Bimetallic Nanostructures
Bimetallic Nanostructures

Shape-Controlled Synthesis for Catalysis, Plasmonics, and Sensing Applications

Edited by

Ya-Wen Zhang
College of Chemistry and Molecular Engineering
Peking University
Beijing
China
Contents

List of Contributors  xiii

Part I  Fundamentals and Structural Characterization of Shape-Controlled Bimetallic Nanostructures  1

1  Introduction of Bimetallic Nanostructures  3
   Zhi-Ping Zhang and Ya-Wen Zhang
   1.1  Metallic Nanoparticles  3
   1.2  Bimetallic Nanoparticles  6
   1.2.1  Electronic Effect  7
   1.2.2  Lattice Stress  8
   1.2.3  Bifunctional Effect  9
   1.2.4  Ensemble Effect  9
   1.3  Bimetallic Nanostructures  10
   1.3.1  Alloyed Structure  10
   1.3.2  Core–Shell  11
   1.3.3  Heterostructure  11
   1.3.4  Factors Affecting the Mixing Patterns  12
   1.4  Bimetallic Nanostructure-Dependent Performance  12
   1.4.1  Elemental Composition and Distribution-Property Correlation  13
   1.4.2  Size-Property Correlation  14
   1.4.3  Geometric Structure-Property Correlation  15
   1.4.4  Phase Structure-Property Correlation  16
   1.5  Controlled Synthesis  17
   1.6  Outline of This Book  18
   1.7  References  19

2  Theoretical Models for Bimetallic Surfaces and Nanoalloys  23
   Hong Jiang
   2.1  Introduction  23
   2.2  Theoretical Approaches to Inter-Atomic Interactions  24
   2.2.1  First-Principles Approaches  24
   2.2.2  Empirical Inter-Atomic Potentials for Metallic Systems  29
   2.2.3  Lattice Models  31
   2.3  Global Optimization Methods  33
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.1 Basin-Hopping Algorithm</td>
<td>33</td>
</tr>
<tr>
<td>2.3.2 Genetic Algorithm</td>
<td>35</td>
</tr>
<tr>
<td>4. Statistical Approaches</td>
<td>35</td>
</tr>
<tr>
<td>2.4.1 Molecular Dynamics Simulation</td>
<td>36</td>
</tr>
<tr>
<td>2.4.2 Monte Carlo Simulation</td>
<td>38</td>
</tr>
<tr>
<td>2.4.3 Superposition Approach to Thermodynamic Properties of Nanoparticles</td>
<td>39</td>
</tr>
<tr>
<td>2.5 Electronic Properties and Catalytic Activity of Bimetallic Systems</td>
<td>41</td>
</tr>
<tr>
<td>2.5.1 The d-Band Model for Chemical Adsorption at Transition Metal Surfaces</td>
<td>41</td>
</tr>
<tr>
<td>2.5.2 Tuning the Reactivity of Bimetallic Surfaces: Strain, Ligand, and Ensemble Effects</td>
<td>43</td>
</tr>
<tr>
<td>2.5.2.1 Strain Effect</td>
<td>43</td>
</tr>
<tr>
<td>2.5.2.2 Ligand Effect</td>
<td>44</td>
</tr>
<tr>
<td>2.5.2.3 Ensemble Effect</td>
<td>44</td>
</tr>
<tr>
<td>2.6 Computational Design of Bimetallic Heterogeneous Catalysts</td>
<td>44</td>
</tr>
<tr>
<td>2.6.1 Transition State and Adsorption Energy-Scaling Relations</td>
<td>45</td>
</tr>
<tr>
<td>2.6.2 The Sabatier Principle and the Volcano Plot</td>
<td>47</td>
</tr>
<tr>
<td>2.6.3 High-Throughput Screening of Bimetallic Catalysts</td>
<td>49</td>
</tr>
<tr>
<td>2.7 Concluding Remarks</td>
<td>50</td>
</tr>
<tr>
<td>2.8 Acknowledgments</td>
<td>51</td>
</tr>
<tr>
<td>2.9 References</td>
<td>51</td>
</tr>
</tbody>
</table>

3 In situ Characterization Techniques of Bimetallics 61

Rui Si

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Introduction</td>
<td>61</td>
</tr>
<tr>
<td>3.2 Electron Microscopy</td>
<td>62</td>
</tr>
<tr>
<td>3.3 Infrared Spectroscopy</td>
<td>72</td>
</tr>
<tr>
<td>3.4 X-Ray Absorption Fine Structure</td>
<td>79</td>
</tr>
<tr>
<td>3.5 Conclusions and Outlook</td>
<td>91</td>
</tr>
<tr>
<td>3.6 References</td>
<td>92</td>
</tr>
</tbody>
</table>

Part II Synthesis, Characterization, and Properties of Shape-Controlled Bimetallic Nanostructures 97

4 Bimetallic Nanopolyhedrons and Nanospheres 99

Lin-Xiu Dai and Ya-Wen Zhang

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>99</td>
</tr>
<tr>
<td>4.2 Architecture of Bimetallic Nanospheres and Nanopolyhedrons</td>
<td>100</td>
</tr>
<tr>
<td>4.2.1 Solid Solution</td>
<td>101</td>
</tr>
<tr>
<td>4.2.2 Intermetallic Compounds</td>
<td>101</td>
</tr>
<tr>
<td>4.2.3 Core–Shell Nanocrystals</td>
<td>102</td>
</tr>
<tr>
<td>4.3 General Principles of Shape Evolution</td>
<td>103</td>
</tr>
<tr>
<td>4.3.1 Equilibrium Shape: Wulff Polyhedron</td>
<td>103</td>
</tr>
<tr>
<td>4.3.2 Nucleation Mechanism of Metal Nanocrystals</td>
<td>104</td>
</tr>
<tr>
<td>4.3.3 Growth of Metal Nanocrystals</td>
<td>105</td>
</tr>
<tr>
<td>4.4 Key Factors for Shape Evolution in Colloidal Synthesis</td>
<td>108</td>
</tr>
</tbody>
</table>
4.4.1 Redox Potentials 108
4.4.2 Reduction Rate 108
4.4.3 Lattice Mismatch 110
4.4.4 Facet-Specific Capping Agents 111
4.5 Synthetic Approaches to Bimetallic Nanospheres and Nanopolyhedrons 113
4.5.1 Continuous Growth 113
4.5.1.1 Coreduction 113
4.5.1.2 Thermal Decomposition 114
4.5.1.3 Combination of Thermal Decomposition and Reduction 115
4.5.2 Seed-Mediated Growth 116
4.5.3 Combination of Underpotential Deposition and Galvanic Replacement Reaction 117
4.6 Catalytic Properties of Bimetallic Nanospheres and Nanopolyhedrons 118
4.6.1 Effects of Adsorption Energy and Facet Type in Bimetallics 119
4.6.2 Shape-Dependent Catalytic Reactions 123
4.6.2.1 Pt–Ni Nanocrystals for Oxygen Reduction Reaction 123
4.6.2.2 Pt–Pd Nanocrystals for Methanol Electrooxidation 123
4.6.2.3 Au–Pd Nanocrystals for Suzuki Coupling Reaction 124
4.7 Conclusions and Outlook 124
4.8 References 125

5 Bimetallic Convex and Concave Nanostructures 133
Shaojie Jiang, Yiliang Luan, Xiaokun Fan, Zewei Quan, and Jiye Fang
5.1 Introduction 133
5.2 Synthetic Methods 134
5.2.1 Synthesis of Bimetallic Concave Structures 135
5.2.1.1 Galvanic Replacement 136
5.2.1.2 Coreduction with a Control of Capping Ligand(s) 140
5.2.1.3 Selective Etching (or Site-Specific Etching) 142
5.2.1.4 Seed-Mediated Growth 145
5.2.2 Synthesis of Bimetallic Convex Structure 146
5.3 Structural Characterization 149
5.3.1 Crystal Facets 149
5.3.2 Case Studies 150
5.3.2.1 {hk0} Facets 150
5.3.2.2 {hkl} Facets 152
5.4 Selected Properties 152
5.4.1 SERS Characteristics 154
5.4.1.1 Case of Ag Convex NCs 154
5.4.1.2 Case of Ag Concave NCs 154
5.4.1.3 Cases of Bimetallic Noble Metals 155
5.4.2 Electrocatalytic Performance 156
5.4.2.1 Cases of Pt–Cu Nanostructures 158
5.4.2.2 Cases of Pt-Pd Concave NCs and Others 160
5.4.3 Chemically Catalytic Behaviors 161
5.4.3.1 Cases of Hydrogenation 161
5.4.3.2 Cases of 4-Nitrophenol Reduction 163
5.4.3.3 Cases of Other Reactions 163
5.5 Conclusions 166
5.6 References 166

6 Bimetallic Nanoframes and Nanoporous Structures 172
Hongliang Li, An Zhang, Zhicheng Fang, and Jie Zeng
6.1 Introduction 172
6.2 Principles for the Formation of Bimetallic Nanoframes and Nanoporous Structures 173
6.2.1 Top-Down Approach 174
6.2.2 Bottom-Up Approach 176
6.3 Synthetic Methods 178
6.3.1 Template-Assisted Method 178
6.3.1.1 Hard Template 178
6.3.1.2 Soft Template 181
6.3.1.3 Sacrificial Template 188
6.3.2 Oxidative Etching 195
6.3.3 Galvanic Replacement Reaction 199
6.3.4 Kirkendall Effect 207
6.3.5 Electrochemical Dealloying 210
6.3.6 Assembly 213
6.3.7 Other Methods of Interest 219
6.4 Summary and Outlook 223
6.5 References 225

7 Bimetallic Dendritic Nanostructures 247
Kun Yuan and Ya-Wen Zhang
7.1 Introduction 247
7.2 Synthesis of Bimetallic Dendritic Nanostructures 248
7.2.1 Coreduction 249
7.2.2 Galvanic Replacement Reaction 251
7.2.3 Seed-Mediated Growth 253
7.2.4 Other Methods 257
7.3 Properties and Applications of Bimetallic Dendritic Nanostructures 258
7.3.1 Plasmonics 258
7.3.2 Catalysis 261
7.4 Conclusion and Outlook 265
7.5 References 265

8 Bimetallic Ultrathin Nanowires 271
Junrui Li, Zheng Xi, and Shouheng Sun
8.1 Introduction 271
8.2 Chemical Synthesis of Ultrathin Bimetallic Nanowires 273
8.2.1 Synthetic Fundamentals 273
8.2.2 Anisotropic Growth into Ultrathin Nanowires 274
8.3 Chemical Synthesis of Ultrathin Bimetallic Nanowires 276
8.3.1 Bimetallic Alloy Nanowires 277
8.3.2 Bimetallic Core–Shell Nanowires 280
8.3.3 Bimetallic Nanowires Formed by Directional Aggregation of Nanoparticles 282
8.4 Concluding Remarks 284
8.5 References 286

9 Bimetallic Nanoplates and Nanosheets 293
Bing Dong, Ziyu Yang, and Yanglong Hou
9.1 Introduction 293
9.2 Synthesis of Bimetallic Nanoplates and Nanosheets 294
9.2.1 Seeded Epitaxial Growth Process 294
9.2.2 Coreduction Process 297
9.2.3 Solvothermal Reaction 299
9.2.4 Galvanic Replacement Reaction 300
9.2.5 Electrodeposition Process 301
9.2.6 Other Processes 302
9.3 Properties and Applications of Bimetallic Nanoplates and Nanosheets 304
9.3.1 Magnetic Properties 304
9.3.2 Catalytic Applications 304
9.3.3 Optical and Biomedical Applications 306
9.4 Conclusions and Perspectives 307
9.5 References 309

Part III Applications of Shape-Controlled Bimetallic Nanostructures 315

10 Electrocatalysis 317
Jiwhan Kim, Juhyuk Choi, Jinkyu Lim, and Hyunjoo Lee
10.1 Introduction 317
10.2 Effect of Bimetallic Nanostructures 318
10.2.1 Electronic Effect 318
10.2.2 Bifunctional Effect 318
10.2.3 Ensemble Effect 319
10.2.4 Morphology Effect 321
10.3 Characterization Techniques 322
10.3.1 Electron Microscopy 322
10.3.2 X-ray Diffraction Pattern (XRD) 323
10.3.3 X-ray Photoelectron Spectroscopy (XPS) and X-ray Absorption Spectroscopy (XAS) 324
10.3.4 Electrochemical Measurements 326
10.4 Electrocatalytic Reactions Using Bimetallic Nanostructures 327
10.4.1 Oxygen Reduction Reaction (ORR) 327
10.4.1.1 ORR Using Pt–M Alloy Structures 327
10.4.1.2 ORR Using Pt–M Intermetallic Structures 329
10.4.1.3 Model Surface 330
10.4.1.4 Shape-Controlled Pt3Ni Nanoparticles with (111) Facets 331
10.4.1.5 Durability of the Bimetallic Nanoparticle Catalysts 333
10.4.2 Fuel Oxidation 334
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.4.2.1 Hydrogen Oxidation</td>
<td>335</td>
</tr>
<tr>
<td>10.4.2.2 Methanol Oxidation</td>
<td>336</td>
</tr>
<tr>
<td>10.4.2.3 Formic Acid Oxidation</td>
<td>337</td>
</tr>
<tr>
<td>10.4.2.4 Oxidation of Other Small Organics</td>
<td>338</td>
</tr>
<tr>
<td>10.4.3 Oxygen Evolution Reaction</td>
<td>339</td>
</tr>
<tr>
<td>10.4.3.1 Alloy with Another Precious Metals</td>
<td>339</td>
</tr>
<tr>
<td>10.4.3.2 Alloy with 3d Metals</td>
<td>340</td>
</tr>
<tr>
<td>10.5 Perspective</td>
<td>340</td>
</tr>
<tr>
<td>10.6 Conclusion</td>
<td>342</td>
</tr>
<tr>
<td>10.7 Acknowledgments</td>
<td>343</td>
</tr>
<tr>
<td>10.8 References</td>
<td>343</td>
</tr>
<tr>
<td>11 Heterogeneous Catalysis</td>
<td>360</td>
</tr>
<tr>
<td>11.1 Introduction</td>
<td>360</td>
</tr>
<tr>
<td>11.2 Oxidation</td>
<td>361</td>
</tr>
<tr>
<td>11.2.1 CO Oxidation</td>
<td>361</td>
</tr>
<tr>
<td>11.2.1.1 Monometallic NPs</td>
<td>362</td>
</tr>
<tr>
<td>11.2.1.2 Compositional and Structural Effect in Bimetallic NPs</td>
<td>362</td>
</tr>
<tr>
<td>11.2.2 Preferential CO Oxidation in H2‐Rich Feeds (PROX)</td>
<td>368</td>
</tr>
<tr>
<td>11.2.2.1 Spherical Core–Shell NPs</td>
<td>368</td>
</tr>
<tr>
<td>11.2.2.2 Hollow Cubic NPs</td>
<td>370</td>
</tr>
<tr>
<td>11.2.3 Selective Oxidation of Alcohols and Amines</td>
<td>370</td>
</tr>
<tr>
<td>11.3 Hydrogenation/Dehydrogenation</td>
<td>376</td>
</tr>
<tr>
<td>11.3.1 Selective Hydrogenation of Nitroarenes</td>
<td>376</td>
</tr>
<tr>
<td>11.3.1.1 Spherical and Random-Shaped NPs</td>
<td>377</td>
</tr>
<tr>
<td>11.3.1.2 Dendrite NPs</td>
<td>379</td>
</tr>
<tr>
<td>11.3.1.3 Cubic/Octahedral NPs</td>
<td>381</td>
</tr>
<tr>
<td>11.3.1.4 Hollow NPs</td>
<td>385</td>
</tr>
<tr>
<td>11.3.2 Hydrogenation of Alkenes and Alkynes</td>
<td>389</td>
</tr>
<tr>
<td>11.3.2.1 The Alkene Hydrogenation on Pt NPs</td>
<td>389</td>
</tr>
<tr>
<td>11.3.2.2 Alkene Hydrogenation on Shaped Bimetallic NPs</td>
<td>390</td>
</tr>
<tr>
<td>11.3.2.3 Semi-Hydrogenation of Alkynes on Shaped Bimetallic NPs</td>
<td>392</td>
</tr>
<tr>
<td>11.3.3 Selective Hydrogenation of α,β-Unsaturated Aldehydes</td>
<td>395</td>
</tr>
<tr>
<td>11.3.3.1 The Synergy of Bimetallic Combinations</td>
<td>396</td>
</tr>
<tr>
<td>11.3.3.2 Capping Agent Effect</td>
<td>398</td>
</tr>
<tr>
<td>11.4 H2 Evolution Reaction</td>
<td>399</td>
</tr>
<tr>
<td>11.5 Coupling Reactions</td>
<td>403</td>
</tr>
<tr>
<td>11.5.1 Spherical NPs</td>
<td>403</td>
</tr>
<tr>
<td>11.5.2 Polyhedral NPs</td>
<td>404</td>
</tr>
<tr>
<td>11.5.2.1 Promotion of Activity Arising from High Index Facets and Larger Surface Area</td>
<td>404</td>
</tr>
<tr>
<td>11.5.2.2 The Facet-Activity Relationship</td>
<td>408</td>
</tr>
<tr>
<td>11.6 Conclusion</td>
<td>410</td>
</tr>
<tr>
<td>11.7 Acknowledgments</td>
<td>410</td>
</tr>
<tr>
<td>11.8 References</td>
<td>410</td>
</tr>
</tbody>
</table>
12 Plasmonics 425
Liang Zhou, Tian Zhao, Xiao-Yong Wang, Ling-Dong Sun, and Chun-Hua Yan

12.1 Introduction to Plasmonics 425
12.2 Preparation of Gold Nanoparticles 428
12.3 Assembly of Gold Nanoparticles 431
12.3.1 Assembly of Gold Nanoparticles 431
12.3.2 Reversible Assembly of Gold Nanoparticles 432
12.3.3 Assembly of Gold Nanoparticles on Substrate 433
12.4 Plasmonics of Bimetallic Nanocrystals 434
12.4.1 Au–Ag Nanostructure 434
12.4.2 Au–Pd Nanostructure 439
12.4.3 Other Bimetallic Plasmonic Nanostructures 443
12.5 Application of Plasmonic Nanostructures 444
12.5.1 Bio-Imaging Application 445
12.5.2 Photothermal Application 445
12.5.3 Biodetection Based on SPR 446
12.6 Concluding Remarks 447
12.7 References 448

13 Sensing 459
Haijuan Li and Yongdong Jin

13.1 Plasmonic Sensors 460
13.1.1 Bimetallic SPR Sensors 460
13.1.2 Sensors Based on LSPR Peak Shift 461
13.1.2.1 LSPR Shift Induced by Binding of the Analytes with the Sensor 461
13.1.2.2 LSPR Sensors Based onSelective Etching of a Metallic Component from the Preformed Bimetallic Nanoparticles 462
13.1.2.3 LSPR Sensors Based on Enzyme-Guided Metallic Crystal Growth 467
13.2 Bimetallic Sensors Based on Surface-Enhanced Raman Spectroscopy 470
13.3 Electrochemical Sensors Based on Bimetallic Nanoparticles 473
13.3.1 Detection of Heavy Metal Ions 473
13.3.2 Detection of Uric Acid 475
13.3.3 Nonenzymatic Detection of Hydrogen Peroxide 475
13.3.4 Detection of Glucose 477
13.3.5 Electrochemical Immunosensors 478
13.3.6 Detection of other Electroactive Molecules 481
13.4 Sensors Based on the Enzyme-Mimicking Properties of Bimetallic NPs 482
13.5 Sensors Based on Luminescent Bimetallic Nanoclusters 484
13.5.1 Detection of Heavy Metal Ions 484
13.5.2 Detection of Sulfide Anion 485
13.5.3 Detection of Other Small Molecules 485
13.6 Conclusions 489
13.7 Acknowledgments 489
13.8 References 489

Index 499
List of Contributors

**Juhyuk Choi**  
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea

**Lin-Xiu Dai**  
College of Chemistry and Molecular Engineering, Peking University, Beijing, China

**Bing Dong**  
Beijing Key Laboratory for Magnetoelctric Materials and Devices (BKL-MEMD), College of Engineering, Peking University, Beijing, China

**Xiaokun Fan**  
Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, P. R. China

**Jiye Fang**  
Department of Chemistry, State University of New York at Binghamton, New York, USA

**Zhicheng Fang**  
Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, P. R. China

**Yanglong Hou**  
Beijing Key Laboratory for Magnetoelctric Materials and Devices (BKL-MEMD), and Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT), College of Engineering, Peking University, Beijing, China

**Wenyu Huang**  
Department of Chemistry, Iowa State University, Ames, IA, USA  
Ames Laboratory, U.S. Department of Energy, Ames, IA, USA

**Hong Jiang**  
Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China

**Shaojie Jiang**  
Department of Chemistry, State University of New York at Binghamton, New York, USA

**Yongdong Jin**  
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences

**Jiwhan Kim**  
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
Hyunjoo Lee
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea

Haijuan Li
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences

Hongliang Li
Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, P. R. China

Junrui Li
Department of Chemistry, Brown University, Providence, Rhode Island, USA

Jinkyu Lim
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea

Yiliang Luan
Department of Chemistry, State University of New York at Binghamton, New York, USA

Yuchen Pei
Department of Chemistry, Iowa State University, Ames, IA, USA

Zewei Quan
Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, P. R. China

Rui Si
Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy Sciences, Shanghai, China

Ling-Dong Sun
College of Chemistry and Molecular Engineering, Peking University, Beijing, China

Shouheng Sun
Department of Chemistry, Brown University, Providence, Rhode Island, USA

Xiao-Yong Wang
College of Chemistry and Molecular Engineering, Peking University, Beijing, China

Zheng Xi
Department of Chemistry, Brown University, Providence, Rhode Island, USA

Chun-Hua Yan
College of Chemistry and Molecular Engineering, Peking University, Beijing, China

Ziyu Yang
Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKL-MEMD), College of Engineering, Peking University, Beijing, China

Kun Yuan
College of Chemistry and Molecular Engineering, Peking University, Beijing, China

Jie Zeng
Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, P. R. China

An Zhang
Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, P. R. China
Ya-Wen Zhang
College of Chemistry and Molecular Engineering, Peking University, Beijing, China

Zhi-Ping Zhang
College of Chemistry and Molecular Engineering, Peking University, Beijing, China

Tian Zhao
College of Chemistry and Molecular Engineering, Peking University, Beijing, China

Liang Zhou
College of Chemistry and Molecular Engineering, Peking University, Beijing, China
Part I

Fundamentals and Structural Characterization of Shape-Controlled Bimetallic Nanostructures
1

Introduction of Bimetallic Nanostructures
Zhi-Ping Zhang and Ya-Wen Zhang

College of Chemistry and Molecular Engineering, Peking University, Beijing, China

1.1 Metallic Nanoparticles

Nanostructured particles are materials with at least one dimension at the nanoscale level (between 0.1 nm and 100 nm). Their scales are at the transition area between atomic clusters and bulk materials, and their optical, electrical, mechanical, magnetic, and catalytic properties are significantly different from those of bulk materials due to their quantum size effect, small size effect, surface effect, quantum tunneling effect, and dielectric confinement effect. There is no doubt that it is an exciting subject focusing on promising application of nanomaterials in various fields such as functional materials, sophisticated equipment, environmental remediation, and renewable energy processing.

In the elemental periodic table, more than two-thirds of the elements are metals. Metals are a class of glossy materials with good thermal and electrical conductivity, and are widely applied in architecture, electronic devices, information science, biomedical technology, and catalysis. For example, steel (iron) is often used for building; tungsten wire is applied in photoelectric instrument; ytterbium is applied in laser materials; and germanium is a valuable semiconductor material. Metal is fundamental to industry and life. In 1875, Pt/V2O5 catalysts were applied in the large-scale production of sulfuric acid. Around 1913, Fe/Al2O3/K2O catalysts were used for ammonia synthesis, which was a significant reaction for the production of chemical fertilizer[1]. In the 1970s and 1980s, Pt, Pd, and Rh were developed for automobile emission control, including CO and HC oxidations and NO reduction[1].

In order to improve their material properties and enhance their atomic utilization efficiency, metallic materials were also manufactured in nanoscales. The preparation of metallic nanoparticles dates from 1850s. In 1857, Faraday synthesized his famous Au colloids through the reduction of Au(III) ions with phosphorous in water[2]. In 1941, Rampino and Nord prepared colloidal dispersion of Pd by reduction with hydrogen[3].

Attributed to the two main factors, unique surface effect and quantum size effect, metallic nanomaterials have exhibited different properties from the corresponding bulk
Bimetallic Nanostructures

materials and have attracted increasing attention due to their potential application in catalysis, plasmonic, sensing, magnetic recording and other fields. For example, Pt nanoparticles (NPs) are good catalysts for energy storage, Au NPs are candidates for photothermal therapy, Fe NPs are magnetic materials for spintronic devices. The first main factor, surface effect, results in the large surface-to-volume ratios of metallic nanoparticles (NPs). As shown in Figure 1.1, the percentage of surface atoms increases dramatically with the decreased size of nanoparticles[4]. So when the sizes of nanoparticles are decreasing, the distributions of low-coordinated or coordinatively unsaturated atoms, including corner, edge, kink and step sites, on the surface of small particles will be increasing. Unsaturated coordination environment gives rise to the strong trend of active surface atoms to capture other atoms or migrate, and leads to the change of electronic energy band, spin conformation of surface atoms. One example is the large difference of the melting points between bulk gold and 1.5 nm gold nanoparticles[5]. The former is 1064 °C, while the latter is reduced to ca. 500 °C. The lowered melting point of 1.5 nm gold nanoparticles is because the low-coordinated surface atoms dominate about 80% of the total atoms and are easily mobilized under thermal perturbation.

The second main factor, the quantum size effect, leads to the shifting electronic energy bands and the change of band gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). As shown in Figure 1.2, in one bulk metallic material, the effectively continuous energy band is the combination of an infinite number of very similar orbitals; and in individual atom, the energy band turns into discrete atomic orbitals; while the energy bands of a nanoparticle fall somewhere between continuous and discrete energy bands. Thus, it gives rise to the interesting phenomenon that the properties of nanoparticles are distinct from those of bulk materials, such as size-induced metal-insulator transition[6]. That is, most of bulk metals are conductors, but the electroconductivity of the corresponding metal NPs becomes weaker with the decreasing size, and these particles turn into insulators when their sizes are small enough. It depends on the magnitude between HOMO-LUMO gap (somewhere called the *Kubo gap*, $\delta$) and thermal energy. Another famous example is the property change of gold (Au) with its size. Bulk Au material is a yellow metal with noble and nonmagnetic feature, but its corresponding 10 nm nanoparticles are red, its 2–3 nm nanoparticles are superior catalysts with magnetism, and its smaller clusters become insulators[6].

<table>
<thead>
<tr>
<th>Number of shells</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of atoms</td>
<td>13</td>
<td>55</td>
<td>147</td>
<td>309</td>
<td>561</td>
</tr>
<tr>
<td>in cluster</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percentage of</td>
<td>92</td>
<td>76</td>
<td>63</td>
<td>52</td>
<td>45</td>
</tr>
<tr>
<td>surface atoms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Figure 1.1** The percentage of surface atoms with the change of the size of nanoparticles. Modified with permission from ref. [4], copyright 2009 Wiley-VCH.
In addition to the size of metallic nanomaterials, their structure and shape also influence their intrinsic physical and chemical properties and their potential applications. One notable example is the different simulated UV-Visible spectra of Ag nanoparticles with different shapes but the same size of 40 nm, as illustrated in Figure 1.3. The number, intensity, and position of localized surface plasmon resonance (LSPR) peaks can be fine-tuned by shape control. They are dependent on the following three points [4]: (1) the number of LSPR peaks is determined by the number of ways in which the electron...
density of a nanoparticle can be polarized; (2) the position of LSPR peaks can be tuned by altering corner sharpness and/or shape anisotropy; and (3) the intensity of LSPR peaks is affected by shape symmetry.

For Ag nanosphere, a strong dipole resonance at 410 nm and a weak quadrupole resonance at 370 nm are observed (Figure 1.3a). Recent calculations indicate that surface charges are mainly accumulated at sharp corners. This enhanced charge separation results in the reduced restoring force for electron oscillation and the red-shifted LSPR peak when all other parameters are comparable. Therefore, compared to the nanosphere, the most intense peaks of nanocube, nanotetrahedron, and nanoctahedron are red-shifted, and the largest red-shift exists on the nanotetrahedron due to its largest corner sharpness (Figure 1.3b–1.3d). Besides, the weakest intensity of LSPR peak also occurs on the nanotetrahedron due to its $T_d$ symmetry. As shown in Figures 1.3e and 1.3f, compared with the triangular nanoplate, the intensity of LSPR peak of the nanodisc is much greater because the circular symmetry of the nanodisc can provide a greater effective dipole moment. The above example demonstrates that the properties of metallic nanoparticles are highly related to their shapes. Therefore, the precise control of their size, shape, distribution, and monodispersion is crucial for the property optimization of metallic nanoparticles. Within the past decades, many solution-phase methods have been developed to prepare the shape-controlled metallic nanoparticles through the manipulation of their nucleation and growth process.

1.2 Bimetallic Nanoparticles

Since the Bronze Age, humans have formed alloys simply by mixing or melting two metals. The hybrid bimetallic material could have more excellent properties (e.g., hardness, ductility, and malleability) than either one of the metals involved. For example, when alloying iron with copper and chromium, steel would exhibit enhanced mechanical properties in hardness, ductility and malleability, and improved resistance to corrosion.

In general, bulk alloyed materials must be melted at high temperatures, and most of the two kinds of metals in the bulk state are even immiscible. At the nanoscale level, however, the two metals may become miscible, and their melting point could decline substantially with the decease of their size. This is because the formation of both enthalpy and Gibbs free energy of bimetallic materials decreases with particle size. Taking Cu–Ni as an example: although Cu-Ni has a positive formation enthalpy of the bulk immiscible system, Cu–Ni has a negative formation enthalpy when the particles are smaller than a critical size[7]. In this case, the alloying process first takes place in the dilute solute regions, then broadens to the dense solute regions, and finally forms the alloyed structure in the whole particle. It is apparent that bimetallic nanoparticles, composed of two distinct metal elements, are a new class of nanomaterials. On one hand, they exhibit different properties than their bulk bimetallic materials; on the other hand, they exhibit unique properties that differ from those of the corresponding pure monometallic counterparts and their physical mixings.

Modern interest in the synthesis and optical property of bimetallic nanoparticles dates from 1960s. In 1964, Morriss and Collins synthesized colloidal Au@Ag core-shell nanoparticles using 5.9 nm of Au nuclei, and compared their experimental optical
properties with the calculated results in different wavelength ranges[8]. In 1975, Papavassiliou discovered that the position of the absorption spectra of Au-Ag alloy solution depended on the composition of the alloy[9]. Commercial interest in bimetallic catalysts also dates from the 1960s due to their different activities toward hydrocarbon reforming from their parent metals[10]. The unexpected properties of bimetallic nanoparticles have inspired numerous further investigations on their syntheses, characterizations, properties, and applications.

Although bimetallic nanoparticles are more complicated than monometallic nanoparticles in many aspects, including synthesis control and structure characterization, they are superior in many ways. First, the incorporation of late transition elements, such as Fe, Co, and Ni, into the noble metallic nanoparticles can reduce the cost of materials, such as Pt–Ni alloy. Second, the electrical, physical, and chemical properties of bimetallic nanoparticles are not only associated with the two different metals but also can be modified easily by changing their composition, size, and shape. Furthermore, optimum components or an optimal structure of bimetallic nanoparticles can achieve a maximized atomic utilization rate and an excellent material property. The property modulation of bimetallic nanoparticles is mainly dependent on synergetic effects between two distinct elements, including electronic effect, lattice stress, bifunctional effect, and ensemble effect.

1.2.1 Electronic Effect

Electron transfer and charge redistribution occurs between two dissimilar atoms through d-state hybridization, and it gives rise to a change in density of state and d-band center of metal atoms. If the electronegativity of A is larger than that of B or B has a higher Fermi level, the electron will transfer from B to A, making the d-band center of A deeper and the d-band center of B shift up.

The adsorption energy of reaction species (reactant, intermediate, and product) on the metallic surface is related with the d-band center of the surface atoms, and further affects the catalytic activity. One example is Pt–M alloy nanocatalysts toward oxygen reduction reaction (ORR) (early-transition metals, M, include Y, Zr, Ti, Ni, and Co) investigated by Yoo et al.[11]. As shown in Figure 1.4, because early transition metals possess smaller eletronegativity than Pt, the electrons flowed from M to Pt, which made the d-band center of Pt in the Pt–M NPs deeper and reduced the binding energy of the oxygen-containing species. Due to the volcano curve trend between the activity of ORR and the binding energy of the oxygen-containing species, Pt–M NPs exhibited the same volcano curve trend between the activity for ORR and the shifting d-band centers of Pt caused by the electronic perturbation of alloys. The d-band center of Pt and the binding energy of the oxygen-containing species in the Pt3Y NPs was the most appropriate, so that Pt3Y NPs exhibited the highest transition rate for adsorbed OH to water and further displayed the best activity toward ORR.

The electronic effect of multimetallic nanomaterials not only affects their catalytic property but also affects their optical property. Taking Au@Pd as an example, the LSPR peak of Au spheres was located at 524 nm. When the thickness of the Pd shell was 0.7 nm, the peak position was blue-shifted to 495 nm, attributed to the electron transfer from Pd to Au[12].
1.2.2 Lattice Stress

Lattice strain (compression or expansion) in core-shell or twin crystal caused by the different spatial arrangement of surface atoms results in a shift of d-band centers of metal or a change of d-band width; thus, it modulates the performance of bimetallic nanoparticles. A compressive strain causes a deeper d-band center of surface atom, and an expansive strain gives rise to a shallower d-band center of surface atom, as shown in Figure 1.5. As in the case of PtCu@Pt nanoparticles studied by Strasser and co-workers, the d-band centers of Pt in the Pt shell were modified by the compressive strain caused by the lattice mismatch between the Pt-rich shell and the PtCu core. Thus, it led to the weakened chemisorption of oxygenated species on the Pt shell, further giving rise to an enhanced catalytic reactivity toward ORR[13]. Predicted by density functional theory calculations, if the Pt–O binding energy ($E_\text{o}$) on the surface of Pt-based nanoparticles is
0.2 eV higher than the value on the Pt (111) surface, the Pt-based nanoparticles will display the maximum ORR activity. So fct-FePt/Pt nanoparticles (fct, face-centered tetragonal) with the $\Delta E_o$ of 0.23 eV exhibited higher activity than fcc-FePt/Pt nanoparticles (fcc, face-centered cubic) with the $\Delta E_o$ of 0.26 eV toward ORR due to their smaller, overcompressed Pt strain[14].

1.2.3 Bifunctional Effect

The surfaces of bimetallic nanoparticles can offer multiple catalytic sites, which adsorb different reactant molecules or intermediates respectively. The adsorption of different reactant species on different sites can avoid the poison risk for active sites caused by competitive adsorption of different species on the same site. Besides, when each metallic component can catalyze different elementary reaction steps, the co-adsorption can be helpful for the transformation of reaction intermediates. For instance, for Pt monometallic eletrocatalyst toward methanol oxidation reaction (MOR), CO is a poisoning species to Pt because of the strong bond energy of Pt–CO and the difficulty in the formation of the Pt–OH; while in the system of the Pt–Pd bimetallic catalysts, surface Pt sites catalyze the dehydrogenation of methanol to form Pt–CO, and surface Pd sites catalyze the dissociation of water to form Pd–OH, then Pt–CO reacts with Pd–OH to generate CO$_2$, which regains Pt sites and enhances the reaction activity[15].

Furthermore, in the hybridization system of highly catalytic metals (e.g., Pt, Pd, or Rh) with plasmonic metals (e.g., Au, Ag, or Cu), the surfaces of bimetallic nanoparticles can offer multifunctional sites[16]. For example, Majima et al. demonstrated the plasmon-enhanced production of H$_2$ from water and methanol on Pt-tipped Au nanorods[17]. As illustrated in Figures 1.6a and 1.6b, upon irradiation with visible and near-IR light, the Au nanorod had the excellent capability to absorb light, then photoelectrons were transferred to the Pt-tips, and finally, the Pt-tips generated highly active catalytic activity to reduce H$_2$O for the production of H$_2$, while methanol was oxidized at the electron-deficient Au nanorod.

1.2.4 Ensemble Effect

In some cases of catalysis, specific groupings of surface atoms take on distinct mechanistic functionalities. For example, Magnussen et al. studied electrocatalysis in Pd/Au(111) electrodes. Pd monomer on Au(111) is the smallest ensemble for the adsorption and oxidation of CO, while H adsorption requires Pd dimers or larger ensembles[18]. Another example is the synthesis of vinyl acetate by coupling of ethylene and acetate on Pd–Au bimetallic catalysts prepared by deposition of Pd on Au surface investigated by Goodman et al.[19]. As shown in Figure 1.6c, ethylene and acetate were adsorbed on different Pd monomers, and the optimized distance is 3.3 Å, so the Pd–Au(100) with the distance between two neighboring Pd monomers of 4.08 Å exhibited higher activity than Pd–Au(111) surface with the distance of 4.99 Å (Figure 1.6d). The high activity of a Pd monomer for vinyl acetate formation is due to an ensemble effect—that is, Pd monomers isolated by Au could prevent the formation of byproducts.
1.3 Bimetallic Nanostructures

The property and function application of bimetallic nanoparticles is heavily related with their structures. Bimetallic nanostructures are complicated and can be classified into three main types: alloyed structure (intermetallic or solid solution), core–shell, and heterostructure according to the mixing patterns of two different metals (A and B), as illustrated in Figure 1.7.

1.3.1 Alloyed Structure

Both of the two alloyed structures have homogeneous distribution of atom A and atom B, whether on the surface or inside the particle. The distributions of atom A and atom B in the intermetallic structure have long-range order (Figure 1.7a), while a solid-solution nanoparticle has a structure with a random distribution of atom A and atom B in the particle (Figure 1.7b). The atomic ordering in the intermetallic structure, such as Au₃Cu, gives rise to a lattice structure distinct from the individual metals, and takes on

Figure 1.6 (a) Reaction mechanism for H₂ production on Pt-tipped Au nanorods. (b) Time course of H₂ production on Pt-tipped Au nanoparticles under visible-light irradiation. Modified with permission from ref. [17], copyright 2014 American Chemical Society. (c) Schematic for vinyl acetate (VA) synthesis; (d) VA formation rates (TOFs) as a function of Pd coverage on Au(100) and Au(111). Modified with permission from ref. [19], copyright 2005 American Association for the Advancement of Science.
a well-defined stoichiometry, rather than random mixing[16]. The solid-solution structure exhibits a single and new crystal phase, and the value of the lattice parameter is between that of A and that of B. For example, in PtCu₃ nanocage, its X-ray diffraction (XRD) pattern demonstrated the pure intermetallic PtCu₃ phase, and no obvious peaks of Pt or Cu were observed[20]. During the formation process of the alloyed structure, two metallic precursors are often reduced or decomposed simultaneously to form a single kind of crystal nucleus. Then two corresponding metallic atoms grow surrounding the nucleus. Another case is that one kind of metallic atoms (A) firstly forms a nanocrystal, then the other kind of metallic atoms (B) replaces part of A by galvanic replacement; or B diffuses into core A and A diffuses out to B shell, finally resulting in a homogeneous distribution of two distinct atoms.

1.3.2 Core–Shell

Core–shell nanoparticles have a boundary between the core and the shell, with one metal segregation (A or B) as the core and the other metal collection (B or A) as the shell, as illustrated in Figure 1.7c. One kind of metal precursor is reduced first, and it gives rise to the generation of an inner core. Then the other kind of metal precursor is decomposed into metallic atoms and grows on the surface of the core. Finally, a core–shell forms. The surface of the core–shell only exposes atom B or atom A. Generally speaking, the core–shell structure displays the phase of A and the phase of B simultaneously. The core–shell structure may be helpful for crystal phase structure of shell B to inherit that of core A, which is thermodynamically stable or even metastable for B. For example, the thermodynamic stable phase of Ru is hexagonal-close-packed (hcp), but in Pt@Ru (core–shell) nanotetrahedrons, shell Ru had the same phase (fcc) with core Pt due to the layered growth of Ru on the surface of fcc core Pt[21]. One reverse phenomenon may occur in the core-shell structure; that is, the phase transformation of core occurs simultaneously during the formation of core-shell. One example is the synthesis of fcc Au@Pt rhombic nanoplates through the epitaxial growth of Pt on hcp Au sheets [22]. Because the hcp phase was not a thermodynamic stable phase for core Au, the growth of shell Pt gave rise to the transformation of core A from the hcp phase to the fcc phase.

1.3.3 Heterostructure

The common types of heterostructures include dendritic structures, dimers, multipods, dumbbells, and Janus particles. In heterostructures, section A and section B share one or a few mixing interfaces, as shown in Figure 1.7d. The heterostructure displays the
phase of A and the phase of B simultaneously. In this kind of structure, atom A and atom B appear on different surfaces, respectively. If a secondary metal B is attached on one side of collection A by island growth instead of conformal overgrowth, heterostructure forms. For example, using the cubic Pt as seeds, Au was grown into a rod, adopting the anisotropic overgrowth on the Pt seed induced by large lattice mismatch (4.08% mismatch between Au and Pt). Finally, the Pt seed and the Au rod were both exposed in the heterostructure[23]. Liz-Marzán et al. demonstrated the synthesis of Ag–Au–Ag segmented nanorods through the deposition of Ag at both ends of Au nanorods using penta-twinned Au nanorods as seeds[24]. The length of bimetallic nanorods could be controllably grown to several micrometers and the thickness was increased only slightly, so their longitudinal resonant mode was greatly red-shifted. In another case, if individual nucleation and growth of A and B appear on a shared mixing interface and the deposition is nonepitaxial, heterostructure also forms.

1.3.4 Factors Affecting the Mixing Patterns

The mixing patterns of two different metals (A and B) not only are related with precise control over nucleation and growth processes but also depend on several factors[25]:

1) Bond energy. If the bond energy of A–B is stronger than that of A–A and that of B–B, one of the following two cases probably occurs. When the precursor of A and the precursor B are reduced or the atom A and the atom B deposit simultaneously, it tends to form the alloyed structure; and when the nanoparticles of A form preferentially, the atoms B will attach on the interface of A to form core–shell by layered growth. Otherwise, it tends to form a heterostructure.

2) Surface energy. The composition with lower surface energy tends to segregate on the surface of NPs. However, if the surface is decorated by surfactant or facet-specific capping agent, the surface will expose specific composition or specific facet.

3) Atomic radius. If the atomic radii of A and B are equal, it tends to form the alloyed structure or form core–shell by epitaxial growth. Otherwise, it tends to form a heterostructure by island growth.

4) Charge transfer. The electron transference between A and B favors the formation of A–B bond, which is helpful for mixing.

5) Size of bimetallic nanoparticles. Phase separation in bimetallic clusters is dependent on the size of nanoparticles, predicted by Monte Carlo simulation[26]. That is, the alloying effect in a nanoparticle of radius \( r \) is the result of the competition between the enthalpy of a demixing phase transformation and the interfacial energy required to create a new surface on demixing[27]. The enthalpy of demixing is proportional to \( r^3 \) and the interfacial energy is proportional to \( r^2 \). So when the size of nanoparticles is small, the interfacial energy dominates, and it is less than enthalpy of demixing, the nanoparticles will stay as alloyed structure. Therefore, many of the two kinds of metals are immiscible in the bulk solid state but are miscible in the nanocluster state, such as Au and Pt.

1.4 Bimetallic Nanostructure-Dependent Performance

Different elemental composition ratios and various shapes of bimetallic materials have influences on their atomic arrangements, interactions between adjacent atoms, stacking patterns, and spatial atomic coordination environments. Since many physical and