliance with these requirements (6). It is applicable to polymer-based dental crown and bridge materials for laboratory-fabricated

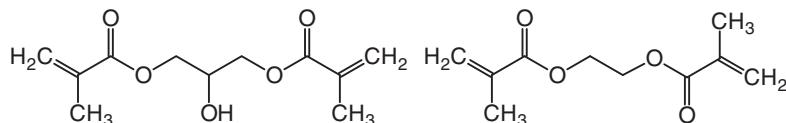
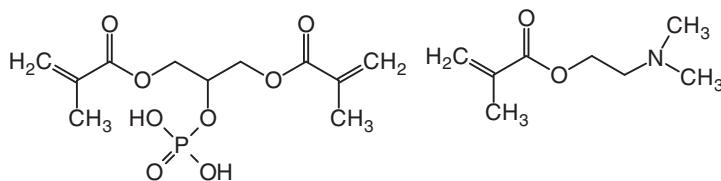
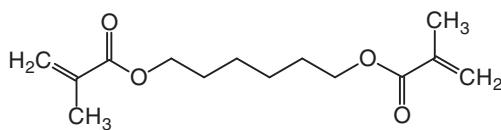


Figure 1.1 Monomers used in dental formulations.

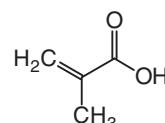
4 MATERIALS, CHEMICALS AND METHODS FOR DENTAL APPLICATIONS


Table 1.2 Acronyms for monomers (4).

Acronym	Chemical Name
4-AETA	4-Acryloyloxyethyl trimellitate anhydride
4-AET	4-Acryloylethyl trimellitic acid
AMPS	2-Acrylamido-2-methyl-1-propanesulfonic acid
Bis-MEP	Bis[2-(methacryloyloxy)ethyl] phosphate
Bis-EMA	Ethoxylated bisphenol A glycol dimethacrylate
Bis-GMA	Bisphenol A diglycidyl methacrylate
BPDM	Biphenyl dimethacrylate or 4,40-dimethacryloyloxyethoxy carbonylbiphenyl-3,30-dicarboxylic acid
DMAEMA	Dimethylaminoethyl methacrylate
EAEP	Ethyl 2-[4-(dihydroxyphosphoryl)-2-oxabutyl]acrylate
EGDMA	Ethylene glycol dimethacrylate
GDMA	Glycerol dimethacrylate
GPDM	Glycerol phosphate dimethacrylate
HDDMA	1,6-Hexanediol dimethacrylate
HEMA	2-Hydroxyethyl methacrylate


Glycerol dimethacrylate

Ethyleneglycol dimethacrylate



Glycerol phosphate dimethacrylate

Dimethylaminoethyl methacrylate

1,6-Hexanediol dimethacrylate

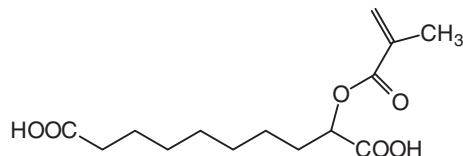
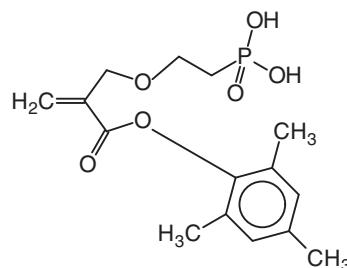
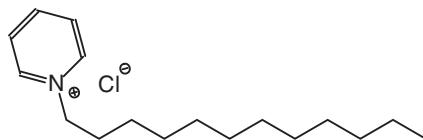
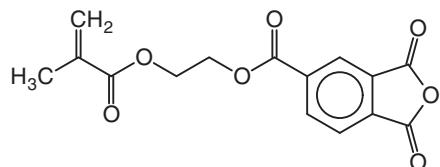

Methacrylic acid

Figure 1.1 (cont.) Monomers used in dental formulations

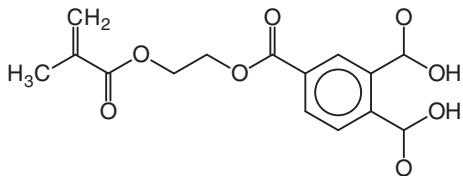

Table 1.2 (cont.) Acronyms for monomers (4)

Acronym	Chemical Name
HFGA-GMA	Hexafluoroglutaric anhydride-glycerodimethacrylate adduct
HPMA	2-Hydroxypropyl methacrylate
MA	Methacrylic acid
MAEPA	2,4,6-Trimethylphenyl-2-[4-(dihydroxyphosphoryl)-2-oxabutyl]acrylate
MAC-10	11-Methacryloyloxy-1,10-undecanedicarboxylic acid
10-MDP	10-Methacryloyloxydecyl dihydrogen phosphate
MDPB	Methacryloyloxydodecylpyridinium bromide
4-META	4-Methacryloyloxyethyl trimellitate anhydride
4-MET	4-Methacryloyloxyethyl trimellitic acid
MMA	Methyl methacrylate
MMEP	Mono-2-methacryloyloxyethyl phthalate (sometimes also called PAMA Phthalic acid monomethacrylate)
5-NMSA	N-Methacryloyl-5-aminosalicylic acid
NPG-GMA	N-Phenylglycine glycidyl methacrylate
NTG-GMA	N-Tolyl glycine glycidyl methacrylate or N-(2-hydroxy-3-((2-methyl-1-oxo-2-propenyl)oxy)propyl)-N-tolyl glycine
PEGDMA	Poly(ethylene glycol) dimethacrylate
PEM-F	Pentamethacryloyloxyethylcyclohexaphosphazene monofluoride
PENTA	Dipentaerythritol pentaacrylate monophosphate
Phenyl-P	2-(methacryloyloxyethyl)phenyl hydrogenphosphate
PMMD	Pyromellitic diethyl methacrylate or 2,5-dimethacryloyloxyethyloxycarbonyl-1,4-benzenedicarboxylic acid
PMGDM	Pyromellitic glycerol dimethacrylate or 2,5-bis(1,3-dimethacryloyloxyprop-2-yloxycarbonyl)benzene-1,4-dicarboxylic acid
Pyro-EMA	Tetramethacryloyloxyethyl pyrophosphate
TCB	Butane-1,2,3,4-tetracarboxylic acid di-2-hydroxyethyl methacrylate ester
TEGDMA	Triethylene glycol dimethacrylate
TMPTMA	Trimethylolpropane trimethacrylate
UDMA	Urethane dimethacrylate or 1,6-di(methacryloyloxyethylcarbamoyl)-3,30,5-trimethylhexane

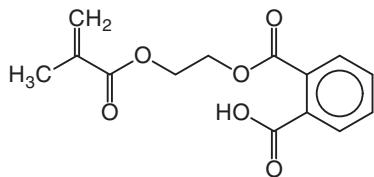

6 MATERIALS, CHEMICALS AND METHODS FOR DENTAL APPLICATIONS


11-Methacryloyloxy-1,10-undecanedicarboxylic acid

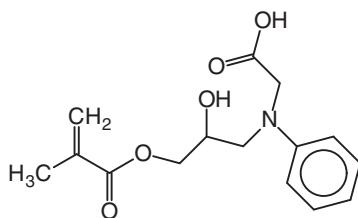
2,4,6-Tdimethylphenyl-2-[4-(dihydroxyphosphoryl)-2-oxabutyl]acrylate

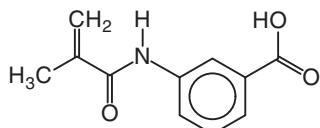


Methacryloyloxydodecylpyridinium bromide

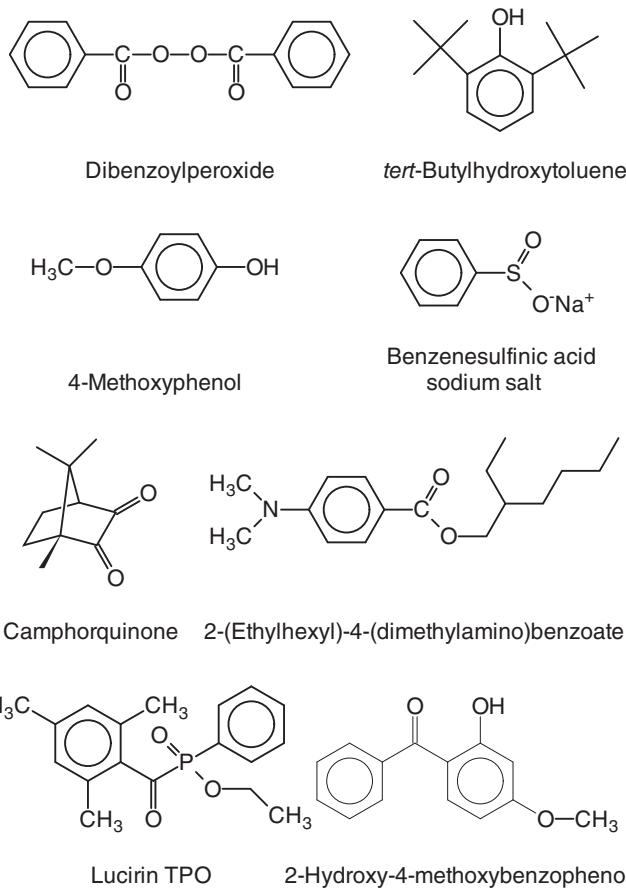


4-Methacryloyloxyethyl trimellitate anhydride


Figure 1.1 (cont.) Monomers used in dental formulations


4-Methacryloyloxyethyl trimellitic acid

Mono-2-methacryloyloxyethyl phthalate


N-Phenylglycine glycidyl methacrylate

N-Methacryloyl-5-aminosalicylic acid

Figure 1.1 (cont.) Monomers used in dental formulations

8 MATERIALS, CHEMICALS AND METHODS FOR DENTAL APPLICATIONS

Figure 1.2 Initiators and inhibitors.

Table 1.3 Acronyms for initiators and inhibitors (4).

Acronym	Chemical Name
BHT	Butylhydroxytoluene or butylated hydroxytoluene or 2,6-di-(<i>tert</i> -butyl)-4-methylphenol (inhibitor)
BPO	Dibenzoyl peroxide (redox initiator)
BS acid	Benzensulfinic acid sodium salt (redox initiator)
CQ	Camphorquinone or 1,7,7-trimethylbicyclo-[2.2.1]-hepta-2,3-dione (photoinitiator)
DHEPT	<i>N,N</i> -Di-(2-hydroxyethyl)-4-toluidine (co-initiator)
MEHQ	4-Methoxyphenol or monoethyl ether hydroquinone (inhibitor)
ODMAB	2-(Ethylhexyl)-4-(dimethylamino)benzoate (co-initiator)
TPO	Lucirin TPO, BASF (photoinitiator) also ethyl(2,4,6-trimethylbenzoyl)phenylphosphinate
UV-9	2-Hydroxy-4-methoxybenzophenone (photoinitiator)

permanent facings or anterior crowns that may or may not be attached to a metal substructure. It also applies to polymer-based dental crown and bridge materials for which the manufacturer claims adhesion to the metal substructure without macromechanical retention such as beads or wires.

ISO 4049:2009 specifies the requirements for dental polymer-based restorative materials supplied in a form suitable for mechanical mixing, hand-mixing, or intraoral and extraoral external energy activation, and intended for use primarily for the direct or indirect restoration of cavities in the teeth and for luting (9).

The change in color of the facial surface gingiva can be used to determine and optimize the efficacy of antigingivitis treatments (11). Chronic inflammatory disease of the gingiva and periodontium results in destruction of gingival connective tissue, periodontal ligament, and alveolar bone. Clinically, inflammation is seen as redness, swelling, and bleeding observed upon probing. The procedure according to ASTM E2545-07 is suitable for use in diagnosis and monitoring, research and development, epidemiological or other surveys, marketing studies, comparative product analysis, and clinical trials.

ISO 4823:2015 specifies the requirements and tests that the state-of-the-art body of knowledge suggests for helping deter-

Table 1.4 Standards in dentistry.

Standard	Name	Reference
ISO 7491:2000	Dental Materials – Determination of colour stability	(5)
ISO 10477:2004	Dentistry – Polymer-based crown and bridge materials	(6)
ISO 10139-1:2005	Dentistry – Soft lining materials for removable dentures – Part 1: Materials for short-term use	(7)
ISO 9333:2006	Dentistry – Brazing materials	(8)
ISO 4049:2009	Dentistry – Polymer-based restorative materials	(9)
ISO 9693-1:2012	Dentistry – Compatibility testing – Part 1: Metal-ceramic systems	(10)
ASTM E2545-07	Standard Test Method for Objective Measurement of Gingival Color Using Digital Still Cameras	(11)
ISO 4823:2015	Dentistry – Elastomeric impression materials	(12)
ISO 6872:2015	Dentistry – Ceramic materials	(13)
ASTM E3014-15	Standard Practice for Managing Sustainability in Dentistry	(14)
ISO 9693-2:2016	Dentistry – Compatibility testing – Part 2: Ceramic-ceramic systems	(15)
ISO 10139-2:2016	Dentistry – Part 2: Materials for long-term use	(16)
ISO/TS 16506:2017	Dentistry – Polymer-based luting materials containing adhesive components	(17)

ine whether the elastomeric impression materials, as prepared for retail marketing, are of the quality needed for their intended purposes (12).

ISO 6872:2015 specifies the requirements and the corresponding test methods for dental ceramic materials for fixed all-ceramic and metal-ceramic restorations and prostheses (13).

The standard ASTM E3014-15 (14) presents a set of generally recognized activities governing the management of sustainability in dentistry and related dental service practice and a management system framework that assists dentists and dental service organizations to enhance their respective organizational performance and effectiveness.

ISO/TS 16506:2017 specifies test methods and information of bond strength to dentine and physical and chemical performances of dental polymer-based luting materials containing adhesive components (17). The materials are supplied in a form suitable for mechanical mixing or hand-mixing, including using auto-mixing tips, for self-curing and/or external energy activation, or non-mixing for external energy activation.

Additional ISO standards with respect to dental materials can be found online in the ISO standards catalogue (18).

1.2.3 Adhesion in Restorative Dentistry

The issues of adhesion in pharmaceutical, biomedical, and dental fields and the theories and mechanisms of adhesion have been described in a monograph (19).

Bonding agents play a crucial role in the effective sealing and retention of resin-based composite restorations, which have been increasingly placed and replaced by dentists (20). Actually, direct adhesive restoration with composite resins has become the procedure of choice for the treatment of anterior and posterior teeth.

However, the long-term durability of those restorations may be compromised due to progressive loss of the integrity of adhesive interfaces. This means that no adhesive strategy is free from technique sensitivity. The specificity and proportion of different constitutive molecules, the interaction between them and substrates can differ greatly from one class of adhesive system to another, which can affect bond quality. An overview of the most important issues in

dental adhesion and adhesive systems has been presented, also their composition and clinical use have been discussed (20).

1.2.4 *Fracture Toughness*

IPS e.max CAD and IPS e.max Press from Ivoclar Vivadent AG are lithium disilicate glass ceramics marketed as interchangeable materials indicated for the same clinical uses (21).

However, different crystal sizes of lithium disilicate are formed during the processing of each of these materials, a factor that could lead to significantly different mechanical properties.

As mechanical failure is always associated with a crack-initiation/crack-propagation process, fracture toughness values could be useful in comparing the different ceramics and possibly predicting clinical performance (21).

The notchless triangular prism specimen K_{ic} test was used to determine and compare the fracture toughness value K_{ic} of the two glass ceramics. A significantly higher K_{ic} value was determined for IPS e.max Press than for IPS e.max CAD. Fractured surfaces, characterized by SEM, showed a marked difference between the two materials, suggesting a more complete crystallization in IPS e.max Press, which was most likely responsible for the higher K_{ic} determined (21).

1.2.5 *Biocompatibility of Dental Adhesives*

The accomplishment of developing a truly adhesive bond between a restorative material and the natural tooth structures is the goal of adhesive dentistry (22). Dentine adhesive systems come into close contact with dental and oral tissue, especially the pulp and gingival cells.

Due to this close and long-term contact, adhesives should exhibit a high degree of biocompatibility. Biocompatibility is one of the most important properties of dental materials. It has been demonstrated that various components of adhesives can be released (22).

Numerous *in-vitro* investigations have shown that released monomers and other components can cause damage to cultured cells. In addition, many *in-vivo* studies have shown that uncured components which reach the pulpal space cause inflammatory response

and tissue disorganization. Only a combination of various *in-vitro* and *in-vivo* tests can provide an overview of the interaction of biomaterials with the host. Therefore, it is necessary on a regular basis to carry out and reverify the biological compatibility of the increasing number of new dental materials. Adhesives should be biofunctional, protective, and preventive, with health-promoting effects that contribute to a better prognosis for restorative treatments and their biocompatibility (22).

1.2.6 Testing the Cytotoxicity

The leukocyte viability can be tested using the trypan blue exclusion technique (23). Trypan blue is an azo dye (24). In biosciences, it is used as a vital stain to selectively color dead tissues or cells blue. Trypan blue is shown in Figure 1.3.

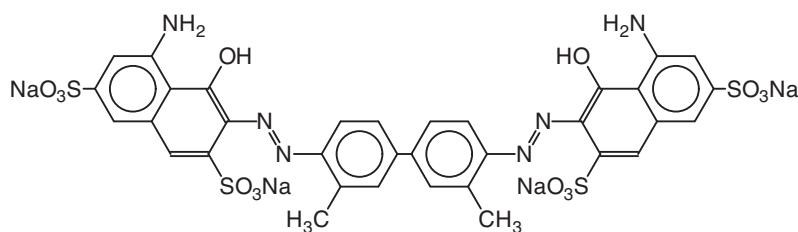


Figure 1.3 Trypan blue.

Since cells are very selective in the compounds that can pass through the membrane, trypan blue is not absorbed in a viable cell. However, trypan blue traverses the membrane in a dead cell. Hence, dead cells are shown as a distinctive blue color under a microscope. Since live cells are excluded from staining, this staining method is also described as a dye exclusion method (24).

In the trypan blue exclusion technique, a cell suspension is mixed with 0.4% trypan blue (Sigma) and analyzed with an Olympus light microscope under 100-fold magnification. For each test group, 1000 leukocytes are analyzed by counting the unstained, i.e., viable cells. Blue-colored cells are considered to be nonviable (25, 26).

1.2.7 *Degradation of Dental Polymers*

The degradation of dental polymers has been described in a monograph (27). Here also the development of appropriate measuring devices has been reviewed.

The principal modes of dental composite material degradation have been reviewed (28). Particular emphasis has been placed on the selection of the monomer resins, the filler content, and the degree of monomer conversion after the clinical materials are cured.

Also, the loss of the mechanical properties and the leaching of components from the composites have been described. Studies dealing with the chemical breakdown of the materials by agents that are present in the oral cavity have been also reviewed. It could be shown that there are many reasons for the biochemical stability of composite resins in the oral cavity (28).

The potential degradation of monomer systems is dependent on the inherent chemical stability of the atomic groups making up the monomer (28). In the case of dental resins, a resistance to oxidative and hydrolytic mechanisms is important, since there is the potential for both to occur as a result of the exposure of components to salivary fluids.

Basically all dental restorative resin monomers in commercial products are based on the coupling of chemical moieties via ester linkages. However, esters are highly prone to hydrolysis. The predominant resin monomers consist of complexed methacrylate resins. These were introduced as early as 1956 (29). A hybrid molecule was described that was polymerized through methacrylate groups coupled with bisphenol A derivatives via ester groups.

An experimental dimethacrylate monomer was synthesized by the reaction of glycidyl methacrylate (29) and was later produced by the reaction of methacrylic acid and the diglycidyl ether of bisphenol A (30).

The synthesis and the characterization of a series of multifunctional methacrylate-based dental monomers have been described (31). Triethanolamine was reacted with glycidyl methacrylate and methacryloyl chloride to produce a series of multifunctional methacrylate-end-capped compounds for conversion to quaternary ammonium fluoride monomers with decyl-substituted side chain to afford antibacterial dental monomers.

The chemical structure of all samples was characterized by Fourier transform infrared and proton nuclear magnetic resonance spectroscopy. The thus obtained monomers have the potential to replace 2,2-bis[4-(2-hydroxy-3-methacryloyloxypropyl)phenyl]-propane as base monomer of universal resin-based dental composites in the presence of a diluting monomer, e.g., triethylene glycol dimethacrylate, due to their multifunctionality as well as their possible antibacterial activity (31).

1.2.8 Effect of Modulated Photoactivation on Polymerization Shrinkage

The influence of modulated photoactivation on axial polymerization shrinkage, shrinkage force, and hardening of light-curing and dual-curing resin-based composites was investigated.

Three light-curing resin composites (SDR bulk-fill, Esthet X flow, and Esthet X HD) and one dual-curing material (Rebilda DC) were subjected to different irradiation protocols with an identical energy density of 27 J cm^{-2} (32):

1. High-intensity continuous light (HIC),
2. Low-intensity continuous light (LIC),
3. Soft-start (SS), and
4. Pulse-delay curing (PD).

Axial shrinkage and shrinkage force of specimens with 1.5 mm thickness were recorded in real-time for 15 min . The Knoop hardness was determined at the end of the experimental observation (32).

The Knoop hardness test is a microhardness test used particularly for very brittle materials or thin sheets, where only a small indentation may be made for testing purposes. A pyramidal diamond point is pressed into the polished surface of the test material with a known load for a specified dwell time, and the resulting indentation is measured using a microscope (33).

Statistical analysis revealed no significant differences among the curing protocols for both Knoop hardness and axial shrinkage, irrespective of the composite material (32).

Pulse-delay curing generated the significantly lowest shrinkage forces within the three light-curing materials: SDR bulk-fill, Esthet X flow, and Esthet X HD. High-intensity continuous light created

the significantly highest shrinkage forces within Esthet X HD and Rebilda DC, and caused significantly higher forces than LIC within Esthet X flow. Pulse-delay curing decreases the shrinkage forces compared with high-intensity continuous irradiation without affecting hardening and the axial polymerization shrinkage (32).

1.2.9 *Ceramics Versus Resin Composites*

For posterior partial restorations an overlap of indication exists where either ceramic or resin-based composite materials can be successfully applied. The fatigue resistance of modern dental ceramic materials versus dental resin composites has been compared (34).

Bar specimens of five ceramic materials and resin composites were produced according to ISO 4049 (9) and stored for 14 d in distilled water at 37°C. The following ceramic materials were selected for testing: A high strength zirconium dioxide (e.max ZirCAD, Ivoclar), a machinable lithium disilicate (e.max CAD, Ivoclar), a pressable lithium disilicate ceramic (e.max Press, Ivoclar), a fluorapatite-based glass-ceramic (e.max Ceram, Ivoclar), and a machinable color-graded feldspathic porcelain (TriLuxe Forte, VITA). The composite materials selected were: an indirect machinable composite (Lava Ultimate, 3M ESPE) and four direct composites with varying filler nature (Clearfil Majesty Posterior, Kuraray; GrandioSO, VOCO, Tetric EvoCeram, Ivoclar Vivadent; and CeramX Duo, Dentsply).

Fifteen specimens were tested in water for initial strength in 4-point bending. Using the same test setup, the residual flexural fatigue strength was determined using the staircase approach after 104 cycles at 0.5 Hz (n = 25) (34).

The zirconium oxide ceramic showed the highest initial strength of 768 MPa and flexural fatigue strength of 440 MPa. Both lithium disilicate ceramics were similar in the static test. However, the pressable version showed a significantly higher fatigue resistance after cyclic loading. Both the fluorapatite-based and the feldspathic porcelain showed equivalent initial and cyclic fatigue properties. From the composites, the highest filled direct material, Clearfil Majesty Posterior, showed a superior fatigue performance. From all materials, e.max Press and Clearfil Majesty Posterior showed the lowest strength loss of 29.6% and 32%, respectively, whereas the