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Preface

Despite an undergraduate degree in Zoology and an MSc on the behavior of voles,
I have long been fascinated by theoretical biology and the relationship between
models and data, and the feedback between statistical analysis and conceptual de-
velopments in the area of infectious disease dynamics, in particular, and ecological
dynamics in general. My perpetual frustration has been to read all the wonderfully
clever books and journal articles exuding all sorts of nifty maths and stats, but not
quite being able to do any of it myself when it came to infectious diseases that
I care about. This frustration led me to attempt to make myself some worked ex-
amples of all this cleverness. Over the years the stack of how-tos has grown, and
the following chapters are an attempt at organizing these so they may be useful for
others. I have tried to organize the chapters and sections in a reasonably logical
way: Chaps. 1–10 are a mix and match of models, data, and statistics pertaining to
local disease dynamics; Chaps. 11–13 pertain to spatial and spatiotemporal dynam-
ics; Chap. 14 highlights similarities between the dynamics of infectious disease and
parasitoid-host dynamics; finally, Chaps. 15 and 16 overview additional statistical
methodology I have found useful in studies of infectious disease dynamics. Some
sections are marked as “advanced” for one of two reasons: (1) either the maths or
stats is a bit more involved or (2) the topic in focus is a bit more esoteric. Although
not marked as such, most of Chap. 10 is advanced in this respect. While less run-of-
the-mill, I have thought it important to include these sections, because they cover
topics that may be less easy to find code for online.

I have had invaluable help from students, colleagues, and collaborators in my
quest. The preconference workshops of “Ecology and Evolution of Infectious Dis-
eases” that I co-taught between 2005 and 2008 enhanced my motivation to annotate
many worked examples; bare bones of several of the following sections were writ-
ten during frantic 24-h stints prior to these workshops. Much of the other material
arose from interactions with students and postdocs at Pennsylvania State Univer-
sity’s Center for Infectious Disease Dynamics (CIDD). Parts of the epidemics on
networks and the R0 removal estimator is from Matt Ferrari’s PhD research, and the
age-structured SIR simulator and the SIRWS model are from Jennie Lavine’s PhD
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work. Working with distributed-delay models has been a collaboration with Bill Nel-
son and my students Lindsay Beck-Johnson and Megan Greischar. Angie Luis and I
cooked up the R code to do transfer functions as part of her PhD research. Much of
the code on the catalytic model is from collaborations with Laura Pomeroy and then
CIDD postdoctoral fellows Grainne Long and Jess Metcalf. The in-host TSIR was
also a collaboration with Jess. The Gillespie code arose from collaborations with
postdoctoral fellow Shouli Li and my honor student Reilly Mummah. Reilly also
taught me how to write my first Shiny app. Away from Penn State, Aaron King
and Ben Bolker have at various times been unbelievably patient in teaching me
bits of maths I did not understand. Roger Nisbet painstakingly guided me through
my first transfer functions during my postdoctoral fellowship at NCEAS. During
the same period, Jordi Bascompte introduced me to coupled map lattice models.
Finally, Bryan Grenfell showed me wavelets and introduced me to the field of infec-
tious disease dynamics some 20 years ago.

The data used has been kindly shared by Janis Antonovics, Jeremy Burdon, Re-
becca Grais, Sylvije Huygen, Jenn Keslow, Sandy Leibhold, Grainne Long, and
Mary Poss. The first draft of the text was completed while I was on sabbatical at the
University of Western Australia and University of Oslo/the Norwegian Veterinary
Institute during 2017. My work leading up to this text has variously been funded by
the National Science Foundation, the National Institutes of Health, the US Depart-
ment of Agriculture, and the Bill and Melinda Gates Foundation.

University Park, PA, USA Ottar N. Bjørnstad
May 2018
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Chapter 1
Introduction

1.1 Preamble

The use of mathematical models to understand infectious disease dynamics has a
very rich history in epidemiology. Kermack and McKendrick (1927) is the seminal
paper that introduced the equations for the general Susceptible-Infected-Removed
model and showed how a set of restrictive assumptions lead to the standard SIR
model of ordinary differential equations. During the 1950s and early 1960s stochas-
tic theories of disease dynamics were developed by Bailey (1957) and Bartlett
(1960b). Bartlett (1956, 1960a) further pioneered the use of Monte Carlo simula-
tions of epidemics with the aid of “electronic computers” (as opposed to regular
human computers), while Muench (1959) proposed the “catalytic” framework for
understanding age-incidence patterns.1 The decades to follow saw broad expansions
of theories as well as a surge in real-life application of mathematics to dynamics and
control of infectious disease.

There are several excellent textbooks of mathematical epidemiology including
Anderson and May (1991) and Keeling and Rohani (2008). The purpose of the cur-
rent text is not to replicate these efforts but rather use these frameworks as a starting
point to discuss practical implementation and analysis. The discussion will be cen-
tered around a somewhat haphazard collection of case studies selected to explore
various conceptual, mathematical, and statistical issues. The text is designed to be
more of a “practicum in infectious disease dynamics.”

The dynamics of infectious diseases shows a wide diversity of pattern. Some
have locally persistent chains-of-transmission; others persist spatially in “consumer-
resource metapopulations.” Some infections are prevalent among the young, some
among the old, and some are age-invariant. Temporally, some diseases have little

1 Though, as reviewed by Dietz and Heesterbeek (2002), the original calculations leading to the
catalytic model was proposed by Daniel Bernoulli in the late eighteenth century.

© Springer Nature Switzerland AG 2018
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variation in prevalence, some have predictable seasonal shifts, and others exhibit
violent epidemics that may be regular or irregular in their timing. Models and
“models-with-data” have proved invaluable for understanding and predicting this
diversity, and thence help improve intervention and control. The following chapters
are an attempt at providing some notes for a “field guide” for working with data,
models, and “models-and-data” to understand epidemics and infectious disease dy-
namics in space and time.

1.2 In-Host Persistence

Infectious diseases can be classified according to their persistence within the host
and attack rates with respect to age. Some infections result in life-long colonization
of a host because the immune system does not clear them. Such “in-host persistence”
may be because the immune system permits it—as for the many symbionts that are
beneficial to the host (viz. commmensals and mutualists)—or because detrimental
symbionts (viz. pathogens) are able to evade clearance. Examples of “in-host persis-
tent” pathogens are retroviruses such as HIV, latent viruses such as, herpes viruses,
and a number of bacteria such as the causative agents of tuberculosis (Mycobac-
terium tuberculosis) and leprosy (M. leprae).

“Acute” infections, in contrast, result in transient colonization of the host—that
in humans can last for days or months depending on the pathogen—followed by
clearance. The clearance is usually immune-mediated, though some viruses like ca-
nine distemper virus may run out of target cells and some pathogens may have
a programmed life cycle within the host. Some coccidian pathogens within the
genus Eimeria, for example, go through an exact number of replication cycles in
the host (as merozoites) before all pathogen cells are expelled into the environment
(as oocysts). The more common example of transience is due to immune-mediated
clearance. Examples are plentiful and include acute viruses like measles and in-
fluenza, bacteria such as many that causes respiratory disease like bacterial menin-
gitis (e.g., Neisseria meningitidis) or whooping cough (Bordetella pertussis and B.
parapertussis), and protozoans such as those that cause malaria (Plasmodium spp.).

Among the acute infections we further distinguish between those that leave ster-
ilizing immunity following clearance versus those that leave no or short-lived im-
munity. This can happen via a number of mechanisms including variable gene ex-
pression, rapid evolution, co-circulating strain clouds, or other immune evasive ma-
neuvers. N. meningitidis and its congener N. gonorrhoeae (which cause gonorrhea),
for example, are thought to leave little effective immune memory because of the
bacteria’s ability to express a very variable arsenal of surface proteins (e.g., Stern
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et al. 1984; Tettelin et al. 2000). Many influenza subtypes, in contrast, render ef-
fective immune memory short-lived because of rapid evolution; high mutation rates
lead to “antigenic drift” and viral recombination during coinfection leads to anti-
genic “shifts.” Plasmodium falciparum is thought to be comprised of a diverse set
of strains with nonoverlapping “antigenic repertoires” (as well as variable antigen
expression) that allows repeat reinfection (e.g., Gupta et al. 1998). A number of
common viral afflictions of children have a somewhat more limited strain diversity
that may allow several reinfection cycles, but the immune system is ultimately able
to cover their antigenic space; Examples include rotavirus (Pitzer et al. 2011) and
the enterovirus-complex that cause hand-foot-and-mouse disease (Takahashi et al.
2016). Finally, many pathogens have various “anti-immune devices.” Respiratory
syncytial virus, for example, uses molecular decoys against neutralizing antibodies
(Bukreyev et al. 2008) and Bordetella pertussis employs the pertussis toxin to, at
least transiently, inhibit recruitment of immune effector cells to sites of infection
(Kirimanjeswara et al. 2005).

Many of the remaining “acute, immunizing pathogens”—the ones that result
in a transient infection followed by life-long sterilizing immunity—are the poster
children of mathematical epidemiology. Notable examples are among the classic
vaccine-preventable viruses like measles, rubella, and smallpox. From a biolog-
ical point of view, the complete failure of immune escape of these pathogens is
somewhat mysterious (Kennedy and Read 2017), but the resulting simple dynam-
ical clockwork is a joy to anyone hoping to apply mathematics to understand the
living world.

From an epidemiological point of view, it is important to make the functional—as
opposed to taxonomical—classification of pathogens because it allows us to under-
stand the differences in age-specific attack rates and contrasting disease dynamics.
The acute, immunizing infections mainly circulate among the young and therefore
comprise the many “childhood” infections because most or all older hosts are im-
mune. From the point of view of the compartmental “SIR-like” formalism (Fig. 1.1),
it is thus natural to divide the host population in S, I, and R compartments and as-
sume a unidirectional flow from susceptible children through immune (“removed”)
adults. In contrast, the prevalence of “in-host persistent” infections will tend to ac-
cumulate with age. With respect to the SIR formalism, it is thus natural to consider
a model with a unidirectional flow from the S class to a terminal I class. The acute
but imperfectly immunizing infections should lead to relatively age-invariant attack
rates, and S → I → S or S → I → R → S flows depending on the duration of immune
protection.

The SIR-like framework predicts how the broad expectation for age-prevalence
curves will be modulated by factors such as age-specific pattern of mixing and
differential mortality between infected and noninfected individuals. Statistical epi-
demiology can thus be used to probe empirical patterns to discover subtleties in the
dynamics of disease transmission that is hard to observe directly.
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1.3 Patterns of Endemicity

We can classify the dynamics of infectious disease according to broad “patterns of
endemicity.” First, there is the distinction between locally persistent vs locally non-
persistence pathogens. Local persistence fails when a local chain-of-transmission
breaks. This can happen for two very different reasons (Fig. 1.1): (i) The transmis-
sion bottleneck is when a pathogen is insufficiently transmissible to sustain a chain
of transmission; (ii) at the opposite end of the spectrum is the susceptible bottle-
neck for acute pathogens that are so transmissible that they burn through suscepti-
bles much faster than they are replenished. In measles, for example, prevaccination
cities in the USA smaller than a critical community size (CCS) of 250k–500k people
did not produce enough children to sustain a local chain-of-transmission (Bartlett
1960a) (Fig. 1.2). Recurrence of such pathogens typically involves spatial dynamics
and persistence at the metapopulation scale through spread among asynchronous
local host communities (Keeling et al. 2004) or core-satellite dynamics in which a
few large cities above the CCS serve as persistent sources for spatial dissemination
to communities below the CCS (Grenfell and Harwood 1997; Grenfell et al. 2001).

The 1988 and 2002 epidemics of a related morbilli virus, the phocine distem-
per virus, in European harbor seals is another illustrations of locally non-persistent
infections due to high transmission relative to susceptible recruitment rates (e.g.,
Swinton 1998). Following introduction into each local population (“haul-out”), ex-
plosive local epidemics terminated after 1–4 months due to susceptible depletion.
When such epidemics happens so fast that recruitment of susceptibles (through
birth, immigration, or loss of immunity) is negligible during the course of the out-
break we call it a “closed epidemics.” The closed epidemic is the focus of the stan-
dard Susceptible-Infected-Recovered model which we will study in Chap. 2. At the
opposite end of the transmissibility spectrum, pathogens may bottleneck because
transmission is too ineffective. In particular, if the basic reproductive ratio (R0, the

Birth / loss of
immunity

Susceptible

S
Infected

I
Recovered

R

(ii)

(i)

Susceptible

S
Fig. 1.1 The two bottlenecks for local persistence: (i) the transmission bottleneck for poorly trans-
mitted infections and (ii) the susceptible bottleneck for highly transmissible, acute immunizing (or
lethal) pathogens
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expected number of secondary cases from a primary case in a completely susceptible
population) is smaller than one, we see stuttering (“subcritical”) chains of transmis-
sion followed by pathogen fade-out. We see this in many zoonoses such as mon-
key pox and nipah (stage 3 zoonoses in the classification by Lloyd-Smith et al.
2009). Persistent recurrence of these typically involves reservoir host and intermit-
tent zoonotic reintroduction. For example, in their study of Lassa fever in Sierra
Leone, Iacono et al. (2015) concluded that about 20% of the human cases were
caused by human-to-human transmission (with an average reproductive ratio below
one) while the remaining majority was caused by transmission from the multimam-
mate rat (Mastomys natalensis) reservoir.
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Fig. 1.2 Persistence of measles against population size for 954 cities and villages in pre-
vaccination England and Wales (1944–1964). Communities below 500k exhibited occasional or
frequent (depending on size) local extinction of the virus

The locally persistent infections can be classified as: (1) Stable endemics that
show little variation in incidence through time. Many STDs with SI and SIS-like
dynamics like gonorrhea (Fig. 1.3a) and HIV exhibit this pattern. (2) Seasonal en-
demics that show low’ish-level predictable seasonal variation around some mean.
Many endemic vector-borne and water-borne infections exhibit this pattern. A clas-
sic example is the seasonal two-peaked mortality rate from Cholera in the province
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of Dacca, East Bengal (King et al. 2008); The first peak at the beginning of the mon-
soon season and the second towards the end (Fig. 1.3b). Finally, (3) recurrent epi-
demics that may be regular or irregular are characterized by violent epidemic fluc-
tuations over time. Many acute, immunizing highly contagious pathogens—measles
being the poster-child—follow this pattern (Fig. 1.4).
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Fig. 1.3 Incidence of (a) weekly incidence of gonorrhea in Massachusetts (2006–2015) and (b)
monthly average (± SE) mortality from cholera in the Dacca district (1891–1940)

1.4 R

To provide a cohesive framework for the practical calculations, all analyses are done
in the open-source R-program. The text is written assuming a basic knowledge of
this platform. All functions, data, and ShinyApp’s discussed in the text are contained
in the epimdr-package. With the package everything contained herein should be
reproducible. The above Figs. 1.2 and 1.4 were for example generated using the
following code:

#Fig 1.2
data(ccs)
plot(ccs$size, ccs$ext*100, log="x", xlab=

"Community size", ylab="Percent
of time extinct")

#Fig 1.3a
plot(magono$time, magono$number, ylab="Cases",

xlab="Year")
lines(lowess(x=magono$time, y=magono$number, f=.4))

http://www.r-project.org
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Fig. 1.4 Incidence of measles in various US and UK cities during the pre-vaccination era. The data
represent fortnightly incidence (roughly corresponding to the virus’ serial interval). The vertical
bars mark annual intervals

#Fig 1.3b
data(cholera)
ses=sesdv=rep(NA, 12)
ses[c(7:12, 1:6)]=sapply(split(cholera$Dacca,

cholera$Month), mean, na.rm=TRUE)
sesdv[c(7:12, 1:6)]=sapply(split(cholera$Dacca,

cholera$Month), sd, na.rm=TRUE)/
sqrt(length(split(cholera$Dacca, cholera$Month)))

require(plotrix)
plotCI(x=1:12, y=ses, ui=ses+sesdv, li=ses-

sesdv, xlab="Month", ylab="Deaths")
lines(x=1:12, y=ses)
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1.5 Other Resources

A 5 min overview of Patterns of endemicity can be watched from YouTube:
https://www.youtube.com/watch?v=Mf EZm5amxI. This video is part of the Penn-
sylvania State University-produced epidemics-MOOC. The entire course is accessi-
ble free from https://www.coursera.org/learn/epidemics.

https://www.youtube.com/watch?v=Mf_EZm5amxI
http://epidemics.psu.edu/coursera
https://www.coursera.org/learn/epidemics


Chapter 2
SIR

2.1 The SIR Model

In 1927, Kermack and McKendrick (1927) published a set of general equations
(Breda et al. 2012) to better understand the dynamics of an infectious disease spread-
ing through a susceptible population. Their motivation was

“One of the most striking features in the study of epidemics is the difficulty of finding a
causal factor which appears to be adequate to account for the magnitude of the frequent
epidemics of disease which visit almost every population [. . .] The problem may be sum-
marized as follows: One (or more) infected person is introduced into a community of in-
dividuals, more or less susceptible to the disease in question. The disease spreads from
the affected to the unaffected by contact infection. Each infected person runs through the
course of his sickness, and finally is removed from the number of those who are sick, by
recovery or by death. The chances of recovery or death vary from day to day during the
course of his illness. The chances that the affected may convey infection to the unaffected
are likewise dependent upon the stage of the sickness. As the epidemic spreads, the num-
ber of unaffected members of the community becomes reduced [. . .] In the course of time
the epidemic may come to an end. One of the most important problems in epidemiology is
to ascertain whether this termination occurs only when no susceptible individuals are left,
or whether the interplay of the various factors of infectivity, recovery and mortality, may
result in termination, whilst many susceptible individuals are still present in the unaffected
population.”

Following a general mathematical exposé, they suggested a set of pragmatic as-
sumptions which lead to the standard SIR model of ordinary differential equations

This chapter uses the following R-packages: deSolve, rootSolve, phaseR, and shiny.
A conceptual understanding of reproductive ratios and the closed epidemic is useful prior to this
discussion. Five minute epidemics-MOOC introductions can be watched from YouTube:
Reproductive number https://www.youtube.com/watch?v=ju26rvzfFg4.
Closed epidemic https://www.youtube.com/watch?v=sSLfrSSmJZM.

© Springer Nature Switzerland AG 2018
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for the flow of hosts between Susceptible, Infectious, and Recovered compartments.
In modern notation, their simplest set of equations is (Fig. 2.1):

dS
dt

=μ(N −S)−β I
S
N

(2.1)

dI
dt

=β I
S
N
− (μ + γ)I (2.2)

dR
dt

=γI −μR. (2.3)

Susceptible

Infectious

Recovered

Births
μ

μ

μ

μ

βΙ/Ν

γ

Fig. 2.1 The SIR flow diagram. Flows represent per capita flows from the donor compartments

The assumptions of Eqs. (2.1)–(2.3) are:

• The infection circulates in a population of size N, with a per capita “background”
death rate, μ , which is balanced by a birth rate μN. From the sum of Eqs. (2.1)–
(2.3), dN/dt = 0 and N = S+ I +R is thus constant.

• The infection causes acute morbidity (not mortality); That is, in this version of
the SIR model we assume we can ignore disease-induced mortality. This is rea-
sonable for certain infections like chickenpox, but certainly not for others like
rabies, SARS, or ebola.

• Individuals are recruited directly into the susceptible class at birth (so we ignore
perinatal maternal immunity).

• Transmission of infection from infectious to susceptible individuals is controlled
by a bilinear contact term β I S

N . This stems from the assumption that the I infec-
tious individuals are independently and randomly mixing with all other individ-
uals, so the fraction S/N of the encounters is with susceptible individuals; β is
the contact rate times the probability of transmission given a contact between a
susceptible and an infectious individual.
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• Chances of recovery or death is assumed not to change during the course of
infection.

• Infectiousness is assumed not to change during the course of infection.
• Infected individuals move directly into the the infectious class (as opposed to the

SEIR model; see Sect. 3.7) and remains there for an average infectious period of
1/γ (assuming μ << γ).1

• The model assumes that recovered individuals are immune from reinfection for
life.

The basic reproductive ratio (R0), defined as the expected number of secondary in-
fections from a single index case in a completely susceptible population, is a very
important quantity in epidemiology. Chapter 3 is entirely devoted to this quantity.
For this simple SIR model R0 =

β
γ+μ .

2.2 Numerical Integration of the SIR Model

If there are no (or negligible) births and deaths during the duration of an epidemic
(μ � 0), it is commonly referred to as a closed epidemic. While it is occasionally
possible to derive analytical solutions to systems of ODEs like Eqs. (2.1)–(2.3), we
generally have to resort to numerical integration to predict the numbers over time.
We use the deSolve R-package to numerically integrate the equations. We will
numerically integrate a variety of different models. While the models differ, the
basic recipe is generally the same: (1) define a R-function for the general system of
equations, (2) specify the time points at which we want the integrator to save the
state of the system, (3) provide values for the parameters, (4) give initial values for
all state variables, and finally (5) invoke the R-function that does the integration. We
use the ode-function in the deSolve-package.

1 The implicit assumptions that stem from the use of deterministic, ordinary differential equa-
tion (ODE) are that the infectious periods (and resident times in all compartments) are expo-
nentially distributed. This is a tractable approximation for exploring overall dynamics, but ob-
served duration of infection periods is often much less variable—the Eimeria-gut parasite (a rel-
ative of Plasmodium that cause malaria) undergoes exactly 8 replication cycles before leaving a
host; or much more variable—see superspreader MOOC video: https://www.youtube.com/watch?
v=3H1tG4uz9uk. Section 2.7 discusses a practical approach to model dynamics when the expo-
nential assumption is deemed too simplistic.

https://www.youtube.com/watch?v=3H1tG4uz9uk
https://www.youtube.com/watch?v=3H1tG4uz9uk
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require(deSolve)

Step 1: We define the function (often called the gradient-functions) for the equa-
tion systems. The deSolve-package requires the function to take the following
parameters: time,2 t, a vector with the values for the state variables (S, I, R), y, and
parameter values (β , μ , γ , and N), parms:

sirmod = function(t, y, parms) {
# Pull state variables from y vector
S = y[1]
I = y[2]
R = y[3]
# Pull parameter values from parms vector
beta = parms["beta"]
mu = parms["mu"]
gamma = parms["gamma"]
N = parms["N"]
# Define equations
dS = mu * (N - S) - beta * S * I/N
dI = beta * S * I/N - (mu + gamma) * I
dR = gamma * I - mu * R
res = c(dS, dI, dR)
# Return list of gradients
list(res)

}

The ode-function solves differential equations numerically.
Steps 2–4: Specify the time points at which we want ode to record the states of

the system (here we use 26 weeks with 10 time-increments per week as specified
in the vector times), the parameter values (in this case as specified in the vector
parms), and starting conditions (specified in start). In this case we model the
fraction of individuals in each class, so we set N = 1, and consider a disease with an
infectious period of 2 weeks (γ = 1/2), no births or deaths (μ = 0) and a transmis-
sion rate of 2 (β = 2). For our starting conditions we assume that 0.1% of the initial
population is infected and the remaining fraction is susceptible.

times = seq(0, 26, by = 1/10)
parms = c(mu = 0, N = 1, beta = 2, gamma = 1/2)
start = c(S = 0.999, I = 0.001, R = 0)

2 Though, in the case of the simple SIR model there is no time-dependence in any of the parameters,
so this parameter is not called within the gradient function; This will change when we consider
seasonality (Chap. 5).
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Step 5: Feed start values, times, the gradient-function and parameter vector
to the ode-function as suggested by args(ode).3 For convenience we convert
the output to a data frame (ode returns a list). The head-function shows the
first 5 rows of out, and round(,3) rounds the number to three decimals.

out=ode(y=start, times=times, func=sirmod, parms=
parms)

out=as.data.frame(out)
head(round(out, 3))

## time S I R
## 1 0.0 0.999 0.001 0
## 2 0.1 0.999 0.001 0
## 3 0.2 0.999 0.001 0
## 4 0.3 0.998 0.002 0
## 5 0.4 0.998 0.002 0
## 6 0.5 0.998 0.002 0

We can plot the result (Fig. 2.2) to see that the model predicts an initial exponen-
tial growth of the epidemic that decelerates as susceptibles are depleted, and finally
fade-out as susceptible numbers are too low to sustain the chain of transmission.

plot(x=out$time, y=out$S, ylab="Fraction", xlab=
"Time", type="l")

lines(x=out$time, y=out$I, col="red")
lines(x=out$time, y=out$R, col="green")

R allows for a lot of customization of graphics—Rseek.org is a useful resource to
find solutions to all things R. . . Fig. 2.2 has some added features such as a right-hand
axis for the effective reproductive ratio (RE )—the expected number of new cases per
infected individuals in a not completely susceptible population—and a legend so
that we can confirm that the turnover of the epidemic happens exactly when RE =
R0s = 1, where s is the fraction of remaining susceptibles. The threshold R0s = 1 ⇒
s∗ = 1/R0 results in the powerful rule of thumb for vaccine induced eradication and
herd immunity: If we can—through vaccination —keep the susceptible population
below a critical fraction, pc = 1−1/R0, then pathogen spread will dissipate and the
pathogen will not be able to reinvade the host population (e.g., Anderson and May
1982; Roberts and Heesterbeek 1993; Ferguson et al. 2003). This rule of thumb
appeared to work well for smallpox, the only vaccine-eradicated human disease;
Its R0 was commonly around 5, and most countries saw elimination once vaccine
cover exceeded 80% (Anderson and May 1982). The actual code used to produce
Fig. 2.2 is:

3 For further details on usage, do ?function on the R command-line, i.e., ?ode in this instance.

http://rseek.org
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#Calculate R0
R0=parms["beta"]/(parms["gamma"]+parms["mu"])

#Adjust margins to accommodate a second right axis
par(mar = c(5,5,2,5))
#Plot state variables
plot(x=out$time, y=out$S, ylab="Fraction", xlab="Time",

type="l")
lines(x=out$time, y=out$I, col="red")
lines(x=out$time, y=out$R, col="green")
#Add vertical line at turnover point
xx=out$time[which.max(out$I)]
lines(c(xx,xx), c(1/R0,max(out$I)), lty=3)

#prepare to superimpose 2nd plot
par(new=TRUE)
#plot effective reproductive ratio (w/o axes)
plot(x=out$time, y=R0*out$S, type="l", lty=2, lwd=2,

col="black", axes=FALSE, xlab=NA, ylab=NA,
ylim=c(-.5, 4.5))

lines(c(xx, 26), c(1,1), lty=3)
#Add right-hand axis for RE
axis(side = 4)
mtext(side = 4, line = 4, expression(R[E]))
#Add legend
legend("right", legend=c("S", "I", "R",

expression(R[E])), lty=c(1,1,1, 2),
col=c("black", "red", "green", "black"))

2.3 Final Epidemic Size

The closed epidemic model has two equilibria {S = 1, I = 0,R = 0} which is unsta-
ble when R0 > 1, and the {S∗, I∗,R∗}-equilibrium which reflects the final epidemic
size, for which I∗ = 0 as the epidemic eventually self-extinguish in the absence of
susceptible recruitment; S∗ is the fraction of susceptibles that escape infection al-
together; and R∗ is the final epidemic size—the fraction of susceptibles that will
be infected before the epidemic self-extinguish. For the closed epidemic, there is
an exact mathematical solution to the final epidemic size (below). It is nevertheless
useful to consider computational ways of finding equilibria in the absence of exact
solutions.
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The rootSolve-package will attempt to find equilibria of systems of differ-
ential equations through numerical integration. The function runsteady is really
just a wrapper function around the ode-function that integrates until the system
settles on some steady-state (if it exists). It takes the same arguments as ode. By
varying initial conditions rootSolve should find multiple stable equilibria if there
are more than one stable solution.4
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Fig. 2.2 The closed SIR epidemic with left and right axes and effective reproductive ratio, RE . The
epidemic turns over at RE = 1

require(rootSolve)
equil=runsteady(y=c(S=1-1E-5, I=1E-5, R=0),
times=c(0,1E5), func=sirmod, parms=parms)
round(equil$y, 3)

4 It will not find unstable equilibria, for these we will need to use other strategies. We will consider
finding all equilibria in more depth in Sect. 9.3.
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## S I R
## 0.02 0.00 0.98

So for these parameters, 2% of susceptibles are expected to escape infection al-
together and 98%—the final epidemic size—are expected to be infected during the
course of the epidemic.

Let us explore numerically how the final epidemic size depends on R0. Recall that
for the specific SIR variant we are working with R0 = β/(γ +μ), and since we are
studying the closed epidemic μ = 0. In the above example we assume an infectious
period of 2 weeks (i.e., γ = 1/2), so we may vary β so R0 goes from 0.1 to 5. For
moderate to large R0 this fraction has been shown to be approximately 1−exp(−R0)
(e.g., Anderson and May 1982). We can check how well this approximation holds
(Fig. 2.3).5

#Candidate values for R0 and beta
R0 = seq(0.1, 5, length=50)
betas= R0 * 1/2
#Vector of NAs to be filled with numbers
f = rep(NA, 50)
#Loop over i from 1, 2, ..., 50
for(i in seq(from=1, to=50, by=1)){

equil=runsteady(y=c(S=1-1E-5, I=1E-5,
R=0), times=c(0,1E5), func=sirmod,
parms=c(mu=0, N=1, beta=betas[i], gamma=1/2))

f[i]=equil$y["R"]
}
plot(R0, f, type="l", xlab=expression(R[0]))
curve(1-exp(-x), from=1, to=5, add=TRUE, col="red")

We see that the approximation is good for R0 > 2.5 but overestimates the final
epidemic size for smaller R0 (and is terrible for R0 < 1).

For the closed epidemic SIR model, there is an exact mathematical solution to the
fraction of susceptibles that escapes infection (1− f ) given by the implicit equation
f = exp(−R0(1− f )) or equivalently exp(−R0(1− f ))− f = 0 (Swinton 1998). So
we can also find the final size by applying the uniroot-function to the equation.
The uniroot-function finds numerical solutions to equations with one unknown
variable (which has to be named x).

#Define function
fn=function(x, R0){
exp(-(R0*(1-x))) - x

5 We use a for-loop here to calculate the final epidemic size for a range of values of R0; A loop
works by repeating calculations (in this case 50 times), after each repeat the value of the looping
variable (in this case i) is changed to the next value in the looping vector. So in this example i
will be 1 first, then 2, then . . . until the loop ends after i= 50.



2.3 Final Epidemic Size 17

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

R0

f

Fig. 2.3 The final epidemic size as a function of R0. The black line is the solution based on nu-
merically integrating the closed epidemic, and the red line is the approximation f � 1−exp(−R0)

}
1-uniroot(fn, lower = 0, upper = 1-1E-9,

tol = 1e-9, R0=2)$root

## [1] 0.7968121

#check accuracy of approximation:
exp(-2)-uniroot(fn, lower = 0, upper = 1-1E-9,

tol = 1e-9, R0=2)$root

## [1] -0.06785259

So for R0 = 2 the final epidemic size is 79.6% and the approximation is off by
around 6.7% points.


