Operations Management and Sustainability

“Many companies still wrestle to fully understand the implications of sustainability for their operations and supply chain management practices. This situation is not surprising, given the systemic interdependencies around sustainability. Written by an international team, this book therefore aims to build more comprehensive theory in this area, as well as offering practical solutions. The editors are to be congratulated for having put together such a timely volume.”

—Lutz Preuss, Professor of Strategic Management,
University of Sussex, UK

“This is a comprehensive book on an important and highly complex topic. It brings together findings from a variety of research projects in the area of Sustainable Operations Management, employing different methods and theoretical perspectives, and covering different sectors and industries. The book presents an overarching, systems perspective on the topic, providing coherence across the different contributions.”

—Annik Magerholm Fet, Vice-Rector and Professor,
Norwegian University of Science and Technology, Norway

“This book provides a helpful collection of sustainable operations management chapters. It will be of interest to researchers and reflective practitioners alike, clustering topics around strategy, theory, practice and capabilities. Acting responsibly on sustainability issues is arguably the biggest challenge facing operations and supply managers, and indeed the world’s population as a whole. The book is both timely and relevant.”

—Helen Walker, Professor and Chair of Operations and Supply Management, Cardiff Business School, UK
Editors
Luitzen de Boer
Department of Industrial Economics and Technology Management
Norwegian University of Science and Technology
Trondheim, Norway

Poul Houman Andersen
Department of Business and Management
Aalborg University
Aalborg, Denmark
Department of Industrial Economics and Technology Management
Norwegian University of Science and Technology
Trondheim, Norway

ISBN 978-3-319-93211-8 ISBN 978-3-319-93212-5 (eBook)
https://doi.org/10.1007/978-3-319-93212-5

Library of Congress Control Number: 2018946659

© The Editor(s) (if applicable) and The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer Nature 2019
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Palgrave Macmillan imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland
Contents

1. **Sustainable Operations Management (SOM): An Introduction to and Overview of the Book**
 Poul Houman Andersen and Luitzen de Boer

 Part I
 SOM Strategy and Management

2. **Sustainable Operations Management (SOM) Strategy and Management: An Introduction to Part I**
 Poul Houman Andersen

3. **Flexibility of Environmental Regulations and the Impact on Operations Innovation**
 Ramakrishnan Ramanathan

4. **Organizational Drivers and Barriers to Circular Supply Chain Operations**
 Roland Levering and Bart Vos
5 Inconsistent Norms in Buyer-Supplier Relations: A Study of Sustainability Introduction in the Textile and Apparel Industry
Ulla Normann Christensen

6 Theory Building Within Sustainable Operations Management (SOM): An Introduction to Part II
Poul Houman Andersen

7 Business Models in the Circular Economy and the Enabling Role of Circular Supply Chains
Luciano Batista, Michael Bourlakis, Palie Smart, and Roger Maull

8 Disentangling Environment-Specific Sustainability-Oriented Innovation: Insights from the Airbus-Boeing Duopoly
Rohit Nishant, Alok Choudhary, Hung Yao Liu, and Mark Goh

9 The Impact of Negative Social/Environmental Events on the Market Value of Supply Chain Partners
Mauro Fracarolli Nunes

10 Maximizing the Retained Value of Product Recovery Based on Circular Economy Principles
Eva Faja Ripanti and Benny Tjahjono

11 Sustainable Intermodal Train Transport
Pinja Raitasuo, Anu Bask, and Mervi Rajahonka
Tim Gruchmann, Gustavo De La Torre, and Klaus Krumme

13 Using the Green Performance Map: Towards Material Efficiency Measurement 247
Sasha Shahbazi, Magnus Wiktorsson, and Martin Kurdve

Part IV SOM Capability Development 271

14 Linking Green Supply Chain Management Skills and Environmental Performance 273
Pinja Raitasuo, Markku Kuula, Alex J. Ruiz-Torres, and Max Finne

15 Information Exchange and Processing in Buyers and Suppliers in Green Public Procurement: An Absorptive Capacity Perspective 293
Mieko Igarashi

Index 331
Notes on Contributors

Anu Bask is an Assistant Professor at the department of Information and Service Management in Aalto University School of Business. Her research interests are service modularity, shipper-LSP relationships and green logistics. She has published articles in several logistics journals.

Luciano Batista is Associate Professor of Operations Management at the University of Northampton, UK. He is a Chartered Member of the Chartered Institute of Logistics and Transport (CILT) UK and Member of the European Operations Management Association (EurOMA). His research focuses mainly on the sustainability of operations and supply chains, new business models in the circular economy, and the interface between the circular and the digital economy.

Luitzen de Boer is Professor at the Norwegian University of Science and Technology (NTNU) in Trondheim, Norway. His research and teaching activities focus on purchasing management, public procurement, logistics and supply chain management. He has published in *Journal of Purchasing and Supply Management*, *Supply Chain Management: An International Journal*, *Management Decision* and *Journal of Cleaner Production* among others.

Michael Bourlakis is Director of Demand Chain Management Community & Head of Centre for Logistics & Supply Chain Management at Cranfield University, UK. He is a Fellow of the Chartered Institute of Logistics and Transport (CILT) UK. He has an applied, industry-led research perspective examining logistics and supply chain management issues via multi- and inter-disciplinary lenses. His work has appeared in leading supply chain management, marketing and business journals.
Alok Choudhary is a Reader in Supply Chain Management and the Co-Director of Undergraduate Studies at Loughborough University. He focuses on interdisciplinary, industry-driven and applied research to investigate the Sustainability of Logistics and the Supply Chain Industry.

Ulla Normann Christensen is Assistant Professor of Supply Chain Management at VIA University College, Denmark. Her main teaching and research activities focus on Purchasing Management and Sustainability. She specializes in the Textile and Apparel Industry. Her research has recently been published in *International Journal of Physical Distribution and Logistics Management*.

Gustavo De La Torre is a Research Associate at the department of Transport Systems and Logistics at the University of Duisburg-Essen in Germany and since 2015 he has been a Staff Member of the Centre for Logistics & Traffic (ZLV) at the same institution. Gustavo is also a PhD candidate in mechanical engineering. His research focus is the analysis and behavior of the supply chain with the help of system dynamics, agent-based simulation, lean management and sustainability.

Max Finne is Assistant Professor of Operations Management at Warwick Business School. He manages and delivers modules on operations and project management for both undergraduate and postgraduate programs. His research interests cover service operations and networks, innovative teaching methods and the role of regulation in creating market efficiency.

Mauro Fracarolli Nunes is a PhD candidate at ESCP Europe, Paris campus, and an Assistant Professor of Supply Chain Management at Neoma Business School, both in France. He is a member of the European Operations Management Association (EurOMA), the Academy of Management, the European Group for Organizational Studies (EGOS) and the Sustbusy Research Center at ESCP Europe. His research interests are sustainable supply chain management, social and environmental reputations, and the dissemination of negative events across supply chains and networks. Recent publications have appeared in the *European Management Journal*, *Sustainable Production and Consumption* and *Journal of Global Responsibility*.

Mark Goh is Professor at the Department of Analytics and Operations in the NUS Business School, and Director (Industry Research) at the Logistics Institute – Asia Pacific, at the National University of Singapore, Singapore. His current research interest centers around supply chain management and sustainable operations. His recent publications have appeared in the *International Journal of Production Economics* and the *Annals of Operations Research*.
Tim Gruchmann is PhD candidate at the University of Kassel and holds an academic position at Witten/Herdecke University, Germany. His research focuses on sustainability and dynamics in supply chains, in particular in the food and automotive sector. Earlier, he gained relevant professional experience within the automotive industry while being responsible for numerous intra- and outbound logistics projects in Germany and abroad (Hungary, Turkey).

Poul Houman Andersen is Professor at Aalborg University, Denmark, and Professor II at NTNU, Norway. His research interests relate to supplier innovation, operations management and business-to-business marketing. He has published in *Research Policy, California Management Review, Journal of Purchasing and Supply Management* and *Industrial Marketing Management*.

Mieko Igarashi is a PhD candidate at the Department of Industrial Economics and Technology Management, Norwegian University of Science and Technology. Her research interests are in green procurement, sustainability in supply chains and behavioral decision making. Recent publications have appeared in the *Journal of Cleaner Production, Journal of Purchasing and Supply Management* and *Journal of Public Procurement*.

Klaus Krumme is executive director of the Centre for Logistics & Traffic (ZLV) at the University of Duisburg-Essen. In this position, he took a leading role in sustainable development and sustainable logistics-related R&D projects over the past 15 years. His focus is on transformative supply chain concepts for a green economy, resilient systems design and sustainable urban supply chain management.

Martin Kurdve has a postdoc position at Chalmers University of Technology, Sweden. His current research involves Circular Material Flows and Green Lean Manufacturing. He has published articles in the *Journal of Cleaner Production*, *Waste Flow Mapping: Handbook* and *Journal of Cleaner Production*.

Markku Kuula is Professor of logistics and Head of the department of information and service economy at Aalto University School of Business. He has been Associate Editor of *Decision Sciences Journal* since 2014 and has published articles in several international refereed operations research and operations management journals.

Roland Levering is Lecturer Logistics & Supply Chain Management at Avans University of Applied Sciences, The Netherlands. He obtained his PhD from Tilburg University where he also did a post-doc project on the circular economy. His research interests are supply chain management, the circular economy, sustainable business models, and networks.
Hung Yao Liu is a Research Associate at the Department of Industrial Systems Engineering and Management, National University of Singapore, Singapore. He is a member of the Academy of Management, Strategic Management Society and INFORMS. His research interests include corporate social (ir)responsibility, technology transfer and competitive strategy.

Roger Maull is Professor of Management Systems at the University of Surrey, UK. He is a founder member and Deputy Head of the Surrey’s Centre for the Digital Economy (CoDE). His research is mainly focused on the implications of the digital revolution for businesses and society. Theoretically, Roger’s research is underpinned by his long-standing interest in systems thinking.

Rohit Nishant is an Associate Professor (SCM and IS area) at Rennes School of Business, France. His research interests include green IS, sustainability, social implications of IS, and business value of technologies.

Pinja Raitasuo has recently received her doctoral degree from Aalto University School of Business, Department of Information and Service Management. During her PhD studies, she was also a long-term visiting PhD student at the Warwick Business School (UK). Her research interests include green logistics, sustainable operations management and health care operations management.

Mervi Rajahonka is RDI specialist at South-Eastern Finland University of Applied Sciences XAMK, Finland. Her research interests are service business, innovative business models and green logistics. Recent publications include environmental sustainability in shipper-LSP relationships in *Journal of Cleaner Production*, and the role of environmental sustainability in the freight transport mode choice in *International Journal of Physical Distribution & Logistics Management*.

Ramakrishnan Ramanathan is the Director of the Business & Management Research Institute at the University of Bedfordshire Business School in the UK. He is a Senior Fellow of the Higher Education Academy. His research interests are Operations Management, Big Data issues and Environmental sustainability. His research articles have appeared in many prestigious internationally refereed journals including *Omega, Journal of Business Ethics, International Journal of Production Economics, Supply Chain Management, International Journal of Operations & Production Management* and *European Journal of Operational Research*.

Eva Faja Ripanti obtained her doctoral degree at Cranfield University’s Manufacturing Department. She is currently a lecturer at the Informatics Department, Tanjungpura University, Indonesia. Her research focuses on the
applications of circular economy principles in reverse logistics operations. Eva received bachelor and master degrees in information systems.

Alex J. Ruiz-Torres is a full-time faculty member of the Facultad de Administracion de Empresas at the University of Puerto Rico, Rio Piedras Campus. He has industrial engineering degrees from Georgia Tech, Stanford and Penn State and his research interests are in supply chain management and production planning.

Sasha Shahbazi is a researcher at Swerea IVF, Sweden. He is part of the energy and environment group. His research interests are material efficiency, lean and green, the circular economy and sustainable production. Recent publications have appeared in the *Journal of Cleaner Production*.

Palie Smart is Professor in Operations and Innovation Management at the University of Bristol, UK. She is an appointed member of the UK Innovation Caucus to provide thought leadership to Innovate UK, Economic and Social Research Council (ESRC) and Department of Business, Energy and Industrial Strategy. Her research interests are focused on new models of innovation for sustainable businesses. Her previous works have been published in world leading and internationally excellent journals, including *Research Policy, British Journal of Management, International Journal of Operations and Production Management, International Journal of Management Reviews* and *International Journal of Production Economics*.

Benny Tjahjono is Professor of Supply Chain Management at the Centre of Business in Society, Coventry University. His overarching research area includes Operations Management and Sustainable Supply Chain Management. He is an Associate Editor of the *Journal of Simulation* and is a member of several journal editorial boards.

Magnus Wiktorsson is a Professor of Production Logistics at KTH Royal Institute of Technology, Sweden. He is a member of the presidium of the Swedish Production Academy and engaged in Swedish national research programs, such as Produktion2030. His research interests are digital manufacturing, production logistics and environmental sustainable production. Recent publications have appeared in *Innovative Quality Improvements in Operations and Technology and Manufacturing Process Selection: the Product Life Cycle Perspective*.
List of Figures

Fig. 1.1 Survey results from the McKinsey Global Survey (2017); N: 2711, representing the full range of regions, industries, tenures, company sizes and functional specialities 4

Fig. 1.2 The conceptual relationship between the four parts of the book (building on de Leeuw’s (1976) control paradigm) 9

Fig. 4.1 Overview of type of circular pilots 54

Fig. 4.2 Data structure of empirical codes and aggregated dimensions 60

Fig. 5.1 The norm and exchange continuum adapted from Lambe et al. (2000) 73

Fig. 5.2 The gaps between norms in a normal product exchange relationship and a sustainability exchange relationship respectively 84

Fig. 5.3 Adapted from Cropanzano and Mitchell (2005) 86

Fig. 7.1 Restorative value chains in the circular economy (WEC, 2014) 110

Fig. 7.2 Restorative flows enabled by circular supply chains (EM Foundation, 2014). (a) Closed-loop flows (within a supply chain), (b) open-loop flows (across supply chains) 112

Fig. 7.3 A circular supply chain archetype 120

Fig. 7.4 Structured integration of component supply chains in the wide circular supply chain archetype 122

Fig. 8.1 Different SOI dimensions (Adapted from Adams et al., 2016) 139

Fig. 9.1 Conventional input-output view. Source: Adapted from Donaldson and Preston (1995) 155
<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2</td>
<td>Stakeholder model. Source: Adapted from Donaldson and Preston (1995)</td>
<td>156</td>
</tr>
<tr>
<td>9.3</td>
<td>The supply chain extended stakeholder model</td>
<td>163</td>
</tr>
<tr>
<td>10.1</td>
<td>Product recovery based on the replacement level (Ripanti, 2016)</td>
<td>184</td>
</tr>
<tr>
<td>10.2</td>
<td>Research methodology</td>
<td>186</td>
</tr>
<tr>
<td>10.3</td>
<td>Embedding CE principles into product recovery</td>
<td>187</td>
</tr>
<tr>
<td>11.1</td>
<td>Framework of possible drivers supporting the development of rail-based intermodal transportation</td>
<td>206</td>
</tr>
<tr>
<td>11.2</td>
<td>Importance of drivers for increasing the share of rail-based intermodal transportation based on the case study</td>
<td>210</td>
</tr>
<tr>
<td>12.1</td>
<td>Applied methodology of causal diagrams and participatory system mapping</td>
<td>230</td>
</tr>
<tr>
<td>12.2</td>
<td>Causal loop diagram (Melkonyan et al., 2017)</td>
<td>236</td>
</tr>
<tr>
<td>13.1</td>
<td>Circular economy via material efficiency, adapted green performance map from Romvall et al. (2011)</td>
<td>253</td>
</tr>
<tr>
<td>13.2</td>
<td>GPM examples (normal GPM on the left and modified GPM on the right)</td>
<td>259</td>
</tr>
<tr>
<td>13.3</td>
<td>Material efficiency via GPM</td>
<td>263</td>
</tr>
<tr>
<td>14.1</td>
<td>Research framework including the hypotheses</td>
<td>281</td>
</tr>
<tr>
<td>14.2</td>
<td>Results for Eurus companies</td>
<td>284</td>
</tr>
<tr>
<td>14.3</td>
<td>Results for Caribbean companies</td>
<td>284</td>
</tr>
<tr>
<td>15.1</td>
<td>Case design</td>
<td>304</td>
</tr>
<tr>
<td>15.2</td>
<td>AC-based GPP model</td>
<td>318</td>
</tr>
</tbody>
</table>
List of Tables

Table 3.1 Measures used in this study and their literature sources 33
Table 3.2 Results of factor analysis 36
Table 3.3 Results of one-way ANOVA examining the effect of flexibility of environmental regulations on operations innovation in firms 37
Table 4.1 Overview of identified practices and drivers and barriers 53
Table 5.1 Appearance of norms in the data 77
Table 8.1 Identification of key terms and themes in different innovations by CRA 145
Table 9.1 Analyzed cases, respective nature and number of suppliers 165
Table 9.2 Summary of results 167
Table 9.3 CAARs for the seven event windows 168
Table 9.4 Event study for Volkswagen 170
Table 10.1 Configuration of circular economy principles (Ripanti, 2016) 185
Table 10.2 The result of assessing, disassembling and calculating the value of the parts 189
Table 12.1 SSCM-related DCs 228
Table 13.1 Companies studied 255
Table 13.2 Summary of empirical results 260
Table 14.1 Reliability check results 283
Table 14.2 Summary of the results 284
<table>
<thead>
<tr>
<th>Table 15.1</th>
<th>Evolution of the AC concept</th>
<th>299</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 15.2</td>
<td>Interview respondents</td>
<td>305</td>
</tr>
<tr>
<td>Table 15.3</td>
<td>Interview guide</td>
<td>325</td>
</tr>
</tbody>
</table>
Dear reader: thank you for taking an interest in our book on sustainable operations management! This is an edited book about what we and our co-contributors believe to be a topical and highly important issue. We also realize that this is an issue with political overtones that may cause divides and heated debates. Despite several global warnings and calls for action with respect to becoming more sustainable, disagreement and even resistance remains towards the call for action towards more sustainability and the urgency for action. The dissent has moved from outward rejection of any

P. Houman Andersen (✉)
Department of Business and Management, Aalborg University,
Aalborg, Denmark

Department of Industrial Economics and Technology Management,
Norwegian University of Science and Technology, Trondheim, Norway
e-mail: poa@business.aau.dk

L. de Boer
Department of Industrial Economics and Technology Management,
Norwegian University of Science and Technology, Trondheim, Norway
e-mail: luitzen.de.boer@ntnu.no
climate change happening, to a discussion regarding the impact of this change on society (Lomborg, 2010). Currently, the debate revolves around whether we understand how and to what extent the current rate of natural resource exploitation affects global climatic conditions, how much and at what rate it will affect us and which route is the most promising to follow in order to become (more) sustainable. Take the case of the Trump administration, which repeatedly has expressed skepticism towards climate change and has withdrawn the United States from the UN climate negotiations. Consequently, the US presidential administration has removed sustainability from the agenda of political aims for the United States and is currently considering rolling back the greenhouse gas emission policies that were put into action by the former president, Barack Obama. Meanwhile, the depletion of resources and the unintended consequences of unlimited growth in production and consumption are increasingly recognized in other parts of the United States and by stakeholders in other societies in-and outside the United States.

We side with the latter side of this debate. In our view, it takes a considerable amount of human resolve to overlook or ignore the consequences of ongoing depletion of natural resources. We are not alone. In most parts of the world, there is an increasing political and public pressure towards improving sustainability in operations from all levels of society. There is an ongoing mental transition from what Kenneth Boulding (1966) in his famous essay on “spaceship earth” named the “cowboy economy”, building on the notion of illimitable plains, where human society can move when the current area’s resources are exhausted, towards a “spaceman economy”, in which resources must be reproduced and recycled as no resource is really unlimited. Although this high-level notion was formulated more than 50 years ago, there has been little agreement among constituents on how to proceed. Several international organizations have provided evidence with respect to the dire climatic consequences of pursuing the existing depletion patterns and how this is already impacting and will impact on societies of the future. Several of the UNs 17 sustainable development goals, formulated in 2015, speak directly to these issues, emphasizing a precautionary approach to environmental challenges and encouraging the diffusion of environmental-friendly technologies.

This book is written both for researchers exploring sustainable operations management as a research field and for reflective practitioners, seek-
ing more insights into the nature of sustainable operations management. We hope you will find this book both illuminating and useful for grasping the current state of the art in sustainable operations management research. We would also like to take this opportunity to thank the contributors to this book and the many people who have been involved in reading and commenting on drafts to chapters and so on.

1 Background

For most societal actors, but not least for businesses, sustainability has moved from the periphery to the core. According to the most recent global survey conducted by McKinsey & Company consulting firm (2017), nearly 60% of the more than 2400 respondents asked, report that the organizations they work for are more engaged with sustainability issues than they were two years ago. Companies are focusing on sustainability as a way forward, not only to meet challenges but also to transform these into a profitable and competitive advantage. Furthermore, when asked about the top reasons for addressing sustainability, an increasing number (46%) tick off the organization’s goals, mission or values. Also, expectations of customers and employees towards the organization rank among the important reasons for the firms, which are more engaged than previously in sustainability. In addition, several sustainable technologies have surfaced and become mainstream or serious alternatives to less sustainable options. This includes for instance technologies related to renewable energy, transportation and recycling, but encompasses also a wide range of technologies, which indirectly helps in supporting the minimization of waste, such as data analytics and automation technologies.

However, it seems that many of the initiatives seen are driven from issues pertaining to risk, to external constraints of businesses (such as tougher regulations) or from customer monitoring. Deploying sustainability as a principle for increasing the profitability of business—either through recouping resources and minimizing waste or by developing new products seems to be seen as less achievable than previously (see Fig. 1.1).

In general, the results from a global survey by McKinsey & Company consulting show that although internal operations is one area where sustainability is formally integrated, companies struggle with integrating
sustainability into the operations that extend the corporate boundary, such as procurement and supply chain management. Approximately one out of every four respondents in the survey reported that sustainability was not formally implemented in their company. These findings from the McKinsey survey support the conclusions made by other investigations into the transformation challenges facing companies seeking to develop their abilities within the management of sustainable operations (Loorbach, 2010). Although there is a strong willingness and broad support towards developing more sustainable business models, the challenge of integrating sustainability into the existing way of doing things remains a challenge.

We believe this is the case because transformation towards sustainability is a systemic challenge, calling for fundamental and synchronized changes throughout a widespread network of business actors involved. Rather than seeing sustainability as an organization’s quality (i.e. as an organization being sustainable in its internal operations), sustainable operations can be viewed as an ongoing process constituted through the dynamic relationships between organizational elements. As pointed out by Bateson, a strong proponent of systemic thinking and cybernetics, the unit of survival is a flexible organism-in-its-environment (Bateson, 1973, p. 426). Thus, processing for instance the “ocean garbage patches” (the
plastic waste found in the oceans) is not simply a question of finding a way to collect and reuse the plastic. Currently, the Great Pacific patch, one of five ocean garbage patches, is estimated to weigh 80 million tons and covers an area three times the size of continental France (Chen et al., 2018). Trying to recycle or even upcycle this amount plastic calls for system-wide adjustments in the global production and consumption network involved in the processing. It is not a question of finding one solution, but rather for a range of different organizations—each occupied in its own organizational niche, to co-adjust behaviors. Hence, not only a single or organization's behavior must change—so must the way this and other organizations relates to their specific context. Rather than seeing all organizations as facing the same challenge or seeing the challenge in the same way, an organization interacts and co-specifies its specific part of reality. Taking this view clearly complicates matters. First, understanding the impact realized from any initiative towards sustainability is not an easy task. There are intended as well as unintended consequences of actions which at first glance may seem as a straightforward way to increase sustainable consumption and reduce the impact on the world's scarce resources. One example concerns initiatives from developing biofuel from renewable sources such as corn, which effectively led to rising food prices and deterioration of soil qualities. Another example concerns the ongoing controversy regarding the sharing economy and whether is actually helps or hurts a sustainability agenda (Frenken, 2017). Second, there is the problem of value creation and value capture from sustainable operations. As pointed out by Beer (1981), viable systems both exist within larger viable systems and may contain viable sub-systems themselves, each interacting with its respective task environment. This is the general notion of recursiveness. Often, business actors do not see clearly the wider context of the system in which they are embedded and how sub- or meta-elements constitute task environments. Hence, for the operations managers at the now defunct company Better Place—which sought to develop a business model for recharging batteries for electric vehicles that could also be part of an intelligent power grid—this turned out to be underestimating the challenges of relating profitably to the niches of car manufacturers and power grid companies. In many ways, the Better Place case is one of operations management myopia—the inability to
engage a sufficiently wide lens in trying to understand how attempts to create systemic changes in business operations affects value creation and value capture. The myopic nature of firms—or any viable system for that matter—is well explained by Cyert and March (1963) and can be seen as both a blessing and a curse. On the one hand, and blending in Stafford Beer’s terminology, firms need to shield themselves from the overwhelming variety of “disturbances” coming their way. They will primarily act on “evidence based”, short-term feedback loops, trying to stick to the current strategy as long as possible (Cyert & March, 1963). On the other hand, firms need to be able to detect (perhaps slowly) failing current solutions and develop new ones in order to reinstate stability for the firm. This requires (at least temporarily) suppressing their entropic, myopic approach and gaining a better understanding of how the firm is embedded in a larger system. (Adner, 2012).

This conundrum calls for further conceptualization and research into the challenges of sustainable operations management. As we see it, the problem of integrating sustainability into the management of operations is a key issue for business to press forward and realize the strategic promises. Furthermore, there is a direct link between Boulding’s notion of the “spaceship earth economy” and the way sustainable operations management must be thought of in an organizational and wider business network or “ecosystem” context.

Drawing on insights from complexity theory and cybernetics, it can be argued that the failure to make a transformation from the current economic growth paradigm into a paradigm of resource preservation and reuse relates to the limited ability of the current socio-economic system to engage the interests and concerns of actors beyond narrow profit concerns (Espinosa, Harnden, & Walker, 2008). The traditional systems for governance and control have proven ineffective or weak in creating sufficient participation from economic actors. This is despite growing concerns about the state of the environment in broad areas of society. Hence, trying to install sustainable operations management principles through traditional means, such as controls through installing metrics and measures for performance, is an unengaging exercise, more often than not ending in obscurity. As pointed out several times, complex challenges such as the systemic challenges of transforming an entire production
ecosystem tend to become oversimplified and rigid through complex measuring (Ariely, 2010).

An alternative paradigm that may help to embrace complexity and engage actors on multiple levels is developed from Stafford Beer’s notion of operational system viability or VSM (Beer, 1981). A viable system is a complex entity capable of maintaining an identity, while engaging in complex exchange with that environment. Hence, the structural coupling between entities comes to the fore in a system perspective and must depart from the particular contextual features of this context, rather than from an abstract notion of “environment”. In other words, engaging in system redesigns to achieve sustainable operations calls for understanding the systemic features of the system in question. This differs from other approaches to sustainable operations, which characterizes sustainability as the competence or trait of a single organizational entity.

As briefly touched upon earlier, when discussing the myopic nature and behavior of firms, system viability is obviously closely linked to sustainability: both depart from the notion that organizational entities belong to an environment and that their interactions and structural couplings with this environment co-specify how they interact and in turn co-constitute the reproduction of both organizations and the environmental sub-set they inhabit. Also, both perspectives take into account that the lack of viability of any system means the cessation of that particular form (Espinosa et al., 2008). It follows from a complexity perspective that the different elements that constitute the viable ecosystem must relate to each other in a different manner. Creating sustainable operations must start with the realization among actors that all actions have system-wide ramifications and ongoing collaboration and co-constitution is necessary for the results to gain fruition. Next, widespread self-regulation, with an eye on how actions constitute the reality for an immediate task environment rather than following abstract goals, is probably a second issue. Take as an example of these principles the calls for buying and retailing local organic produce by retailers. Empowering local retail supports local capacity building, increases consumer awareness and commitment as well as reduces the cost of transportation, storage and handling of global goods (Caldwell, 2016). There is a meta-goal stated by the retail organization to increase the number of local suppliers suppling to the
store, but obviously, local store purchasers must make considerable adjustments with respect to their context and must participate and negotiate these conditions with central purchasing units. Thus, each retail store is structurally coupled and interacts with its own niche, but all are linked in a more abstract conceptualization of an environment. In order to manage sustainability, a corporate-wide control system must allow for local alignment in the viable systems (here the retail units) while maintaining an overall focus on increasing sustainability. More generally, the managerial and organizational mindsets undergirding sustainable operations management in particular contexts must start from an appreciation of how units interrelate in order to address what is perceived. Business networks comprise resources and activities controlled by different actors. However, they differ with respect to the structural coupling between these and thus also differ in the actors’ acknowledgement of what belongs inside and outside the boundaries of a viable system.

The present book builds on our notion that the cybernetic perspective constitutes a powerful way forward for sustainable operations management. However, it is also an acknowledgement that much insight and further conceptualization is needed before it is possible to build momentum for this idea in academic research. When it comes to sustainable operations management, theoretical development is still in its infancy. Paradigmatic closure is too early and there is a need for more theoretical diversity and discussion to avoid premature lock-in.

At the same time, we think grounding these discussions in a broader meta-theoretical framework building on the cybernetic notion of control is a way forward. The design of this book reflects this idea. We have developed a framework based on the contributions, which we believe offers them justice and creates synergy between the contributions. The four parts each reflect what are considered the principal questions for the development of a new management control paradigm vested in complexity or systems thinking. Continuing our use of systems thinking and cybernetics as the overarching perspective for this book, we use de Leeuw’s (1976) control paradigm to provide the internal structure of the book. More specifically, we consider the four necessary conditions for effective control as specified by this paradigm, and dedicate a separate part to each condition. Placing ourselves in the role of “controller”, aiming to make
Effective control leading to more sustainable operations

Part I: SOM Strategy and Management

Part II: Theory building within SOM

Part III: Selected practices, methods and tools for SOM

Part IV: SOM Capability development

Fig. 1.2 The conceptual relationship between the four parts of the book (building on de Leeuw’s (1976) control paradigm)

Our operation a more sustainable one, we need to fulfill the following conditions if we are to exert effective control. This model is presented in Fig. 1.2.

1. We need to have a goal, guiding us in our control actions. Hence, in the book, we address this condition in the first part of the book, dedicated to SOM Strategy and Management.

2. Second, we need a model of the system we try to control, helping us to understand how it behaves under certain conditions. Therefore, the second part of the book is dedicated to Theory Building Within SOM.

3. Third, we need information about the state of the operation and its current performance. Hence, the third part of the book covers Selected Practices, Methods and Tools for SOM, supporting the mapping and analysis of current practice.

4. Fourth, we need sufficient steering capability, in order to make progress towards reaching the goal. This condition is addressed in the final part of the book covering SOM Capability Development.
The notion of goals as the starting point for the layout of this book builds on the recognition that companies must also take sustainability issues into account in order to ensure long-term success and survival (Hart, 2015; Starik et al., 2017). Thus, in a sustainable business context, strategy and management research builds on more general insights from these disciplines but seeks to apply this in the context of sustainability. The first chapter in Part I outlines the current state of strategy research related to sustainable operations management and the three chapters that follow in this section deal with the flexibility of environmental regulations, organizational drivers and barriers to circular supply chain operations and the strategic impact of inconsistent norms in buyer-supplier relations in the apparel industry.

In Part II we are concerned with theoretical perspectives, as outlined in the cybernetic framework. Managers need a mental model in order to identify what they seek to influence and control in order to reach these strategic aims. There are also still many avenues to explore and considerable theoretical work to be done in order to further conceptualization and maturation of the field. Although these perspectives share similarities in some respects, they also differ fundamentally in others. The first chapter in this part outlines theoretical developments in the field of sustainable operations management. The remaining chapters in this part are concerned with business models in the circular economy and the enabling role of circular supply chains, disentangling sustainability-oriented innovation and how it links to environmental sustainability in the aviation industry. The final chapter in this part concerns the impact of negative social and environmental events on the market value of supply chain partners.

Furthermore, as displayed also in the model, Fig. 1.2, some idea of the present-day state of affairs is required to understand the starting point for management measures. This is the theme of Part III. It has also a strong emphasis on pragmatism, predominantly touring technical papers and best-case examples (Seuring & Müller, 2008; Min & Kim, 2012). For this reason, it has been heralded by managers and other practitioners. Much of the current research relating to sustainable operations management has its starting point in reports and studies of practical experiences with sustainable operations initiatives and draws general insights from these. Part III presents studies of the maximization of retained value of product recovery.
based on circular economy principles, sustainable intermodal train transport, mapping logistics services in sustainable production and consumption systems and finally, the green performance map.

Finally, dynamic alignment and co-constitution calls for learning and variety in the organizations involved, which is the theme of Part IV. This necessitates ongoing development of capabilities to meet the need for sufficient requisite variety. In this final part of the book, we focus on research that is concerned with the capabilities needed for organizational transition and integration of sustainability as an operations management principle. Part IV presents two contributions, concerned with different aspects of capability development, namely first linking green supply chain management skills and environmental performance and secondly, information exchange and processing in buyers and suppliers in green public procurement: an absorptive capacity perspective.

References

In the first part of this book, we shall focus on fulfilling the first necessary condition set out in our model for effective control of a sustainable operation practice, outlined in the introduction (see Chap. 1). We are concerned with the process of organizational goal setting. In order to give operations management control measures a sense of direction, some form of strategic goal setting is needed. The notion of goals builds on the recognition that companies must also take sustainability issues into account in order to ensure long-term success and survival. Thus, in a sustainable business context, strategy and management research builds on more general insights from these disciplines but seeks to apply them in the context of sustainability. Much of the debate on strategy formulation and goal setting within sustainable operations management departs from pre-existing models and theoretical perspectives on competitive strategy. However, as also discussed by Poul Houman Andersen in Chap. 2, additional sustainability models have been formulated as well, which seek to emphasize multiple goals for organizational strategy. Each of the three subsequent chapters in this section of the book provides a specific perspective on this issue.

Chapter 3, written by Ramakrishnan Ramanathan, is concerned with the role of environmental regulations. He explores and confirms the hypothesis that operations innovation is significantly higher in firms that face more flexible environmental regulations than in firms that face relatively more inflexible environmental regulations.
The purpose of the following Chap. 4, by Roland Levering and Bart Vos, sheds light on how organizations adopt and implement sustainable practices in order to support the transition towards circular supply chain operations. The research context is a so-called “Green Deal”, a Dutch government-supported program in which over 40 private and public organizations voluntarily committed themselves to a transformation towards a circular supply chain model.

The final Chap. 5 in this part by Ulla Normann Christensen is concerned with the set of norms governing the relational exchange between suppliers and buying companies and the changes to these norms brought about by the introduction of sustainability requirements. She finds that suppliers have experienced that the behavior of buying companies has become more transactional. The norm set of buying companies has changed and may be divided into two: a previous set of norms and a sustainability-related set of norms.