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1

Introduction

1.1 Background

Anechoic chambers (ACs) and reverberation chambers (RCs) are two very different types of indoor measure-
ment facilities and have been widely used in acoustics as well as in electromagnetics. It is interesting to note that
these chambers share similar phenomena, physical quantities, and mathematical expressions in some ways.
This book is about ACs and RCs in electromagnetics. Inside an AC, electromagnetic (EM) waves are absorbed
by the absorbing materials at the boundary, while inside an RC, EM waves are reflected by the conducting
reflector at the boundary. Over the years, these two different chambers have found some common or compli-
mentary applications in antennas, electromagnetic compatibility (EMC), and radio communication measure-
ments. Each has its advantages and disadvantages. Thus, it makes a perfect sense to bring these two different
chambers into one book. They are like two sides of one coin: one is based on deterministic theory and the other
is based on statistical theory; people working on RCs can be inspired by those working on ACs, and vice versa.
Dual quantities can also be found in absorbing and scattering phenomena. This book is aimed at providing a
clear and systematic approach to their design, measurement, and applications. Some latest developments are
also included. In this chapter, we present an overview of both chambers while more details are provided in later
chapters.

1.1.1 Anechoic Chambers

An ideal AC is a room designed to emulate free space – no radio waves are reflected from the walls, ceiling, and
floor. The reason for using an AC is well-known: an ideal free space is required for EM measurement in an
indoor environment that is not affected by the weather and interference outside the chamber, thus repeatable
results can be obtained. A typical AC is given in Figure 1.1a and a typical measurement scenario with an aircraft
is shown in Figure 1.1b.
In practice, because no ACs can absorb EM waves perfectly and reflections always exist, the performance of

an AC needs to be characterised to show how close it is to the ideal free space. Thus, how to design an AC
effectively and efficiently becomes an important issue. A problem is how to optimise the performance of such
a chamber for a given chamber size using the least amount of radio absorbingmaterials (RAMs) tominimise the
cost andmaximise the test volume (i.e. the equipment under the test area). The cost of the RAM depends on its
size and type. How to choose the RAMs and arrange them properly is another key problem. Currently, the
design of the chamber depends on the designer’s experience and sometimes a trial-and-error approach or a
large safe margin has to be adopted. Intuitively, a large space with high-performance absorbing materials leads
to a good AC, but to quantify the chamber performance a well-defined and accurate mathematical model needs
to be created. Thus, a scientific and objective way to find the best solution is required. An analytical solution is
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almost impossible for such a complex system, which offers an opportunity to bring computational electromag-
netics (CEMs) and real engineering problems together.
If an efficient computer-aided design (CAD) tool was available to predict the performance of an AC, the

designer could design the chamber better, faster, and more accurately with the help of computers, not just
relying on experience.
The figures of merit used to characterise the chamber performance in practice are site attenuation (SA) for a

full AC (all walls are covered with RAMs) and normalised site attenuation (NSA) for a semi-AC (no RAMs on
the floor), field uniformity (FU), and site voltage-standing-wave ratio (SVSWR) [1, 2]. The procedures to meas-
ure these figures of merit and acceptable limits are given in relevant standards [1, 2].
It is well-known that the performance of ACs is closely related to the reflectivity of RAMs and how to arrange

them [3, 4]. The first patented absorber was used to improve the front-to-back ratio of an antenna in 1936 [5].
DuringWorldWar II (1939–1945), −20 dB (near normal incident angles) in the frequency range of about 2–15
GHz was obtained as the well-known Jauman absorber [6]. During the war years, Neher [7] demonstrated that
the reflection from a long pyramidal shaped structure was much smaller than the reflection from a panel of the
same absorber. This demonstrated the important role of geometry in the reflection reduction of RAMs. The
first commercially available absorber started in 1953. In the early 1950s, ‘dark-rooms’were built at a number of
government and commercial organisations [8–10]; at that time, a typical level of reflected signal at S band was
about 20 dB below the level of the direct signal. In the late 1950s, a new generation of broadband absorbers was
able to produce a reflection coefficient of about −40 dB for near-normal incident angles. In the 1960s, by using
ferrite underlayers, the thickness of the absorber was reduced greatly at low frequencies and the tapered cham-
ber was developed, which showed a better performance than the rectangular chamber [10, 11]. The normal
reflection coefficient at high frequencies achieved −60 dB. Nowadays, by combing the ferrite tiles and the pyr-
amid absorbers, the reflection coefficient can achieve −25 dB at 30MHz and −51 dB at 18 GHz (http://www.
mvg-world.com/en/system/files/fiche_uh_absorbers_hypyr-loss_en_bd_oct_25th.pdf). More details will be
discussed in the following chapters.
Three basic types of AC are used in practice, as shown in Figure 1.2: the rectangular chamber (Figure 1.2a),

the tapered chamber (Figure 1.2b), and the compact chamber (Figure 1.2c). Test regions are marked with a
circle, waves propagate along the lines ideally and absorbers are plotted as small triangles. In practice, because
of the reflection and scattering of the RAMs, and because extraneous signals exist, the field in the test region is
not uniform. The tapered chamber normally can provide a better FU than the rectangular chamber at lower

(a) (b)

Figure 1.1 Anechoic chamber: (a) 3D model with a cutting plane and (b) measurement with an aircraft inside an AC
(pictures from Rainford EMC Systems, Microwave Vision Group).
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frequencies, but the SA of a tapered chamber does not
follow the Friis free-space transmission formula
because of the multiple reflections from the tapered
walls [3]. This should be noted for some special mea-
surements such as using the three-antenna method to
measure the gain of antennas. A compact chamber can
be used to illuminate a large object with plane wave at
higher frequencies because the object under test
needs to be placed at the far-field region. When the
frequency is high, the far-field condition cannot be
satisfied without the use of a reflector. A parabolic
reflector is normally used to generate a plane wave
at higher frequencies, as shown in Figure 1.2c.
How to obtain an optimised AC has been investi-

gated for many years. A well-known book was written
by L. H. Hemming in 2002 [3] that provided an over-
view of this topic, including RAM characteristics,
ACs of different shapes, and measurements in ACs.
Geometric optics (GO) was mentioned as a general
method to analyse the AC, but the calculation was
done by hand and how to implement it using a
computer was not given. In a recent book [12],
B. K. Chuang reviewed the GO method for AC design
in one chapter. Although CEMs have evolved over the
years, compared with other CEM methods the GO
method is still the most robust and efficient in AC
analysis. The most attractive advantage is that no
detailed information of the material properties
(permittivity, conductivity, and permeability) needs
to be known; only the reflection coefficient is enough
to describe the RAMs. The simulation time is also
short with an acceptable error.
In this book we present a systematic solution for AC

design, from theory to measurement. The solution
proposed in this book is meant to be general and
useful for all types of ACs, that is, not limited to specific
shapes; it is also possible to use this solution to explore
new chamber shapes with special requirements.

1.1.2 Reverberation Chambers

Unlike an AC, an RC is an electrically large conducting-screened room with electrically large stirrers used to
stir the field inside the chamber (https://en.wikipedia.org/wiki/Electromagnetic_reverberation_chamber). The
RC is also known in the literature as a reverberating chamber, a reverb, a mode-stirred chamber or a mode-
tuned chamber. In this book the term ‘reverberation chamber’ is used as it is nowwidely used and accepted. The
EM field inside the chamber is expected to be statistically uniform and isotropic. Two RCs are shown in
Figure 1.3. In Figure 1.3a, two stirrers at the corner of the RC are used while in Figure 1.3b, one stirrer is
employed near the middle of the RC.

(a)

(b)

(c)

Figure 1.2 Three types of ACs: (a) rectangular chamber,
(b) tapered chamber, and (c) compact chamber.
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The first RC was probably proposed by H. A. Mendes in 1968 for EMC measurements [13] and was then
adopted by American military standard MIL-STD-1377. An international standard on using an RC for
EMC testing was published in 2003 and revised in 2011 [14]. Over the years, many researchers have
worked on it and made significant advancements: P. Corona improved our understanding of RCs for EMC
measurements [15] and D. A. Hill proposed a plane-wave integral representation of fields in the RC [16].
Like the Friis transmission equation in free space, Hill’s equation reveals the transmission law in a multipath
environment [16]. Systematic theory has been found to describe the fields in an ideal RC [16, 17]. It should
also be noted that, when the RC is not working in the over-mode condition (i.e. not electrically large), the
statistical behaviour deviates from the expected distribution functions. Thus, there is a blurred region from
deterministic behaviour to statistical behaviour [17]. In practical engineering, we try to avoid working in this
region as an RC of different shapes may have different behaviour, and it would be difficult to have a general
theory to fit the measurement results in this region. At a lower frequency (i.e. the chambers are electrically
small cavities), deterministic theory can be used, at a higher frequency (i.e. the chambers are electrically
large cavities) Hill’s theory can be applied.

(b)

(a)

Figure 1.3 Reverberation chambers: (a) RC at the University of Liverpool, UK, width 3.6 m, length 5.8 m, height 4 m, and
(b) RC at the National Physical Laboratory, UK, width 5.8 m, length 6.5 m, height 3.5 m.

Anechoic and Reverberation Chambers4



The number of RC papers published over the past 45 years is shown in Figure 1.4. The numbers are from
IEEE database. It is interesting to see that the number increased significantly in the 2000s, but the initial study
on RCs is from 1968! The reason seems to be that the RC is no longer a specialised facility for EMC tests; it
has gradually become a test facility for antenna measurement, bio-electromagnetics, material measurement,
radio channel emulation, etc.
Like an AC, there are also many useful parameters to characterise an RC, such as K-factor, independent sam-

ple, correlation coefficient, FU, stirrer efficiency, enhanced backscatter constant, total scattering cross section,
etc. Currently there is no unique parameter to summarise all these effects, and the relationships between some
of them are still ambiguous. Because of the complexity of the statistical electromagnetics, there are still things
we do not know and the application of the RC is expanding thanks to the researchers on this topic all over
the world.
The stirring technique is a lasting topic in RC research. It is well known that to achieve a statistical EM field in

a cavity, some kind of stirring mechanism needs to be involved to stir the field inside. From the integral expres-
sion of the electric field (integrate source with Green’s function), to stir the electric field we can change the
boundary conditions or change the source. The boundary conditions can be changed by (i) altering the internal
structure, for example using asymmetric stirrers [14], helical stirring [18] or a carrousel stirrer [19–21], and
(ii) changing the boundary structure, for example by a wall vibrating boundary [22–25], an oscillating stirrer
[26], a sliding wall [27] or reactively loaded antennas [28]. If the source is changed, one can change the position
or orientation of the source [29–31] or use multiple source excitations [32]. Frequency stir is an effective and
efficient method: by mixing the results from different frequencies separated by more than the coherent band-
width [33, 34], a similar effect can be obtained. It should be noted that not all stirring methods are applicable
to all applications. For example, if the Q factor of an RC needs to be kept constant (Q factors can also be
treated as random variables [35]) during the stirring process, the sliding wall method may not be suitable
as it changes the volume of the RC when stirring; if a device under test has a very narrow frequency band
response, frequency stir should be very carefully applied, as frequency stir normally presumes other factors
unchanged in the stirring bandwidth. If it is wider than the working bandwidth of the device, the response
could be smoothed out.
Unlike ACs, the performance of an RC is not sensitive to the shape of the cavity when it is electrically large, as

the mode number is not sensitive to the shape but the volume of the cavity. Rectangular shape is the most
popular as it is easy to build, but this does not mean that it is the best shape from an electrical point of view.
Other shapes of RC are also possible, such as triangular [36] and non-parallel walls [37, 38], which could
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Figure 1.4 Number of publications per year (data from IEEE Xplore, key word: reverberation chamber).
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provide better performance in some cases. However, considering the fact that one can add scatterers or panels
into a rectangular RC to change its internal shape, and it is not easy to extend a special shape (e.g. triangular
shape) into a rectangular shape after the RC is built, rectangular shape is still the favourite choice for its
reconfigurability and generality.
In the RC part of this book we present fundamental theory, typical measurements, and design principles

of RCs. We have tried to minimise the mathematical derivations and make the book easy to use in practice.
The book not only includes knowledge that is already known, but also presents information that is relatively new.

1.1.3 Relationship between Anechoic Chambers and Reverberation Chambers

There have been some discussions on the relations between ACs and RCs. People get inspiration on RCs from
ACs and vice versa. The RC can be considered as an opposite environment to the AC. The two types of chamber
can be related and compared as follows.

1) Different philosophies behind the two chambers. The RC takes advantage of multipath waves while the
AC tries to eliminate them.

2) The AC is a deterministic environment while the RC is a statistical environment. Correspondingly, the
AC can be used to verify conclusions from CEMs, and the RC can be used to verify results from statistical
electromagnetics. There can be statistical variables in deterministic theory, and there are deterministic
quantities in statistical theory. For both chambers, we find uncertainties in certainties and find certainties
in uncertainties.

3) From the communication channel point of view, the AC can be considered as an ideal Gaussian channel,
while the RC can be considered as a Rayleigh channel or Rician channel. This is very useful when one wants
to emulate the channel for a communication system to measure the bit error rate (BER), total isotropic sen-
sitivity (TIS), channel capacity, etc.

4) Some physical quantities are very difficult to measure in one kind of chamber, but are easy to measure in
another kind of chamber. An AC is very good for measurements with directional variables such as radiation
pattern, antenna gain, and scattering cross section, while an RC is good at measurements with assembled
variables such as antenna radiation efficiency, TIS, total radiated power, average absorption cross section,
and shielding effectiveness.

5) Dual physical quantities exist in absorbing and scattering phenomenon. In the RC, the vector superposition
of the random scattered field of many stirrer positions tends to be zero, as if it is absorbed. This provides
insight in the RC design: if a stirrer leads a better random scattered field than another it means the perfor-
mance of the stirrer is better. This is discussed in detail in the book.

1.2 Organisation of this Book

The AC has been used in the radio frequency (RF) and microwave industry for many years. However, design
guidelines are mostly based on the experience accumulated over the years. There is one book related to AC
design, published a few years ago [4], but the CEM algorithms have been developed greatly in the last 10 years
or so. The industry has also moved on; different companies need to share information without disclosing
sensitive data. This book provides the latest systematic solutions for AC design using state-of-the-art
CEM algorithms. By using CAD, chamber designers can now optimise the chamber (structure, absorber
layout, antenna positions) to maximise the performance while minimise the cost. This book will provide
guidelines on this and show real design examples verified by measurements.
As a very different chamber, the RC has been used in EMC measurements and tests for a long time, but

recent advances show that RCs can be used in many other applications and could be even better than ACs
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in some applications. There are a couple of books relating to RCs [16, 17] but the emphasis of these books is on
EM theory and EMC measurement protocols. In recent years many new applications of RCs have been devel-
oped [39, 40]. This book covers a series of the latest measurement methods in RCs. New understandings of RCs
from the time domain are also included, providing new points of view which cannot be seen from only the
frequency domain.
This book covers the most recent advances in AC and RC designs and measurements. It will be interesting to

show that these two types of chambers are closely related, the design of the RC can be inspired by the design of
the AC, and there exist dual quantities between random scattering and absorption. The book is organised as
follows:
Chapter 2. Theory for Anechoic Chamber Design. This chapter details the theory for AC design without con-

sidering how to realise it. Basic knowledge on absorbing materials is given. CEM algorithms are reviewed and
discussed. Two forms of GOmethods are introduced and it is shown that one is easier to use than the other in
software realisation.
Chapter 3. Computer-aided Anechoic Chamber Design. This chapter focuses on how to realise the hybrid

geometric optics–finite element method (GO-FEM) in AC design. Details on algorithm implementation are
presented. It is shown how an AC design problem can be solved by using a CEM model step by step. This
chapter mixes computer graphics and electromagnetics. Acceleration strategies are also given, and the reader
could benefit from the use of computer graphics and graphics processing unit (GPU) computing.
Chapter 4. Anechoic Chamber Design Examples and Verifications. This chapter explains the figure of merits

of AC performance: NSA, SVSWR, and FU. Procedures on how to measure the figures of merit are given and
physical understandings are also addressed. Practical design examples are given together with simulation and
measurement results.
Chapter 5. Fundamentals of the Reverberation Chamber. This chapter introduces the basic theory of RCs,

and definitions of figures of merit, such as lowest usable frequency (LUF), working volume (WV), FU, and stir-
rer efficiency, are explained. Discussions on the CAD of RCs are also given. Unlike AC design, currently there is
no mature software tool for RC design, but the design process can be aided by using a computer.
Chapter 6. The Design of a Reverberation Chamber. This chapter focuses on the design guidelines and time

domain behaviour of the chamber; it is shown that some difficulties in the frequency domain measurement can
be resolved from the time domain measurement. The stirrer efficiency is defined by using the total scattering
cross section of stirrers. The theoretical limit of the performance of stirrers (which is a longstanding problem)
can be obtained from the time domain information. The time domain understanding can also be applied to the
RC design.
Chapter 7. Applications in the Reverberation Chamber. This chapter summarises a range of measurements

inside an RC, including radiated immunity, radiated emission, antenna measurement (S parameters, efficiency,
diversity gain, and radiation pattern), material measurement, shielding effectiveness measurement, channel
emulation, and volume measurement. Theories, measurement procedures, and data processing are also
explained.
Chapter 8. Measurement Uncertainty in the Reverberation Chamber. RC measurement data are usually

analysed from a statistical point of view, this chapter investigates the measurement uncertainty in the RC. This
chapter is authored by Xiaoming Chen, Yuxin Ren, and Zhihua Zhang.
Chapter 9. Inter-Comparison Between Antenna Radiation Efficiency Measurements Performed in an Anechoic

Chamber and in a Reverberation Chamber. To have an in-depth understanding of bothACs andRCs, this chapter
compares measurements of antenna efficiency in ACs and RCs at the National Physical Laboratory in the UK.
This chapter is authored by Tian-Hong Loh and Wanquan Qi.
Chapter 10. Discussion on Future Applications. This chapter predicts possible future applications and

highlights some unsolved problems which could serve as a good starting point for researchers.
Appendices. In the appendices, some relevant detailed information is provided which includes code snippets,

reference values, report template, and frequently used statistics.
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