Wave and Tidal Energy
Wave and Tidal Energy

Edited by

Deborah Greaves

Professor of Ocean Engineering, School of Engineering,
University of Plymouth, UK

and

Gregorio Iglesias

Professor of Coastal Engineering, School of Engineering,
University of Plymouth, UK
Contents

List of Contributors xviii
Foreword xx
Acknowledgements xxi

1 Introduction 1
Deborah Greaves and Gregorio Iglesias
1.1 Background 1
1.2 History of Wave and Tidal Energy 3
1.3 Unknowns and Challenges Remaining for Wave and Tidal Energy 5
1.3.1 Materials and Manufacture 5
1.3.2 Fluid Dynamics and Hydrodynamics 5
1.3.3 Survivability and Reliability 6
1.3.4 Environmental Resources 6
1.3.5 Devices and Arrays 7
1.3.6 Power Conversion and Control 7
1.3.7 Infrastructure and Grid Connection 8
1.3.8 Marine Operations and Maritime Safety 8
1.3.9 Socio-Economic Implications 8
1.3.10 Marine Planning and Governance, Environmental Impact 9
1.4 Synopsis 11
References 12

2 The Marine Resource 15
Gregorio Iglesias
2.1 Introduction 15
2.2 The Wave Resource 15
2.2.1 Fundamentals of Linear Wave Theory 18
2.2.2 Random Waves 20
2.2.3 Offshore Wave Resource 22
2.2.4 Nearshore Wave Resource 26
2.3 The Tidal Stream Resource 31
2.3.1 Fundamentals of the Tide 31
2.3.2 Tidal Barrage or Lagoon vs. and Tidal Stream 34
2.3.3 The Tidal Stream Resource 35
2.3.4 Selection of Potential Tidal Stream Sites 37
3 Wave Energy Technology 52

Deborah Greaves

3.1 Introduction 52
3.2 Fundamentals 56
3.2.1 Simple Wave Theory 56
3.2.2 Wave Energy 60
3.2.3 Wave Power 61
3.2.4 Capture Width 62
3.2.5 Wave Loading 62
3.3 Hydrodynamics of Wave Energy Conversion 64
3.3.1 The Equation of Motion 64
3.3.2 Power Absorption Limits 70
3.4 Classification of Wave Energy Converters 73
3.4.1 Classification with Referencing Configuration 75
3.5 Oscillating Water Columns 76
3.5.1 Operating Principle: Shoreline Device 79
3.5.2 Example Calculation: Shoreline OWC 81
3.5.3 Operating Principle: Floating OWC Device 81
3.5.4 Example Calculation: Floating OWC 82
3.6 Overtopping Systems 83
3.7 Oscillating Bodies 85
3.7.1 Operating Principle: Oscillating Device 90
3.7.2 Example Calculation: Oscillating Device 94
3.8 Other Technologies 95
3.9 The Wave Energy Array 95
References 97

4 Tidal Energy Technology 105

Tim O’Doherty, Daphne M. O’Doherty and Allan Mason-Jones

4.1 General Introduction 105
4.2 Location of Operation 105
4.3 Environmental Impacts 106
4.4 Tides 107
4.5 Tidal Range Generation 108
4.5.1 Tidal Barrages 109
4.5.2 Tidal Lagoons 110
4.5.3 Other 111
4.6 Tidal Stream 111
4.6.1 Available Resources 113
4.6.2 Turbine Characteristics 117
4.6.3 Cavitation 123
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6.3.1</td>
<td>Shaft Design</td>
<td>124</td>
</tr>
<tr>
<td>4.6.3.2</td>
<td>Whirling of Shafts</td>
<td>124</td>
</tr>
<tr>
<td>4.7</td>
<td>Types of Devices</td>
<td>126</td>
</tr>
<tr>
<td>4.7.1</td>
<td>The Horizontal-Axis Turbine</td>
<td>126</td>
</tr>
<tr>
<td>4.7.2</td>
<td>The Vertical-Axis Tidal Turbine</td>
<td>128</td>
</tr>
<tr>
<td>4.8</td>
<td>Oscillating Hydrofoils</td>
<td>129</td>
</tr>
<tr>
<td>4.9</td>
<td>Venturi Effect Devices</td>
<td>130</td>
</tr>
<tr>
<td>4.10</td>
<td>Other Devices</td>
<td>130</td>
</tr>
<tr>
<td>4.11</td>
<td>Computational Fluid Dynamics</td>
<td>132</td>
</tr>
<tr>
<td>4.11.1</td>
<td>Finite-Element Analysis and Fluid–Structure Interaction</td>
<td>136</td>
</tr>
<tr>
<td>4.11.2</td>
<td>Blade Element Momentum Theory</td>
<td>137</td>
</tr>
<tr>
<td>4.12</td>
<td>Security, Installation and Maintenance</td>
<td>138</td>
</tr>
<tr>
<td>4.13</td>
<td>Worked Examples</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>146</td>
</tr>
<tr>
<td>5</td>
<td>Device Design</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>Lars Johanning, Sam D. Weller, Phillip R. Thies, Brian Holmes and John Griffiths</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Standards and Certification in Marine Energy</td>
<td>151</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Why are Standards Needed?</td>
<td>151</td>
</tr>
<tr>
<td>5.1.2</td>
<td>What has been done so far?</td>
<td>152</td>
</tr>
<tr>
<td>5.1.3</td>
<td>What is in hand?</td>
<td>153</td>
</tr>
<tr>
<td>5.1.4</td>
<td>How is it Organised?</td>
<td>155</td>
</tr>
<tr>
<td>5.1.5</td>
<td>Standards-Making</td>
<td>156</td>
</tr>
<tr>
<td>5.1.6</td>
<td>Certification Scheme: IECRE</td>
<td>157</td>
</tr>
<tr>
<td>5.1.7</td>
<td>Certification Process</td>
<td>158</td>
</tr>
<tr>
<td>5.1.7.1</td>
<td>Type Certification</td>
<td>158</td>
</tr>
<tr>
<td>5.1.7.2</td>
<td>Project Certification</td>
<td>160</td>
</tr>
<tr>
<td>5.2</td>
<td>Reliability</td>
<td>161</td>
</tr>
<tr>
<td>5.2.1</td>
<td>System Reliability Assessment</td>
<td>162</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Subsystem and Component Reliability</td>
<td>164</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Component Failure Rate Modelling and Prediction</td>
<td>165</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Component Testing</td>
<td>167</td>
</tr>
<tr>
<td>5.3</td>
<td>Moorings and Anchors</td>
<td>169</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Overview on Moorings and Anchors</td>
<td>169</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Special Mooring Design Needs</td>
<td>171</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Mooring Design Simulation and Analysis</td>
<td>173</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Materials for Marine Anchoring Systems</td>
<td>177</td>
</tr>
<tr>
<td>5.4</td>
<td>Foundations</td>
<td>178</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Introduction to Foundation Requirements</td>
<td>178</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Design Concepts for Sediment–Foundation Interactions</td>
<td>180</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Analysis Techniques for Seabed and Foundation Systems</td>
<td>182</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>185</td>
</tr>
<tr>
<td>6</td>
<td>Power Systems</td>
<td>191</td>
</tr>
<tr>
<td></td>
<td>Andrew R. Plummer, Andrew J. Hillis and Carlos Perez-Collazo</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction to Power Take-Off Systems</td>
<td>191</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Wave Energy PTO Systems</td>
<td>191</td>
</tr>
</tbody>
</table>
6.1.2 Tidal Energy PTO Systems 192
6.1.3 Chapter Outline 194
6.2 Electrical Generators 194
6.2.1 Linear Electrical Generators 194
6.2.2 Rotary Electrical Generators 195
6.3 Turbines for WEC Power Take-Off 200
6.3.1 General Considerations for WEC Turbines 200
6.3.2 Air-Driven Turbines 201
6.3.2.1 Wells Turbines 201
6.3.2.2 Impulse Turbines 201
6.3.2.3 Performance Comparison 203
6.3.3 Water-Driven Turbines 203
6.3.3.1 Pelton Wheel 203
6.3.3.2 Kaplan Turbine 204
6.3.3.3 Francis Turbine 205
6.3.3.4 Performance Comparison 205
6.4 Hydraulic Power Transmission Systems 206
6.4.1 Introduction: Hydraulic Fluids and Circuits 206
6.4.2 Hydraulic Pumps 206
6.4.2.1 Pump Design 208
6.4.3 Hydraulic Motors 210
6.4.4 Hydrostatic Transmissions 211
6.4.5 Hydraulic Actuators 211
6.5 Hydraulic PTO Designs for WECs 212
6.6 Direct Mechanical Power Take-Off 214
6.7 Control for Maximum Energy Capture 215
6.7.1 Reactive Control 215
6.7.2 Latching Control 217
6.7.3 Specific Hydraulic PTO Studies 218
6.7.3.1 Force Control 218
6.7.3.2 Resistive PTOs 219
6.7.3.3 System Control 220
6.8 Electrical Infrastructure and Grid Integration 221
6.8.1 Electrical Infrastructure Components 221
6.8.1.1 Transmission Cable Systems 221
6.8.1.2 Dynamic Umbilical Cable 222
6.8.1.3 Subsea Connectors 222
6.8.1.4 Frequency Converters 223
6.8.1.5 Transformers 223
6.8.1.6 Connection Hubs 223
6.8.2 Offshore Electrical Arrays 225
6.8.2.1 Directly Connected Devices 225
6.8.2.2 Star Cluster Configuration 225
6.8.2.3 Radial Configuration 227
6.8.3 Grid Integration and Power Quality 227
6.8.3.1 Grid Integration 227
6.8.3.2 Power Quality 229
6.9 Summary of Challenges for PTO Design and Development 229
References 230

7 Physical Modelling 233
Martyn Hann and Carlos Perez-Collazo
7.1 Introduction 233
7.2 Device Development and Test Planning 234
7.3 Scaling and Similitude 234
7.3.1 Scaling MRE Devices 239
7.3.2 Common Problems Scaling MRE Devices 240
7.4 Model Design and Construction 241
7.4.1 Material Choice and Model Design 241
7.4.2 Power Take-off 242
7.4.2.1 Orifice Plate 242
7.4.2.2 Porous Media 243
7.4.2.3 Capillary Tubes 243
7.4.2.4 Tidal Turbines and Rotating Shaft WEC 244
7.4.2.5 Dampers and Brakes 244
7.4.2.6 Bilge Pumps and Flow Meters 244
7.5 Fixing and Mooring 247
7.5.1 Catenary Mooring 247
7.5.2 Taut Mooring 247
7.5.3 Fixed Guides 248
7.6 Instrumentation 248
7.6.1 Water Surface Elevation 249
7.6.1.1 Resistance Wave Gauge 249
7.6.1.2 Capacitance Wave Gauge 250
7.6.1.3 Others 250
7.6.1.4 Measuring Wave Reflection 250
7.6.1.5 Directional Wave Spectrum Analysis 252
7.6.2 Fluid Velocity 252
7.6.2.1 Pitot-static Tube 252
7.6.2.2 Turbine Flow Meters 252
7.6.2.3 Acoustic Doppler Velocimeters 253
7.6.2.4 Laser Doppler Velocimeters 253
7.6.2.5 Particle Image Velocimetry 253
7.6.2.6 Hot-Wire and Hot-Film Anemometers 253
7.6.3 Pressure and Force Measurements 254
7.6.4 Body Motion 254
7.6.5 Torque 256
7.6.6 Measurement Error and Repeatability 256
7.6.7 Common Problems 257
7.7 Model Calibration 258
7.7.1 Dry Tests 258
7.7.2 Wet Tests 260
7.7.2.1 Static 260
7.7.2.2 Free Oscillation 261
7.7.2.3 Forced Oscillation 262
7.7.3 Calibration of Tidal Turbine Models 264
7.8 Modelling the Environment 264
7.8.1 Regular Waves 265
7.8.2 Irregular Waves 267
7.8.3 Focused Waves 269
7.8.4 Flow 270
7.9 Test Facilities 271
7.9.1 Wave Generation and Absorption 271
7.9.2 Basin and Flume Flow 273
7.9.3 Towing Tanks 273
7.9.4 Blockage Effects 274
7.10 Recommended Tests 274
7.10.1 Standard Tests for Wave Energy 274
7.10.1.1 Series A: Linear Regular Waves 275
7.10.1.2 Series B: Nonlinear Regular Waves 277
7.10.1.3 Series C: Long-crested Irregular Waves 277
7.10.1.4 Series D: Spectral Shape 278
7.10.1.5 Series E: Directional Long-crested Waves 278
7.10.1.6 Series F: Short-crested Waves 279
7.10.1.7 Series G: Combined Waves and Ocean Currents 279
7.10.1.8 Series R: Repeatability 279
7.10.2 Survivability Tests for Wave Energy 279
7.10.3 Standard Tests for Tidal Energy 281
7.10.3.1 Performance 281
7.10.3.2 Wave Interactions 282
7.10.3.3 Wake 282
7.10.3.4 Survivability 282
8 Numerical Modelling 289
 Thomas Vyzikas and Deborah Greaves
8.1 Introduction 289
8.2 Review of Hydrodynamics 292
8.2.1 The Primitive Equations of Fluid Mechanics 292
8.2.1.1 Mass Conservation 292
8.2.1.2 Momentum conservation 293
8.2.1.3 Energy Conservation 294
8.2.1.4 Equations of State 295
8.2.2 The Navier–Stokes Equations 295
8.2.3 Modelling of Turbulence 297
8.2.3.1 RANS Equations 298
8.2.3.2 The $\kappa-\epsilon$ Model 300
8.2.3.3 The $\kappa-\omega$ model 301
8.2.3.4 The Reynolds Stress Model 303
8.2.3.5 Large Eddy Simulation 304
8.2.3.6 Direct Numerical Simulation 305
Contents

8.2.3.7 Potential Flow 306
8.2.4 Classification of Physical Behaviours 307
8.2.4.1 Elliptic Equations 308
8.2.4.2 Parabolic Equations 308
8.2.4.3 Hyperbolic Equations 309

8.3 Numerical Modelling Techniques 310
8.3.1 Introduction 310
8.3.2 Pre-Processing 311
8.3.2.1 Definition of the Problem 311
8.3.2.2 Boundary and Initial Conditions 311
8.3.3 Discretisation Methods: Solution 312
8.3.3.1 Finite Difference Method 312
8.3.3.2 Finite Volume Method 313
8.3.3.3 Finite Element Method 314
8.3.3.4 Spectral Method 315
8.3.3.5 Boundary Element Method 316
8.3.3.6 Meshless Methods 318
8.3.3.7 Lattice Boltzmann Method 320
8.3.4 Post-Processing 321
8.3.5 Best Practice in Numerical Modelling 322
8.3.5.1 Errors and Uncertainties 322
8.3.5.2 Recommendations and Guidelines 324
8.4 Numerical Modelling of Water Waves 325
8.4.1 Depth-Resolving Models 325
8.4.1.1 CFD/NSE Solvers 325
8.4.1.2 Potential Flow Models 326
8.4.1.3 Hydrostatic Pressure Models 327
8.4.2 Depth-Averaged Models 327
8.4.2.1 Shallow Water Equations 327
8.4.2.2 Boussinesq Equations 328
8.4.2.3 Mild-Slope Equation 329
8.4.2.4 Spectral Models 330
8.5 Commonly Used Open-Source Software 331
8.5.1 CFD 331
8.5.1.1 OpenFOAM 331
8.5.1.2 REEF3D 332
8.5.2 Smoothed Particle Hydrodynamics 333
8.5.2.1 SPHysics and DualSPHysics 333
8.5.3 Potential Flow 333
8.5.3.1 QALE-FEM 333
8.5.4 Hydrostatic Models 334
8.5.4.1 POM 334
8.5.4.2 COHERENS 335
8.5.4.3 Delft3D 335
8.5.4.4 TELEMAC-MASCARET 336
8.5.5 Shallow Water Equations 337
8.5.5.1 SHYFEM 337
8.5.5.2 SWASH 337
8.5.6 Boussinesq Models 338
8.5.6.1 FUNWAVE 338
8.5.6.2 COULWAVE 339
8.5.7 Mild-Slope Equation 339
8.5.7.1 REFDEF 339
8.5.8 Spectral Models 340
8.5.8.1 WAVEWATCH-III 340
8.5.8.2 SWAN 341
8.5.9 Models for structural design and other tools 343
8.5.9.1 WAFO 343
8.5.9.2 SDWED 343
8.5.9.3 Marine Systems Simulator 344
8.5.9.4 WEC-Sim 344
8.5.9.5 NEMOH 345
8.5.9.6 MoorDyn 345
8.6 Applicability of Numerical Models in MRE 346
References 351

9 Environmental Effects 364
Gregorio Iglesias, Javier Abanades Tercero, Teresa Simas, Inês Machado and Erica Cruz
9.1 Introduction 364
9.2 Wave Farm Effects on the Wave Field 364
9.2.1 Wave Farm Effects: Positive or Negative? 364
9.2.2 Near-Field Effects 365
9.2.3 Far-Field Effects 369
9.2.3.1 Introduction 369
9.2.3.2 Effects on Nearshore Wave Conditions Based on Laboratory Experiments of Wave-WEC Interaction 374
9.2.3.3 Influence of Farm-to-Coast Distance 387
9.2.3.4 Nearshore Impact Indicators 391
9.3 Wave Farm Effects on Coastal Processes 391
9.3.1 Introduction 391
9.3.2 Effects on the Beach Profile 394
9.3.2.1 Coastal Impact Indicators 400
9.3.3 Mitigation of Storm-Induced Erosion 406
9.3.4 Influence of Farm-to-Coast Distance 406
9.3.5 Future Lines of Research and Development 413
9.4 Tidal Stream Farm Effects on Hydrodynamics and Sedimentary Processes 414
9.5 Marine Biota 415
9.5.1 Marine Biota Habitats and Components 416
9.5.2 Dynamics of Marine Biota: Ecological Processes 418
9.5.3 Sensitivity of Marine Habitats and Species 419
9.5.4 Marine Biota Observation and Experimentation 422
9.5.4.1 Marine mammals 422
Contents

9.5.4.2 Seabirds 424
9.5.4.3 Benthos 424
9.5.4.4 Fish 425
9.6 The Environmental Impact Assessment 425
9.6.1 The EIA process 426
9.6.2 Identification of Stressors and Receptors 429
9.6.2.1 Ocean Energy Stressors 430
9.6.2.2 Environmental Receptors 433
9.6.3 Impact Assessment Techniques and Mitigation Measures 437
9.6.4 Monitoring Potential Impacts 439
9.6.4.1 Benthos 439
9.6.4.2 Fish 440
9.6.4.3 Marine Mammals 440
9.6.4.4 Seabirds 442
9.6.5 Adaptive Management 442
References 443

10 Consenting and Legal Aspects 455

Anne Marie O'Hagan

10.1 Introduction 455
10.2 International Law 456
10.2.1 United Nations Law of the Sea Convention 456
10.2.2 United Nations Framework Convention on Climate Change 460
10.2.3 United Nations Convention on Biological Diversity 461
10.2.4 Other Sources of International Law Relevant to Ocean Energy 462
10.3 Regional Law 462
10.4 EU Law and Policy 464
10.4.1 EU energy Law and Policy 465
10.4.2 Integrated Maritime Policy and Blue Growth 468
10.4.3 Nature Conservation Legislation 469
10.4.4 Environmental Assessment Legislation 471
10.4.4.1 Environmental Impact Assessment Directive 471
10.4.4.2 Strategic Environmental Assessment Directive 473
10.4.5 Public Participation and Access to Environmental Information 474
10.4.6 Other Relevant EU Legislation 475
10.4.7 Maritime Spatial Planning Directive 477
10.5 National Consenting Systems 478
10.5.1 Common Consenting Considerations 478
10.5.1.1 Occupation of Sea Space 478
10.5.1.2 Connection to the Electricity Grid 479
10.5.1.3 Environmental Effects 480
10.5.1.4 Decommissioning 480
10.5.2 France 481
10.5.3 Ireland 483
10.5.4 Portugal 485
10.5.5 Spain 486
10.5.6 United Kingdom 487
10.5.6.1 England and Wales 490
10.5.6.2 Scotland 491
10.5.6.3 Northern Ireland 494
10.5.7 United States 495
10.6 Gaps and Opportunities 499
10.6.1 Legal Basis 499
10.6.2 Environmental Impacts and Assessment 501
10.6.3 Public Consultation and Acceptance 502
10.6.4 Maritime Spatial Planning and New Management Approaches 503
Acknowledgement 504
References 504

11 The Economics of Wave and Tidal Energy 513
Gregorio Iglesias, Sharay Astariz and Angela Vazquez
11.1 Individual Costs 513
11.2 Levelised Cost 518
11.3 Externalities 522
References 526

12 Project Development 533
Paul Vigars, Kwangsoo Lee, Sungwon Shin, Boel Ekergard, Mats Leijon, Yago Torre-Enciso, Dorleta Marina and Deborah Greaves
12.1 Introduction 533
12.2 Alstom Ocean Energy OCEADE™ Tidal Stream Turbine: The Route to Commercial Readiness 533
12.2.1 Introduction 533
12.2.2 Alstom Concept 535
12.2.3 Device Demonstration 536
12.2.4 First-of-a-Kind Commercial Turbine 539
12.2.5 Design Iterations 539
12.2.6 Managing Uncertainty 540
12.2.7 Levelised Cost of Electricity 541
12.2.8 The Role of Intellectual Property 542
12.2.9 Conclusion 544
12.3 Seabased Wave Energy Converter 544
12.3.1 Strategy 544
12.3.2 Research and Development 544
12.3.3 Park Layout 545
12.3.4 Development and Collaboration with Uppsala University 545
12.3.5 Seabased Technology Concept 546
12.3.5.1 The Buoy 546
12.3.5.2 The Wave Energy Converter 546
12.3.5.3 Electrical System 547
12.3.6 Deployment 549
12.4 Lake Sihwa Tidal Power Plant, Korea 549
12.4.1 Introduction 549
12.4.2 Planning and Design 553
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4.3</td>
<td>Construction</td>
<td>555</td>
</tr>
<tr>
<td>12.4.4</td>
<td>Economic and Environmental Assessment</td>
<td>561</td>
</tr>
<tr>
<td>12.5</td>
<td>Mutriku Wave Power Plant</td>
<td>563</td>
</tr>
<tr>
<td>12.5.1</td>
<td>Background</td>
<td>563</td>
</tr>
<tr>
<td>12.5.2</td>
<td>Inclusion of a Wave Energy Plant in the Breakwater</td>
<td>566</td>
</tr>
<tr>
<td>12.5.2.1</td>
<td>Selecting the Technology</td>
<td>566</td>
</tr>
<tr>
<td>12.5.2.2</td>
<td>Consenting Process</td>
<td>566</td>
</tr>
<tr>
<td>12.5.2.3</td>
<td>Pre-design and Design of the Plant</td>
<td>569</td>
</tr>
<tr>
<td>12.5.3</td>
<td>Project and Construction of the Plant Infrastructure</td>
<td>571</td>
</tr>
<tr>
<td>12.5.3.1</td>
<td>Description of the OWC Plant Construction Project</td>
<td>571</td>
</tr>
<tr>
<td>12.5.3.2</td>
<td>Construction of the OWC Plant</td>
<td>575</td>
</tr>
<tr>
<td>12.5.4</td>
<td>Start-Up and Operation</td>
<td>580</td>
</tr>
<tr>
<td>12.5.4.1</td>
<td>Operation of the Plant</td>
<td>580</td>
</tr>
<tr>
<td>12.5.4.2</td>
<td>Incidents</td>
<td>582</td>
</tr>
<tr>
<td>12.5.4.3</td>
<td>Social Acceptance</td>
<td>583</td>
</tr>
<tr>
<td>12.5.4.4</td>
<td>Improvements and Innovation</td>
<td>584</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>584</td>
</tr>
</tbody>
</table>

13 Regional Activities 587

Deborah Greaves, Carlos Perez-Collazo, Curran Crawford, Bradley Buckham, Vanesa Magar, Francisco Acuña, Sungwon Shin, Hongda Shi and Chenyu

13.1 Europe 587
13.1.1 European Initiatives and Policy Framework for Wave and Tidal Energy 590
13.1.2 Wave and Tidal Energy Test and Demonstration Centres 590
13.1.2.1 Denmark 591
13.1.2.2 France 591
13.1.2.3 Italy 592
13.1.2.4 Ireland 592
13.1.2.5 Norway 593
13.1.2.6 Portugal 593
13.1.2.7 Spain 593
13.1.2.8 Sweden 593
13.1.2.9 United Kingdom 593
13.1.3 Wave Energy Technology Developments 594
13.1.3.1 Denmark 595
13.1.3.2 Finland 596
13.1.3.3 Ireland 596
13.1.3.4 Italy 596
13.1.3.5 Norway 597
13.1.3.6 Portugal 597
13.1.3.7 Spain 597
13.1.3.8 Sweden 597
13.1.3.9 United Kingdom 598
13.1.3.10 Other Developments 598
13.1.4 Tidal Energy Technology Developments 598
13.1.4.1 France 599
13.1.4.2 Germany 599
13.1.4.3 Ireland 600
13.1.4.4 Netherlands 600
13.1.4.5 Norway 600
13.1.4.6 United Kingdom 600
13.1.4.7 Other Developments 600
13.2 North America 601
13.2.1 Wave 601
13.2.1.1 Regulatory Environment 601
13.2.1.2 Regional and Community Initiatives 603
13.2.1.3 Government Incentives 605
13.2.1.4 Test Sites, Research Centres and Resource Assessment 606
13.2.2 Tidal 609
13.2.2.1 Regulatory Environment, Incentives and Initiatives 610
13.2.2.2 Device Development Efforts 612
13.2.2.3 Deployment Activities and Research Centres 613
13.3 Latin America 616
13.3.1 Introduction 616
13.3.2 Brazil 617
13.3.2.1 Tidal and Hydrokinetic Energy 617
13.3.2.2 Wave Energy 618
13.3.2.3 Marine Bioenergy 619
13.3.3 Chile 619
13.3.4 Argentina 620
13.3.5 Mexico 621
13.3.5.1 Tidal and Hydrokinetic Energy 621
13.3.5.2 Wave Energy 623
13.3.5.3 Offshore Wind Energy 624
13.3.6 Colombia 624
13.3.7 Other Initiatives 625
13.3.8 Synthesis and Recommendations 625
13.4 Asia-Pacific 626
13.4.1 Wave 627
13.4.1.1 Australia 627
13.4.1.2 Japan 627
13.4.1.3 South Korea 627
13.4.1.4 Russia 628
13.4.1.5 Other Developments 628
13.4.2 Tidal 629
13.4.2.1 Australia 629
13.4.2.2 Japan 629
13.4.2.3 South Korea 630
13.4.2.4 Other Developments 630
13.5 China 630
13.5.1 Marine Energy Research and Development Programmes 630
13.5.1.1 Special Fund for Marine Energy 630
List of Contributors

Javier Abanades Tercero
Offshore Renewable Energy Consultant, TYPSA, Spain
Associate Researcher, School of Engineering, University of Plymouth, UK

Francisco Acuña
Chief Executive Officer, InTrust Global Investments LLC, Washington, D.C. USA

Sharay Astariz
Associate Researcher, University of Santiago de Compostela, Spain

Bradley Buckham
Department of Mechanical Engineering, University of Victoria, BC, Canada

Chenyu
Researcher, Ocean University of China, Qingdao, China

Curran Crawford
Department of Mechanical Engineering, University of Victoria, BC, Canada

Erica Cruz
Senior Researcher, WavEC – Offshore Renewables, Lisboa, Portugal

Boel Ekergard
Seabased Industry AB, Sweden

Deborah Greaves
Professor of Ocean Engineering, School of Engineering, University of Plymouth, UK

John Griffiths
Associate, EMEC Ltd, Chair of UK National Committee on Wave & Tidal Standards

Martyn Hann
Lecturer in Coastal Engineering, School of Engineering, University of Plymouth, UK

Andrew J. Hillis
Senior Lecturer in Mechanical Engineering, Centre for Power Transmission and Motion Control, University of Bath, UK

Brian Holmes
MaREI Centre, Environmental Research Institute, University College Cork, Ringaskiddy, Ireland

Gregorio Iglesias
Professor of Coastal Engineering, School of Engineering, University of Plymouth, UK

Lars Johanning
Professor of Ocean Technology, University of Exeter, Penryn Campus, UK
Kwangsoo Lee
Principal Research Scientist,
Institute of Ocean Science & Technology, Korea

Mats Leijon
Professor, Uppsala University, Sweden

Inês Machado
Senior Researcher, WavEC – Offshore Renewables, Lisboa, Portugal

Vanesa Magar
Centro de Investigación Científica y Educación Superior de Ensenada (CICESE), México

Dorleta Marina
BIMEP, Lemoiz, Spain

Allan Mason-Jones
School of Engineering, Cardiff University, Wales, UK

Daphne M. O’Doherty
School of Engineering, Cardiff University, Wales, UK

Tim O’Doherty
School of Engineering, Cardiff University, Wales, UK

Anne Marie O’Hagan
Senior Research Fellow, MaREI Centre, Environmental Research Institute, University College Cork, Ringaskiddy, Ireland

Carlos Perez-Collazo
PRIMaRE Research Fellow, School of Engineering, University of Plymouth, UK

Andrew R. Plummer
Professor of Machine Systems, Centre for Power Transmission and Motion Control, University of Bath, UK

Hongda Shi
Professor, Ocean University of China, Qingdao, China

Sungwon Shin
Research Professor, Kangwon National University, Korea

Teresa Simas
Senior Researcher, WavEC – Offshore Renewables, Lisboa, Portugal

Phillip R. Thies
Senior Lecturer Renewable Energy, University of Exeter, Penryn Campus, UK

Yago Torre-Enciso
BIMEP, Lemoiz, Spain

Angela Vazquez
Associate Researcher, University of Santiago de Compostela, Spain

Paul Vigars
Director of Teobi Engineering Associates Ltd, UK (formerly Research & Technology Manager at Alstom Ocean Energy, UK)

Thomas Vyzikas
Associate Researcher, School of Engineering, University of Plymouth, UK

Sam D. Weller
Senior Research Fellow, University of Exeter, Penryn Campus, UK
Since the 1990s the importance of developing renewable energies has been well recognised worldwide. At the time of writing, onshore wind, solar and hydropower are mature and making relevant contributions to the energy mix. However, the untapped potential of these land-based forms of renewable energy is not unlimited; therefore, new renewable energies, including wave, tidal and offshore wind, must be developed if carbon-based energy production is to be further reduced, in the spirit of the recent Treaty of Paris and previous agreements on climate change.

Offshore wind is technologically more mature than wave and tidal energy, arguably thanks to its similarities with its onshore counterpart. Indeed, as offshore wind moves into deeper waters, those facets that are not shared with onshore wind turbines, such as floating systems or hybrid (wave–wind or tidal–wind) systems warrant the greatest research effort at present.

Wave and tidal energy, the focus of this book, are technologically more challenging, not least because of the aggressive marine environment. Because of this, and the fact that their development began more recently, they are further away from full market commercialisation. Their trajectory has been similar to that of any nascent technology, with initial successes and failures.

Arguably the harsh marine environment has hindered the technological development of both wave and tidal energy, not least in relation to wind energy, the main elements of which were developed for a less aggressive environment. This also made possible the application of wind energy at different scales, from the domestic to the industrial, and its stepwise progression towards the large wind turbines that we see today. Nevertheless, the faster development of wind energy that we have witnessed does not detract in the least from the potential of wave and tidal energy. Given the intensive research efforts and the level of international interest in the field, there can be little doubt that the vast, so far untapped, wave and tidal resource in the ocean will be exploited within the next decades.

This new book aims to provide a reference text for students and practitioners in the wave and tidal energy industry. It presents a holistic view of the sector, the state of the art and the perspectives for future development. The main tools of physical and numerical modelling are explained, together with the technical aspects of device design and development, the environmental effects and the consent and legal processes. These are then illustrated with a series of case studies and a review of regional project developments.

Wave and tidal energy is a fascinating field with many exciting research challenges. Driven by the passion of the researchers and practitioners involved, the momentum in the sector is poised to transform wave and tidal energy from its present research and development status into a fully fledged renewable contributing substantially to the energy mix.

Foreword

Since the 1990s the importance of developing renewable energies has been well recognised worldwide. At the time of writing, onshore wind, solar and hydropower are mature and making relevant contributions to the energy mix. However, the untapped potential of these land-based forms of renewable energy is not unlimited; therefore, new renewable energies, including wave, tidal and offshore wind, must be developed if carbon-based energy production is to be further reduced, in the spirit of the recent Treaty of Paris and previous agreements on climate change.

Offshore wind is technologically more mature than wave and tidal energy, arguably thanks to its similarities with its onshore counterpart. Indeed, as offshore wind moves into deeper waters, those facets that are not shared with onshore wind turbines, such as floating systems or hybrid (wave–wind or tidal–wind) systems warrant the greatest research effort at present.

Wave and tidal energy, the focus of this book, are technologically more challenging, not least because of the aggressive marine environment. Because of this, and the fact that their development began more recently, they are further away from full market commercialisation. Their trajectory has been similar to that of any nascent technology, with initial successes and failures.

Arguably the harsh marine environment has hindered the technological development of both wave and tidal energy, not least in relation to wind energy, the main elements of which were developed for a less aggressive environment. This also made possible the application of wind energy at different scales, from the domestic to the industrial, and its stepwise progression towards the large wind turbines that we see today. Nevertheless, the faster development of wind energy that we have witnessed does not detract in the least from the potential of wave and tidal energy. Given the intensive research efforts and the level of international interest in the field, there can be little doubt that the vast, so far untapped, wave and tidal resource in the ocean will be exploited within the next decades.

This new book aims to provide a reference text for students and practitioners in the wave and tidal energy industry. It presents a holistic view of the sector, the state of the art and the perspectives for future development. The main tools of physical and numerical modelling are explained, together with the technical aspects of device design and development, the environmental effects and the consent and legal processes. These are then illustrated with a series of case studies and a review of regional project developments.

Wave and tidal energy is a fascinating field with many exciting research challenges. Driven by the passion of the researchers and practitioners involved, the momentum in the sector is poised to transform wave and tidal energy from its present research and development status into a fully fledged renewable contributing substantially to the energy mix.
Acknowledgements

This book would not have been possible without the collaboration and wholehearted support of the many authors of the individual chapters. Their expertise in the many facets of wave and tidal energy has been central to the project, and we are greatly indebted to them.

We are grateful to Wiley for suggesting the idea of the book and their consistent support throughout the processes of writing and editing the chapters and producing the book in its final form.

We also acknowledge the contributions and support for this project from the members of the COAST Engineering Research Group and the COAST Laboratory at the University of Plymouth. The Laboratory has been essential to the development of marine renewable energy research at Plymouth. The experience in physical and numerical modelling gained through the activity of the Laboratory and Research Group, working together with industry and academic partners on numerous European and national research and development projects, has resulted in the scientific environment that has ultimately crystallised in this book.
1

Introduction

Deborah Greavesa and Gregorio Iglesiasb

a Professor of Ocean Engineering, School of Engineering, University of Plymouth, UK
b Professor of Coastal Engineering, School of Engineering, University of Plymouth, UK

1.1 Background

More than 83\% of the energy conversion in the world is today based on fossil fuels; meanwhile scientists all over the world are debating the topic of peak oil \cite{1} and the secondary effects of the emissions from the fossil fuels \cite{2, 3}. Fossil fuels are a finite resource; burning them generates significant carbon dioxide emissions that are changing the world’s climate. The impact of climate change is thought to be changing habitats at a rate faster than many species can adapt, and the level of pollution in many of the world’s cities is today causing concern. As a future worldwide shortage of useful energy supply can have devastating consequences on the political stability and economy of the world, there is a growing consensus that the world needs to switch to a more sustainable energy system. The focus and requirement for clean and cheap renewable energy conversion techniques has therefore increased.

The Paris Summit of 2015 \cite{4} has driven further impetus for finding alternative sources of energy, and a deal was agreed to attempt to limit the rise in global temperatures to less than 2°C. The Paris agreement is the first to commit all countries to cut carbon emissions, and is partly legally binding and partly voluntary. The measures in the agreement include \cite{5}: to peak greenhouse gas emissions as soon as possible and achieve a balance between sources and sinks of greenhouse gases in the second half of this century; to keep global temperature increase ‘well below’ 2°C (3.6°F) and to pursue efforts to limit it to 1.5°C; to review progress every 5 years; and $100 billion a year in climate finance for developing countries by 2020, with a commitment to further finance in the future. There is clear acknowledgement of climate change and also a clearly stated will to address the anthropogenic causes of climate change and to reduce emissions and seek alternative sustainable and environmentally benign sources of energy. How this new agreement will be implemented within individual countries will be influenced by local factors.

Renewable sources of energy are essential alternatives to fossil fuels and to nuclear energy, which also has a finite resource as well as long-term safety concerns. Renewable energy sources include solar, wind, geothermal and marine renewable energy (MRE).
Their use reduces greenhouse gas emissions, diversifies energy supply and reduces dependence on unreliable and volatile fossil fuel markets. The world is moving on renewables, and they have become the cornerstone of any low-carbon economy today, not just in the future. The USA is targeting a 32% cut in power sector emissions by 2030, India plans 100 GW of solar by 2022, and China is investing heavily in wind and renewable energy: the transition to a low-carbon energy system is well under way.

Within this drive for renewable energy, MRE is poised to play a major role [6], in particular in certain countries where these resources are vast. Renewable energy from the sea is generated by the sun, wind and tides, and may be exploited through various technologies such as wave energy, tidal stream, tidal range, offshore wind energy and ocean thermal energy currents (OTEC). MRE, also often termed ‘ocean energy,’ has a major part to play in closing the world’s energy gap and lowering carbon emissions. Key global challenges that remain for MRE relate to technology, grid infrastructure, cost and investment, environmental impact, and marine governance. Of these technologies, offshore wind is mature and many commercial projects exist in shallow waters, although new offshore wind technology is needed to develop sites further offshore in deeper water. Technologically, the development of offshore wind in shallower water is a natural extension of onshore wind, and typical difficulties for onshore wind in gaining social acceptability and approval are often less problematic if turbines are located offshore. Also, the wind resource offshore is greater due to lack of obstructions to the wind flow. Offshore wind turbines are typically similar to those used onshore and consist of three blades rotating about a hub, and in shallower water the wind turbine structures are typically on piled foundations or fixed jackets. However, as development of wind farms moves further offshore and into deeper water, other solutions need to be sought involving floating structures and the costs increase significantly. Although offshore wind technology is rapidly being implemented, there remain many fascinating engineering problems to overcome. These include: offshore foundations and floating support structures; alternative turbine designs based on three-dimensional computational fluid dynamics; use of advanced materials for blades; ship manoeuvring for safe maintenance; and shared offshore platform applications (such as energy production, storage, and marine aquaculture).

Tidal power is approaching commercial maturity, and recent investments and commercial developments have been made. Tidal range projects exist, but there are concerns about the extent of the environmental impact they bring, and tidal lagoon technology is emerging as an attractive alternative. Tidal steam technologies have seen great advances in recent years. On the other hand, wave energy encompasses emerging technologies that are currently not economically competitive, but still attract engineering interest thanks to the significant resource in high power density sea waves and its potential exploitation [7].

Within Europe, ocean energy is considered to have the potential to be an important component of Europe’s renewable energy mix, as part of its longer-term energy strategy. According to the recent studies [8,9], the potential resource of wave and tidal energy is 337 GW of installed capacity by 2050 globally, with 36 GW quoted as the practically extractable wave and tidal resource by 2035 in the UK, representing a marine energy industry worth up to £6.1 billion per annum. Today 45% of wave energy companies and 50% of tidal energy companies from the EU [9,10] have been tested in EU test centres [11,12], and the global market is estimated to be worth up to €53 billion annually by 2050 [13].
The need to address climate change and concerns over security of supply has driven European policy-makers to develop and implement a European energy policy. In 2009, the European Commission set ambitious targets for all member states through a directive on the promotion of the use of energy from renewable sources (2009/28/EC). This requires the EU to reach a 20% share of energy from renewable sources by 2020. The directive required member states to submit national renewable energy action plans (NREAPs), that establish pathways for the development of renewable energy sources, to the Commission by June 2010. From their NREAPs, it is clear that many member states predict a significant proportion of their renewable energy mix to come from wave and tidal energy by 2020. This commitment should act as a strong driver at national level to progress the sector.

MRE can significantly contribute to a low-carbon future. Ambitious development targets have been established in the EU, including an installed capacity of 188 GW and 460 GW for ocean (wave and tidal) and offshore wind energy, respectively, by 2050 [10]. To comprehend how challenging these targets are it is sufficient to consider the corresponding targets for 2020: 3.6 GW and 40 GW for ocean and offshore wind energy, respectively. It is clear that for the 2050 targets to be met, a major breakthrough must happen – and there are huge benefits to be reaped if these targets are met, such as the reduction of our carbon footprint.

1.2 History of Wave and Tidal Energy

Although MRE and ocean energy can be interpreted to include all energy conversion technologies located in the ocean environment, including offshore wind, OTEC as well as wave and tidal, in this book we focus on wave and tidal energy. Tidal energy converts the energy obtained from tides into useful forms of power, mainly electricity. Tides are more predictable than wind energy and solar power. Among the sources of renewable energy, tidal power has traditionally suffered from relatively high cost and limited availability of sites with sufficiently high tidal ranges or flow velocities, thus constricting its total availability. However, significant learning has been gained through relatively long-term deployments of tidal turbines [14], and together with developments in tidal lagoon technology [15], and first array scale deployments [16], it is expected that the total availability of tidal power is significant, and that economic and environmental costs may be brought down to competitive levels.

Historically, tide mills [17] have been used both in Europe and on the Atlantic coast of North America for milling grain, and in the nineteenth century the use of hydropower to create electricity was introduced in the USA and Europe [18]. Tidal range projects include the world’s first large-scale tidal power plant, the La Rance Tidal Power Station in France, which became operational in 1966 [19]. It was the largest tidal power station in terms of power output, before Sihwa Lake Tidal Power Station in South Korea (described in Chapter 12) surpassed it. Many innovative tidal stream energy devices have been proposed. An example is Salter’s cross-flow turbine [20], which has blades arranged vertically, supported at each end on what are rather like enormous bicycle wheels. Although tidal power assessment seems easy, the very presence of tidal turbines alters the flow field, and in turn this affects power availability.

Tidal energy technology is dominated by in-sea/estuarine tidal stream devices; however, a significant number of developers have also been developing smaller in-river devices.
There is certainly potential for tidal energy to consolidate technologies and progress from small-scale to larger developments within the full-scale prototype field. The last few years to 2016 have seen the total number of globally active developers fall, perhaps as the technology naturally converges. Leading developers are actively testing at EMEC [21] and moving strongly towards commercial readiness and preparing for transition to large-scale commercial generation in the UK Crown Estate lease areas, north-west France and Canada’s Bay of Fundy. Alongside the progress to full-scale device deployment technology activity, there has been clear progress on site development, with the consent and finance secured for a 6 MW tidal array off the north of Scotland by MeyGen and the subsequent news of Atlantis Resources Ltd. having purchased the project. This is the first example of real value being attributed to a site and associated development consent [22].

The Severn Estuary holds the second highest tidal range in the world, and within this Swansea Bay benefits from an average tidal range during spring tides of 8.5 m. Plans to construct a tidal lagoon [15] to harness this natural resource would be the world’s first, man-made, energy-generating lagoon, with an expected 320 MW installed capacity and 14 hours of reliable generation every day. In a bid to overcome potential socio-economic and environmental concerns, the development also offers community and tourism opportunities in sports, recreation, education, arts and culture, conservation, restocking and biodiversity programmes as well as the added benefit of coastal flood protection.

Wave energy converter technology is a thriving area in which new inventions keep appearing. Here, engineers must find ways to maximise power output, improve efficiency, cut environmental impact, enhance material robustness and durability, reduce costs, and ensure survivability. Theoretical predictions of the power generated by wave energy converters require validation through laboratory-scale physical model studies and field tests. The latest simulation methods involve wave to wire modelling of arrays of wave energy converters, which integrates wave hydrodynamics, body responses, power take-off (PTO), real-time control, and electricity production.

There are more than one thousand patents for devices for capturing and transforming wave energy into useful energy. The first wave energy converter was patented in France in 1799, and oscillating water column navigation buoys have been commercialised in Japan since 1965 [6]. The oil crisis in 1973 raised interest in wave energy in Europe, but interest dwindled in 1980s and it was not until the 1990s that interest increased again.

Wave energy has the largest potential in Europe and worldwide, and can be captured in a number of ways through the use of different converters, such as point absorbers, attenuators, overtopping, oscillating wave surge convertors, and oscillating water columns. The technology has not yet reached the stage of commercial scale development [23], but progress continues to be made, as evidenced by the growing number of test sites and pilot zones being established across Europe [11]. Many different types of wave energy converters have been designed, but only a small proportion of these so far have reached the full-scale prototype stage. Wave energy has many advantages over other forms of renewable energy, being much more predictable than, for instance, wind, giving more scope for short-term planning of grid usage.

In the past, the wave energy industry faced some failures that delayed its development, for example the device in Toftestallen wrecked during a heavy storm [24] or the external wall of the Mutriku device that was damaged by a storm [25]. Attempting to set a framework for assessing the progress of potential developers on their way to
commercial applications, Weber [26] introduced the technology readiness level and technology performance level matrix, so that fewer failures occur in the future.

1.3 Unknowns and Challenges Remaining for Wave and Tidal Energy

Access to ocean energy systems is expensive and hazardous. Present and future challenges include remote monitoring, control systems, robotics for operational support, and real-time weather forecasting for predictive maintenance to ensure devices can survive in extreme sea states as they arise. Wave and tidal energy has huge potential, but demanding global challenges have to be met before the seascape will give up its precious energy resources. As in the Industrial Revolution, a new generation of engineers is required with the ingenuity, wisdom, and boldness to meet these interdisciplinary challenges. The unknowns and challenges still remaining in wave and tidal energy can be considered to fall within ten different technical research themes as identified by PRIMaRE [27]: materials and manufacture; fluid dynamics and hydrodynamics; survivability and reliability; environmental resources; devices and arrays; power conversion and control; infrastructure and grid connection; marine operations and maritime safety; socio-economic implications; and marine planning and governance.

1.3.1 Materials and Manufacture

The development of new materials and manufacturing processes is a key element in reducing costs and ensuring the survivability of MRE devices. Any technology submerged or in contact with the sea is likely to be affected by biofouling. The interaction of the devices or their components with marine growth is crucial as it affects the device performance and design conditions, and therefore the development of new materials to avoid or minimise biofouling is key. Use of steel or metallic alloys is common practice in the MRE industry. Correct understanding of the corrosion processes, of the use of new coatings and manufacture techniques, and of how to adapt the operation and maintenance inspections to maximise the lifetime and operability of MRE devices will help reduce their total cost. Application of novel materials and construction techniques that will reduce costs, improve reliability and extend the lifetime of devices is an active research area, necessary to move the sector forward – for example, novel materials such as reinforced concrete and composites, novel construction techniques, disposable materials are being investigated.

1.3.2 Fluid Dynamics and Hydrodynamics

As technology devices that harness energy from fluids in motion and are affected by the extreme forces produced by these motions, a proper understanding of the fluid dynamics and hydrodynamics of MRE devices is crucial to their development. In particular, turbulence and its effects on single and multiple devices is important in understanding how devices will interact and perform in arrays. In the real sea environment MRE devices commonly face the effects of combined waves, tidal currents and wind. The combined action of these forces on MRE devices makes characterisation of their
response at laboratory scale and with numerical models of special relevance to obtain a better understanding of how they perform under such circumstances. One of the particularities of MRE is that the devices need to face extreme loads and survive storms. Thus, the development of novel evaluation techniques to model these extreme loads appropriately at laboratory scale and by numerical models is required.

When deployed in real sea conditions, MRE devices are subjected to irregular waves and variable tidal currents. A feature of these variable resources is that the differences between maximum and mean values are particularly high, especially for wave energy. The standard engineering techniques to model the behaviour and response of MRE devices consider linear models in order to simplify the problems and obtain faster solutions. However, the reality is often far from the linear model and nonlinear effects must be considered to achieve a proper understanding of the performance of the devices in real conditions. Thus, the development of nonlinear models and tools to assess these effects is of special relevance. Advanced numerical models able to simulate accurately the response of full-scale devices require long computational times and resources. The development of validated tools and resources that optimise simulation times is necessary for the development of MRE.

1.3.3 Survivability and Reliability

The survivability and reliability of MRE devices in the marine environment need to be proven for the industry to become commercial. Ensuring the survivability of devices under the high loads occurring during extreme events is essential to reduce the risk of failure and increase their range of operability. The dynamic nature of many MRE devices means that traditional oil and gas or seakeeping mooring concepts are usually not valid, due to either their high cost or the different loading conditions. A competitive cost of energy which allows MRE to become viable in comparison with other renewable energies is fundamental for the development of the sector. This means that a compromise between reliability and cost of energy throughout the lifetime of the device should be found. The weakest of its components defines the entire reliability of a MRE device. This, together with the harshness of the marine environment, the frequent exposure to extreme loads, and near-constant exposure to varying cyclic loads, makes the design of all components crucial. Research is needed to assess each individual component and adapt it to the MRE industry needs, redesigning components where necessary and making use of available technology where possible, for example from the oil and gas sector. Furthermore, MRE devices are subject to potential impacts, for example, the impact of a marine mammal striking the rotor of a tidal turbine, or collision between wave energy converters due to a mooring failure, and these impacts could severely damage the integrity of the device.

1.3.4 Environmental Resources

Resource assessment for wave and tidal energy is described in Chapter 2, and a thorough understanding of the environmental resources is imperative to harnessing them in an economic and efficient manner. Even though wave, tidal currents and offshore winds are well understood at medium and large scales, there are still multiple physical processes related to them that require further study, especially when energy extraction