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Preface

Multidimensional scaling (MDS) is a powerful statistical method that maps prox-
imity data on pairs of objects (i.e., data expressing the similarity or the dissimilarity
of pairs of objects) into distances between points in a multidimensional space. The
space is usually two-dimensional, sometimes also three-dimensional, and seldom
more than three-dimensional. Unfolding is a related method for preference data
(e.g., persons’ ratings on choice objects such as consumer goods). It maps these
data into distances between points representing the persons and points representing
the choice objects.

The purpose of MDS and unfolding is often just visualizing the data so it
becomes easier for the user to explore and to understand their structure. However,
both MDS and unfolding can also be used to test a variety of structural hypotheses
about the data or even psychological theories of judgment or choice. Thousands of
publications have used MDS and unfolding in these ways.

This book is a brief introduction to MDS and unfolding. It discusses the issues
that always come up when MDS or unfolding is used in substantive research, and it
shows how to actually run such analyses. The aim is conceptual understanding and
practical know-how rather than mathematical precision and proof. It is more like a
driving lesson, not like engineering a car. These are different things, and the
engineer is not necessarily a better driver.

In this second edition, we focus much more on R packages and the R envi-
ronment than we did in the first edition. However, we decided not to drop other
computer packages (such as SPSS and its modules, in particular), because many
users are (still?) using these programs. Moreover, some of these programs have
features that are not available in R yet. On the other hand, we mention highly
special stand-alone programs only occasionally, since many of them are hard to get
and difficult to use.

This edition also puts much more emphasis on unfolding. Unfolding was almost
completely neglected in the first edition, since nobody used it, even though it is a
powerful method and an interesting model. Things have changed recently:
Unfolding seems to become more popular in substantive research and in consulting.
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With regard to MDS, we introduce and explain recent developments that are
concerned with the goodness of an MDS solution and with its substantive inter-
pretation. They are particularly important for the MDS user, for reviewers, and for
journal editors. For example, MDS users can now test the statistical significance of
MDS (and unfolding) solutions using methods that require computer simulations
that were difficult to run within traditional statistics packages but that are now easily
feasible within the R environment.

We also present various new examples of how to run an MDS or an unfolding
job using R. These examples are almost all substantively relevant and not just
contrived illustrative examples. Most data that we use in this book are also readily
available in the R package SMACOF so that the user can check our analyses.

To make our cases as concrete as possible, we repeatedly show R scripts for
running the jobs. In these scripts, we tried adhering to the R etiquette of writing R
code, but did not follow it strictly where it would waste too much space. For
example, we often use the semicolon to write more than just one command per line.
Prettier code can easily be generated by marking the code and then typing Ctrl
+Shift+A in RStudio, for example, or by using the tidy sourceðÞ function in
the formatR package. The scripts shown in this book (and a few additional ones)
are also available, in prettier form, in the supplementary script file. Additional
material to this book can be downloaded from http://extras.springer.com. It should
also be noted that some plots do not correspond exactly to those produced by the
various scripts. Rather, some plots were slightly edited by hand to unclutter, in
particular, the labels attached to the points in scatter plots.

Münster, Germany Ingwer Borg
Rotterdam, The Netherlands Patrick J. F. Groenen
Cambridge, USA Patrick Mair
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Chapter 1
First Steps

Abstract The basic ideas of MDS are introduced doing MDS by hand. Then, MDS
is done using statistical software. The goodness of the MDS configuration is evalu-
ated by correlating its distances with the data. Unfolding is introduced with a small
example.

Keywords MDS · Iteration · Proximities · Dimensional interpretation
Goodness of fit · Unfolding

1.1 Basic Ideas of Multidimensional Scaling

The basic ideas of MDS are easily explained using a small example. Consider
Table1.1. It contains the correlations of different crimes in 50 US states. The corre-
lations show, for example, that if there are many cases of Assault in a state, then there
are also many cases ofMurder (r = 0.81).We now scale these correlations viaMDS.
This means that we try to represent the seven crimes by seven points in a geometric
space so that any two points lie the closer together the greater the correlation of the
crimes that these points represent.

To reach this goal, we take seven cards, andwrite the name of one crime on each of
them, fromMurder toAutoTheft. These cards are thenplacedon a table in an arbitrary
arrangement (Fig. 1.1). Their distances are measured (Fig. 1.2) and compared with
the correlations in Table1.1. This comparison shows that the configuration in Fig. 1.1
does not represent the data in the desired sense. For example, the cards for Murder
and Assault should be relatively close together, because these crimes are correlated
with 0.81, whereas the cards forMurder and Larceny should be farther apart, as these
crimes are correlated with only 0.06. We, therefore, try to move the cards repeatedly
in small steps (“iteratively”) so that the distances correspondmore closely to the data.
Figure1.3 demonstrates in which directions the cards should be shifted to improve
the correspondence of data and distances.

Improving a given configuration iteratively by hand can be fairly tedious. It also
does not guarantee convergence to a stable and optimal configuration. So, let an

© The Author(s) 2018
I. Borg et al., Applied Multidimensional Scaling and Unfolding,
SpringerBriefs in Statistics, https://doi.org/10.1007/978-3-319-73471-2_1
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2 1 First Steps

Table 1.1: Correlations of crime rates in 50 US states

Crime Murder Rape Robbery Assault Burglary Larceny Auto Theft

Murder 1.00 0.52 0.34 0.81 0.28 0.06 0.11

Rape 0.52 1.00 0.55 0.70 0.68 0.60 0.44

Robbery 0.34 0.55 1.00 0.56 0.62 0.44 0.62

Assault 0.81 0.70 0.56 1.00 0.52 0.32 0.33

Burglary 0.28 0.68 0.62 0.52 1.00 0.80 0.70

Larceny 0.06 0.60 0.44 0.32 0.80 1.00 0.55

Auto Theft 0.11 0.44 0.62 0.33 0.70 0.55 1.00

Murder

Rape

Larceny Burglary

Assault

Auto Theft

Robbery

Fig. 1.1: Initial configuration for an
MDS of the data in Table1.1

Murder

Rape

Larceny Burglary

Assault

Auto Theft

Robbery

1
2

6
5

4
3

Fig. 1.2: Measuring distances with a
ruler

MDS computer algorithm do the job. It systematically moves the points step by step
to improve the fit to the data.

There existmany goodMDSprograms.One such program isProxscal, amodule
of Spss. To use Proxscal, we first save the correlation matrix of Table1.1 in a file
that we call ‘CorrCrimes.sav’. Then, we only need some clicks in Proxscal’s menus
(click: Analyze > Scale > Multidimensional Scaling (Proxscal)) or, alternatively,
execute the following commands:

1 GET FILE=‘CorrCrimes.sav’.
2 PROXSCAL VARIABLES=Murder to AutoTheft
3 /TRANSFORMATION=INTERVAL
4 /PROXIMITIES=SIMILARITIES .

The PROXIMITIES sub-command informs the program that the data—called proximi-
ties in this context, a generic term for both similarity and dissimilarity data—must be
interpreted as similarities by the program.That is, small data values should bemapped
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Murder

Rape

Larceny Burglary

Assault

Auto Theft

Robbery

Fig. 1.3: Directions for point move-
ments to improve the MDS configura-
tion

Murder

Rape

Robbery

Assault
Burglary

Larceny

Auto Theft

Fig. 1.4: Optimal computer-generated
MDS solution

into large distances, and large data values into small distances. Also, we want to map
the correlations linearly into MDS distances, preserving their differences (“inter-
vals”) in the distances. InProxscal, we thus request /TRANSFORMATION=INTERVAL.
No further specifications are needed. The program uses its default settings to generate
an MDS solution (Fig. 1.4).

Many other programs exist forMDS.One example is theMDSmodule in Systat.
Systat can be run using commands, or by clicking on various options in a graphical
user interface. Having loaded the correlation matrix as our data, we call the MDS
module and its menu in Fig. 1.5. We select the variables Murder, Rape, etc., and
leave all other specifications as they are, except the one for “Regression”, where we
request that the MDS program should optimize the relation of data to distances in
the sense of a least-squares linear regression. Clicking on the OK button makes the
program find and plot an MDS configuration.

A third implementation is the mds() function of the R (R Core Team 2017)
package smacof (De Leeuw and Mair 2009). smacof is open source and, most
importantly, allows using the sheer boundless capabilities of the R environment and
its thousands of software packages for additional analyses, simulations, and graphics.
So, we will mostly use smacof in this book.

smacof is run by commands. A few commands suffice to do the MDS analysis
of the given data. Note that smacof always requires that the data either come as
dissimilarities, or that they have been converted to dissimilarities (accomplished
here by the sim2diss function).


