Nutraceuticals and Natural Product Derivatives
Disease Prevention & Drug Discovery
Nutraceuticals and Natural Product Derivatives
Nutraceuticals and Natural Product Derivatives: Disease Prevention & Drug Discovery

Edited by

Mohammad Fahad Ullah
Aamir Ahmad

WILEY Blackwell
Contents

Editor Biographies xv
List of Contributors xvii
Foreword xxi
Preface xxv
About the Book xxix
Expert Commentary xxxi

1 Natural Food Sources for the Control of Glycemia and the Prevention of Diabetic Complications 1
Carlo Pesce, Carla Iacobini, and Stefano Menini

1.1 Introduction: Obesity, Metabolic Syndrome, and Type 2 Diabetes Epidemics: The Role of Nutrition 1
1.2 Phytochemicals of Nutraceutical Importance and Functional Foods of Plant Origin 3
 1.2.1 Dietary Oils 3
 1.2.2 Vegetables and Fruits 4
1.3 Nutraceuticals and Functional Foods of Animal Origin 8
 1.3.1 The Case of Carnosine 8
1.4 Nutraceuticals of Both Plant and Animal Origin 9
1.5 Probiotics, Prebiotics, and Symbiotics 12
1.6 Conclusion 15
References 17

2 Anti-Aging Effects of Sulfur-Containing Amino Acids and Nutraceuticals 25
Geetika Garg, Abhishek Kumar Singh, Sandeep Singh, and Syed Ibrahim Rizvi

2.1 Aging and Nutrition 25
2.2 Natural Antioxidants 26
 2.2.1 Sulfur-Containing Amino Acids and Their Role as Antioxidants 26
 2.2.2 Anti-Aging Effects of L-Cysteine 27
2.3 N-Acetyl-L-Cysteine 28
 2.3.1 Neuroprotective Effects of N-Acetyl-L-Cysteine 29
 2.3.2 N-Acetyl-L-Cysteine in Combination with Other Antioxidants 29
2.4 Methionine 30
 2.4.1 Methionine Restriction 30
2.5 Sulfur-Containing Nutraceuticals and Foods Rich in Sulfur-Containing Amino Acids 31
 2.5.1 Whey Protein 32
 2.5.2 Anti-Aging Effects of Whey Protein 32
2.6 Conclusion 33
Acknowledgments 33
Conflict of Interest 33
References 33

3 Garcia Fruits: Their Potential to Combat Metabolic Syndrome 39
 Oliver D. John, Lindsay Brown, and Sunil K. Panchal
 3.1 Introduction 39
 3.2 Overview of Compounds in Garcia Species 40
 3.2.1 Garcia mangostana 44
 3.2.1.1 Chemical Properties 45
 3.2.1.2 Biological Activities of G. mangostana 45
 3.2.1.3 Toxicity 49
 3.2.2 Garcia cambogia 50
 3.2.2.1 Chemical Properties 50
 3.2.2.2 Biological Activities 51
 3.2.2.3 Toxicity 53
 3.2.3 Garcia humilis 53
 3.2.3.1 Chemical Properties 53
 3.2.3.2 Biological Activities 54
 3.2.4 Garcia dulcis 55
 3.2.4.1 Chemical Properties 55
 3.2.4.2 Biological Properties 55
 3.2.4.3 Potential Research 56
 3.3 Limitations 63
 3.4 Conclusion 64
References 64

4 Pro-Angiogenic and Anti-Angiogenic Effects of Small Molecules from Natural Products 81
 Jingyi Ma and Xuelin Zhou
 4.1 Biological Mechanisms of Angiogenesis 81
 4.2 Pharmacological Models for Angiogenesis Study 82
Contents

5.5 Herbal Derivatives in Prevention of Alzheimer’s Disease 124
5.6 Conclusion 127
Acknowledgments 127
References 127

6 Honey- and Propolis-Mediated Regulation of Protein Networks in Cancer Cells 137
Ammad Ahmad Farooqi, Mirna Azalea Romero, Aliye Aras, Muhammad Zahid Qureshi, and Lara Hanna Wakim
6.1 Introduction 137
6.2 Honey-Mediated Targeting of Signal Transducer and Activator of Transcription (STAT) Proteins 138
6.3 Reactive Oxygen Species (ROS) Production in Cancer Cells 138
6.4 Apoptosis 139
6.5 Regulation of DNA Damage 139
6.6 Combinatorial Strategies: It Takes Two to Tango 139
6.7 Bioactive Propolis Chemicals as Tumor Necrosis Factor (TNF)-Related Apoptosis-Inducing Ligand (TRAIL) Sensitizers 141
6.8 Bioactive Chemicals of Propolis Target Different Proteins of Cell-Signaling Pathways 142
6.9 Conclusion 142
References 142

7 Antiproliferative Effects and Mechanism of Action of Phytosterols Derived from Bioactive Plant Extracts 145
Gabriel López-García, Amparo Alegría, Reyes Barberá, and Antonio Cilla
7.1 Introduction 145
7.2 Mechanisms of the Anticancer Actions of Phytosterols 146
7.3 Anticancer Effects of Phytosterols 147
7.3.1 Plant Extracts Containing Phytosterols 148
7.3.2 Isolated Phytosterols from Plant Extracts 155
7.4 Conclusions 161
Acknowledgments 162
References 162

8 Yerba Mate (Ilex paraguariensis A. St. Hil.): A Promising Adjuvant in the Treatment of Diabetes, Obesity, and Metabolic Syndrome 167
Vanesa Gesser Correa, Rúbia Carvalho Gomes Corrêa, Tatiane Francielli Vieira, Eloá Angélica Koehnlein, Adelar Bracht, and Rosane Marina Peralta
8.1 Introduction 167
8.2 Nutritional Composition of Ilex paraguariensis 169
8.3 Composition in Bioactive Compounds 170
8.4 Yerba Mate: Research Trends and Main Findings over 20 Years 171
8.5 Biological Activities of Yerba Mate Related to Diabetes, Obesity, and Metabolic Syndrome 172
8.5.1 In Vitro Studies 172
8.5.2 Animal Studies 174
8.5.3 Clinical Trials 176
8.6 Summarizing Conclusion and Perspectives 177

References 178

9 Role of Natural Antioxidants from Selected Plants Belonging to the Scrophulariaceae and Buddlejaceae Families in the Prevention and Treatment of Neurodegenerative Diseases 183
Cigdem Kahraman, Zeliha S. Akdemir, and I. Irem Tatli
9.1 Introduction 183
9.2 Natural Antioxidants from Verbascum Species (Mullein) for Their Therapeutic Activities against Neurodegenerative Diseases 188
9.3 Natural Antioxidants from Scrophularia Species (Figwort) for Their Therapeutic Activities against Neurodegenerative Diseases 200
9.4 Natural Antioxidants from Buddleja Species (Butterfly Bush) for Their Therapeutic Activities against Neurodegenerative Diseases 209
9.5 Secondary Metabolites and Their Therapeutic Activities against Neurodegenerative Diseases 221
9.6 Conclusions 225
Acknowledgments 226
References 226

10 Recent Trends in Drug Discovery against Alzheimer’s Disease: Use of Natural Products and Nutraceuticals from Botanicals 237
Sudatta Maity, Samapika Nandy, Anuradha Mukherjee, and Abhijit Dey
10.1 Introduction 237
10.2 Symptoms 237
10.3 Etiopathogenesis 238
10.4 Conventional Therapy 239
10.5 Complementary and Alternative Therapies (CATs) for AD 239
10.6 Research Methodology 240
10.7 Neuroprotective Biomolecules: Possible Roles against AD Pathogenesis 241
10.7.1 1-o-acetyllycorine 241
10.7.2 α-iso-cubebenol 245
10.7.3 α-onocerin 245
11.3 Positive Correlation between Phytopharmacology and Phytochemistry: Need of the Hour 280
11.4 Validation of Herbal Therapeutics: An Indispensable Boon for Ayurveda 281
11.4.1 Reverse Pharmacology–Based Validation of Herbal Drugs [14] 281
11.4.2 Amplifying Approaches for Validation of Traditional Medicine 282
11.4.3 Scientific Integration of Traditional Herbals in Clinical Practice 282
11.4.4 Bhasmas: The Metal-Based Ayurvedic Medicine 283
11.4.4.1 Preparation of Bhasmas 283
11.4.5 Steps Involved in the Preparation of Bhasmas 284
11.4.5.1 Characterization of Bhasma 285
11.5 Metals Commonly Employed for Preparation of Bhasmas 286
11.5.1 Swarna (Gold) 286
11.5.2 Parada (Mercury) 287
11.5.2.1 Tamra (Copper) 287
11.5.2.2 Lauha (Iron) 288
11.5.2.3 Rajata (Silver) 288
11.5.2.4 Yashada (Zinc) 289
11.5.2.5 Naga (Lead) 289
11.5.2.6 Vanga (Tin) 290
11.6 Toxicity Aspect: An Issue of Concern in the Use of Herbomineral Formulations 290
11.6.1 Confictive Opposition by Western Medicine Philosophy 291
11.6.2 Conclusive Statements Supported by Varied Research Works 292
11.6.3 Future Prospects in Light of Knowledge within Ayurvedic Texts and Its Application as Nanomedicine 298
References 298

12 Green Tea Polyphenols: A Putative Mechanism for Cytotoxic Action against Cancer Cells 305
Mohd Farhan, Uzma Shamim, and S.M. Hadi
12.1 Dietary Constituents and Their Role in Prevention of Cancer 305
12.2 Cancer Chemoprevention by Dietary Polyphenols 306
12.3 Polyphenolic Compounds and Their Chemical Classification 308
12.4 Dietary Sources of Plant-Derived Polyphenolic Compounds 311
12.5 Metabolism of Polyphenolic Compounds in Humans 314
12.6 Polyphenols and Their Therapeutic Potential 316
12.6.1 Anticancer Properties 316
12.6.2 Prospective Anticancer Mechanisms of Plant-Derived Dietary Polyphenols 318
12.6.2.1 Antioxidant Action 319
12.6.2.2 Pro-Oxidant Action 319
Acknowledgments 321
References 321

13 Nature’s Armamentarium against Malaria: Antimalarials and Their Semisynthetic Derivatives 333
Fyaz M.D. Ismail
13.1 Introduction 333
13.2 Synthetic Drugs Allow Mass Prophylaxis of Malarial Infections 336
13.3 The Cooperative World War II Wartime Program 338
13.4 The Post-Chloroquine Era: A Return to Finding Drugs from Nature 340
13.5 Compounds from Plant Sources 340
13.5.1 South America 342
13.5.1.1 Quassinoids 342
13.5.1.2 Amazonia Plants 344
13.5.1.3 Plants Deserving Further Investigation 345
13.5.2 Promising Antimalarials Native to Africa 347
13.5.2.1 Burkina Faso 347
13.5.2.2 Congo 347
13.5.2.3 Ethiopia 349
13.5.2.4 Kenya 350
13.5.2.5 Madagascar 351
13.5.3 North America and Europe 351
13.5.3.1 Helanin 352
13.5.4 India and East Asia 353
13.5.4.1 China 354
13.5.4.2 Japan and Korea 359
13.5.5 Australia 359
13.6 The Future 361
13.7 Conclusion 363
References 363

14 Nutraceutical-Based Pharmacological Intervention in the Management of Liver Diseases 375
Aaliya Shah and Syed Mudassar
14.1 Liver: A Multifunctional Organ 375
14.2 Biomarkers of Hepatic Injury 377
14.3 Nutraceutical Intervention in the Management of Liver Diseases 377
14.3.1 Vitamins 378
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.3.1.1 Vitamin D</td>
<td>378</td>
</tr>
<tr>
<td>14.3.1.2 Vitamin C</td>
<td>379</td>
</tr>
<tr>
<td>14.3.1.3 Vitamin E</td>
<td>379</td>
</tr>
<tr>
<td>14.3.2 Dietary Polyphenols</td>
<td>380</td>
</tr>
<tr>
<td>14.3.2.1 Flavonoids</td>
<td>380</td>
</tr>
<tr>
<td>14.3.3 Anthocyanins, Isoflavones, and Flavanones</td>
<td>380</td>
</tr>
<tr>
<td>14.3.4 Stilbenes</td>
<td>381</td>
</tr>
<tr>
<td>14.3.5 Curcuminoids</td>
<td>381</td>
</tr>
<tr>
<td>14.3.6 Silymarin</td>
<td>381</td>
</tr>
<tr>
<td>14.3.7 Beverages (Coffee and Tea)</td>
<td>381</td>
</tr>
<tr>
<td>14.3.8 Polyunsaturated Fatty Acids (PUFAs)</td>
<td>382</td>
</tr>
<tr>
<td>14.3.8.1 Short-Chain, Medium-Chain, and Long-Chain Fatty Acids (SCFAs, MCFAs, and LCFAs)</td>
<td>382</td>
</tr>
<tr>
<td>14.3.8.2 Polyunsaturated Fatty Acids</td>
<td>382</td>
</tr>
<tr>
<td>14.3.9 Probiotics</td>
<td>383</td>
</tr>
<tr>
<td>14.3.10 Fruits</td>
<td>384</td>
</tr>
<tr>
<td>14.3.10.1 Grape</td>
<td>384</td>
</tr>
<tr>
<td>14.3.10.2 Black Currant</td>
<td>384</td>
</tr>
<tr>
<td>14.3.10.3 Plum</td>
<td>384</td>
</tr>
<tr>
<td>14.3.10.4 Pomegranate</td>
<td>384</td>
</tr>
<tr>
<td>14.3.10.5 Gac Fruit</td>
<td>385</td>
</tr>
<tr>
<td>14.3.11 Vegetables</td>
<td>385</td>
</tr>
<tr>
<td>14.3.11.1 Celery Seeds</td>
<td>385</td>
</tr>
<tr>
<td>14.3.11.2 Spices</td>
<td>385</td>
</tr>
<tr>
<td>14.3.11.3 Saffron</td>
<td>385</td>
</tr>
<tr>
<td>14.3.11.4 Soy</td>
<td>386</td>
</tr>
<tr>
<td>14.3.11.5 Cereals</td>
<td>386</td>
</tr>
<tr>
<td>14.4 Conclusion</td>
<td>386</td>
</tr>
</tbody>
</table>

Index 395
Editor Biographies

Mohammad Fahad Ullah, PhD, is an Assistant Professor of Biochemistry in the Department of Medical Laboratory Technology (FAMS) and a research scientist at Prince Fahd Research Chair, University of Tabuk, Tabuk, Saudi Arabia. He received his academic degrees along with a gold medal in MSc (biochemistry) from Aligarh Muslim University, Aligarh, India. Furthermore, he worked as a research associate at the Experimental Oncology Laboratory, Department of Biomedical & Diagnostic Sciences, University of Tennessee, Knoxville, TN, USA. His research interests include assessing novel plant- or diet-derived bioactive compounds for their mechanism of action and translational potential against chronic diseases, including cancer and diabetes. He is an active member of the American Association for Cancer Research (AACR, USA) and the Royal Society of Chemistry (UK), and a member of the editorial/reviewer board of a number of scientific journals. Dr. Ullah has more than eight years of experience in teaching biochemistry to the students of health sciences. His academic works include close to 50 publications in reputed journals and two books entitled Critical Dietary Factors in Cancer Chemoprevention (Springer, Switzerland) and Illustrated Notes on Biomolecules (Partridge, Singapore).

Aamir Ahmad, PhD, is an Assistant Professor of Oncologic Sciences at University of South Alabama’s Mitchell Cancer Institute, Mobile, AL, USA. He received his academic degrees from Aligarh Muslim University, Aligarh, India, and received university gold medals for the highest marks in his department as well as all the faculties combined. He completed postdoctoral training at the National Cancer Institute, National Institutes of Health, Bethesda, MD, USA. His research interests include understanding the mechanisms of cancer drug resistance and metastasis in different cancers, with emphasis on the roles of microRNAs, noncoding RNAs, epigenetics, exosomes, and cancer stem cells. He has authored more than 140 scientific research or review articles, authored more than 20 book chapters, and edited or coedited 6 books. He is the Founding Editor-in-Chief of the journal Non-coding RNA Research and serves as a Section Editor for the journal PLoS ONE. He is also the Editor-in-Chief of the Elsevier Cancer Metastasis series.
List of Contributors

Faisel M. Abu-Duhier
Laboratory of Phytomedicine and Therapeutics
Prince Fahd Research Chair
Department of Medical Laboratory Technology
Faculty of Applied Medical Sciences
University of Tabuk
Tabuk, Saudi Arabia

Zeliha S. Akdemir
Department of Pharmacognosy
Faculty of Pharmacy
Hacettepe University
Ankara, Turkey

Amparo Alegria
Nutrition and Food Science Area
Faculty of Pharmacy
University of Valencia
Burjassot, Valencia, Spain

Aliye Aras
Department of Botany
Faculty of Science
Istanbul University
Istanbul, Turkey

Muhammad Arif
Faculty of Pharmacy
Integral University
Lucknow, Uttar Pradesh, India

Reyes Barberá
Nutrition and Food Science Area
Faculty of Pharmacy
University of Valencia
Burjassot, Valencia, Spain

Showket Hussain Bhat
Laboratory of Phytomedicine and Therapeutics
Prince Fahd Research Chair
Department of Medical Laboratory Technology
Faculty of Applied Medical Sciences
University of Tabuk
Tabuk, Saudi Arabia

Adelar Bracht
Post Graduate Program of Food Science
Universidade Estadual de Maringá
Maringá, Paraná, Brazil

Lindsay Brown
School of Health and Wellbeing and Functional Foods Research Group
Institute for Agriculture and the Environment
University of Southern Queensland
Toowoomba, Queensland, Australia
List of Contributors

Antonio Cilla
Nutrition and Food Science Area
Faculty of Pharmacy
University of Valencia
Burjassot, Valencia, Spain

Rúbia Carvalho Gomes Corrêa
Post Graduate Program of Food Science
Universidade Estadual de Maringá
Maringá, Paraná, Brazil

Vanesa Gesser Correa
Post Graduate Program of Food Science
Universidade Estadual de Maringá
Maringá, Paraná, Brazil

Abhijit Dey
Department of Life Sciences
Presidency University
Kolkata, India

Ammad Ahmad Farooqi
Institute of Biomedical and Genetic Engineering
Islamabad, Pakistan

Mohd Farhan
Department of Biochemistry
Faculty of Life Sciences
Aligarh Muslim University
Aligarh, Uttar Pradesh, India

Geetika Garg
Department of Biochemistry
University of Allahabad
Allahabad, Uttar Pradesh, India

S.M. Hadi
Department of Biochemistry
Faculty of Life Sciences
Aligarh Muslim University
Aligarh, Uttar Pradesh, India

Syed Misbah Hasan
Faculty of Pharmacy
Integral University
Lucknow, Uttar Pradesh, India

Carla Iacobini
Dipartimento di Medicina Clinica Molecolare
Università “La Sapienza”
Roma, Italy

Fyaz M.D. Ismail
Pharmacy and Biomolecular Sciences
Faculty of Science
Liverpool John Moores University
Liverpool, UK

Oliver John
School of Health and Wellbeing and Functional Foods Research Group
Institute for Agriculture and the Environment
University of Southern Queensland
Toowoomba, Queensland, Australia

Cigdem Kahraman
Department of Pharmacognosy
Faculty of Pharmacy
Hacettepe University
Ankara, Turkey

Eloá Angélica Koehnlein
Department of Nutrition
Federal University of Southern Border
Campus Realeza-PR
Realeza, Paraná, Brazil

Gabriel López-García
Nutrition and Food Science Area
Faculty of Pharmacy
University of Valencia
Burjassot, Valencia, Spain
List of Contributors

Jingyi Ma
Department of Clinical Pharmacology
Aerospace Center Hospital
Beijing, China

Sudatta Maity
Department of Life Sciences
Presidency University
Kolkata, India

Stefano Menini
Dipartimento di Medicina Clinica
Molecolare
Università “La Sapienza”
Roma, Italy

Syed Mudassar
Department of Clinical Biochemistry
Sher-I-Kashmir Institute of Medical Sciences (SKIMS)
Srinagar, Jammu and Kashmir, India

Samapika Nandy
Department of Life Sciences
Presidency University
Kolkata, India

Sunil K. Panchal
Functional Foods Research Group
Institute for Agriculture and the Environment
University of Southern Queensland
Toowoomba, Queensland, Australia

Rosane Marina Peralta
Post Graduate Program of Food Science
Universidade Estadual de Maringá
Maringá, Paraná, Brazil

Carlo Pesce
Dipartimento di Neuroscienze, riabilitazione, oftalmologia, genetica e scienze materno-infantili (DINOGMI)
Università di Genova
Genova, Italy

Muhammad Zahid Qureshi
Department of Chemistry
Government College University
Lahore, Pakistan

Syed Ibrahim Rizvi
Department of Biochemistry
University of Allahabad
Allahabad, Uttar Pradesh, India

Mirna Azalea Romero
Laboratorio de Investigación Clínica
Unidad Académica de Medicina
Universidad Autónoma de Guerrero
Acapulco, Guerrero, México

Aaliya Shah
Department of Clinical Biochemistry
Sher-I-Kashmir Institute of Medical Sciences (SKIMS)
Srinagar, Jammu and Kashmir, India

Uzma Shamim
Department of Biochemistry
Faculty of Life Sciences
Aligarh Muslim University
Aligarh, Uttar Pradesh, India

Abhishek Kumar Singh
Department of Biochemistry
University of Allahabad
Allahabad, Uttar Pradesh, India
Sandeep Singh
Department of Biochemistry
University of Allahabad
Allahabad, Uttar Pradesh, India

I. Irem Tatli
Department of Pharmaceutical Botany
Faculty of Pharmacy
Hacettepe University
Ankara, Turkey

Mohammad Fahad Ullah
Laboratory of Phytomedicine and Therapeutics
Prince Fahd Research Chair
Department of Medical Laboratory Technology
Faculty of Applied Medical Sciences
University of Tabuk
Tabuk, Saudi Arabia

Shazia Usmani
Faculty of Pharmacy
Integral University
Lucknow, Uttar Pradesh, India

Tatiane Francielli Vieira
Post Graduate Program of Food Science
Universidade Estadual de Maringá
Maringá, Paraná, Brazil

Lara Hanna Wakim
Faculty of Agricultural and Food Sciences
Holy Spirit University of Kaslik
Jounieh, Mount Lebanon, Lebanon

Xuelin Zhou
Department of Pharmacy
302 Military Hospital of China
Beijing, China
Foreword

This book contains a collection of review articles highlighting the potential and demonstrated health-promoting effects of foods, natural products in foods, and their derivatives. While the research community has established that a diet rich in fruits and vegetables helps maintain health, large gaps in our knowledge still exist regarding the biological effects of individual food components. We know even less about the effects of their metabolites and derivatives. In the past, the focus has been primarily on the antioxidant effects of components naturally present in plant-derived foods. In recent years, it has become increasingly clear that food components (in common with pharmaceuticals) can interact with molecular targets to regulate cell signaling, such as inflammation, and metabolism. While beneficial to the host to fight off infections, inflammation can be detrimental to human health when it persists chronically. Many basic science and clinical researchers are interested in mitigating chronic inflammation and dysregulated metabolism by dietary means, with the goal to prevent the early stages of a pathological condition from progressing into disease. Other investigators focus their research on developing naturally occurring chemicals as drugs to treat disease. The reader will find excellent examples, in 14 chapters, of either approach in this book.

In Chapter 1, researchers from the Universities of Genoa and Rome, Italy, discuss nutraceuticals and phytochemicals used in folk medicine for management of diabetes and metabolic syndrome. As a specific example, researchers from the University of Southern Queensland, Australia, review in Chapter 3 the broad-spectrum effects of active principles in *Garcinia* fruit for mitigating metabolic syndrome. Diabetes and metabolic syndrome are also the focus of Chapter 8, specifically how phenolic acids, catechins, and methylxanthines from yerba mate can influence dysregulated metabolism in these abnormal physiological conditions.
Whey protein–derived sulfur-containing amino acids and a cellular antioxidant, glutathione, are the topic of Chapter 2, in which researchers from the University of Allahabad, India, make a case that intake of sulfur-containing proteins might offer protection against metabolic and neurodegenerative diseases. In Chapter 9, pharmaceutical scientists from the University of Hacettepe, Ankara, Turkey, review the redox properties of secondary metabolites from *Verbascum*, *Scrophularia*, and *Buddleja* species and how they may retard or halt the initiation and progression of neurodegenerative diseases. Alzheimer’s disease, with its various pathologies and potential targets for treatment with plant secondary metabolites, is discussed in the following Chapter 10, contributed by researchers from Presidency University, India.

Angiogenesis, or the formation of new blood vessels, has long been recognized as a target for therapies aimed against tumorigenesis and metastasis. In Chapter 4, Beijing hospital researchers summarize the effects of naturally occurring polyphenols, alkaloids, and terpenoids in cell culture and animal models of angiogenesis.

In Chapter 5, investigators from the University of Tabuk, Saudi Arabia, argue that nature’s enormous chemical diversity offers endless opportunities for discovery and development of natural products that can prevent, ameliorate, or treat cancer, diabetes, and neurodegenerative diseases. Honeybees take nature’s chemical diversity home to their beehives in the form of honey, propolis, pollen, and wax. In Chapter 6, an international group of researchers describes the pharmacological effects of honey and propolis on the regulation of protein networks in cancer cells. In Chapter 7, researchers from the University of Valencia review the antiproliferative and apoptotic effects of phytosterols, an understudied group of natural products, in cultured breast, prostate, and colon cancer cells. The cancer-related properties of green tea polyphenols, specifically those of the catechin type, are discussed in Chapter 12. The authors of this chapter propose that the cancer-related properties of these flavanols can be attributed to a copper-dependent pro-oxidant effect, resulting in death of the cancer cell. In Chapter 14, researchers from SKIMS (Sher-i-Kashmir Institute of Medical Sciences), Srinagar, India, outline the studies that relate the benefits of fruits and vegetables in hepatopathological conditions.

In Chapter 11, Shazia Usmani from Integral University, India, discusses the use and formulation of metals in Ayurvedic medicine from a therapeutic and toxicological perspective. Extending the significance of natural products to the realm of infectious diseases, in Chapter 13, Fyaz Ismail from Liverpool John Moores University, UK, describes several natural and semisynthetic drug candidates for malarial infections, focusing on different geographical regions worldwide.

The collection of chapters spans a wide range of highly complementary topics with minimal overlap. This book will be a useful resource for researchers
interested in herbal medicine and pharmacognosy at all career stages. I congratulate the editors, Drs. Ullah and Ahmad, for recruiting a group of diverse contributors, all experts in their chosen subjects, from all over the world.

March 2018

Dr. Jan Frederik Stevens, Professor
Linus Pauling Institute & College of Pharmacy,
Oregon State University, Corvallis, Oregon, USA
Preface

The burden of chronic diseases in the human population has increased exponentially ever since the beginning of recorded history. Despite advancements in modern diagnostic and therapeutic paradigms, the projected global rates of incidence of these diseases, including cancer, diabetes, and neurodegenerative disorders, and the associated mortality for future decades display many challenges and poor outcomes. Rejuvenated interest in the natural product pharmacology in the last two decades has been partially based on the fact that some of the most effective drugs in clinical practice are derivatives of natural products. It is known that over the centuries, human civilizations have acquired sophisticated knowledge of disease cures from sources derived from their environment, and this perhaps represents natural product–based traditional and complementary medicine worldwide. The advent of synthetic chemistry and combinatorial approaches has indeed revolutionized the drug development premises. However, this has also impeded interest in the natural products that have in the past served as an enormous repository of bioactive compounds. The huge diversity in chemical structures of natural products provides inexhaustible potential as leads in drug discovery. This book, Nutraceuticals and Natural Product Derivatives: Disease Prevention and Drug Discovery, is an attempt to archive a few such ideas in the scientific and public domains. We commend John Wiley & Sons for providing the platform for this endeavor and entrusting us with the task of managing, compiling, and editing the current volume that we present before the audience.

Precisely, the volume contains an expert commentary that is followed by 14 chapters, each focusing on the significance of natural products in disease prevention. The expert commentary provides an excellent presentation of the concept that is important to understanding the relevance of natural products. Chapter 1, “Natural Food Sources for the Control of Glycemia and the Prevention of Diabetic Complications,” deals with the vast literature that has appeared in the last decade on specific food nutrients with purported beneficial effects to prevent type 2 diabetes and its microvascular and macrovascular complications. Chapter 2, “Anti-Aging Effect of Sulfur-Containing Amino
Acids and Nutraceuticals,” focuses on proteins rich in L-cysteine as redox modulators during age-associated diseases and the possibility of future strategies employing sulfur-containing amino acids in intervention to treat multiple metabolic and neuronal diseases. Chapter 3, “Garcinia Fruits: Their Potential to Combat Metabolic Syndrome,” discusses the potential of the bioactive compounds found in *Garcinia* species as therapeutic candidates for metabolic syndrome. Chapter 4, “Pro-Angiogenic and Anti-Angiogenic Effects of Small Molecules from Natural Products,” describes recent research findings on pro- and anti-angiogenic effects of small molecules from nutraceuticals and natural products by modulating key factors in cell proliferation, migration, invasion, and assembly. Chapter 5, “Nutraceuticals and Natural Product Derivatives in the Premises of Disease Prevention,” presents an overview of the therapeutic significance of natural products in chronic diseases, including cancer, diabetes, gout, and neurodegenerative disorders. Chapter 6, “Honey and Propolis-Mediated Regulation of Protein Networks in Cancer Cells,” summarizes most recent evidence related to anticancer activities of honey and propolis and how these amazingly effective products modulate different proteins in cancer cells to inhibit or prevent cancer. Chapter 7, “Antiproliferative Effects and Mechanism of Action of Phytosterols Derived from Bioactive Plant Extracts,” reviews the activity of plant extracts containing phytosterols, or isolated phytosterols obtained from plant extracts, upon breast, prostate, and colon cancer. Chapter 8, “Yerba Mate (*Ilex paraguariensis* A. St. Hil.): A Promising Adjuvant in the Treatment of Diabetes, Obesity, and Metabolic Syndrome,” reports on the beneficial actions of yerba mate, known to be rich in phenolic acids and used in different kinds of beverages, as an adjuvant in the treatment of diabetes, obesity, and metabolic syndrome. Chapter 9, “Role of Natural Antioxidants from Selected Plants Belonging to the Scrophulariaceae and Buddlejaceae Families in the Prevention and Treatment of Neurodegenerative Diseases,” describes *Verbascum*, *Scrophularia*, and *Buddleja* species used in traditional medicines and relates their significance in oxidative stress and neurodegenerative disorders. Chapter 10, “Recent Trends in Drug Discovery against Alzheimer’s Disease: Use of Natural Products and Nutraceuticals from Botanicals,” discusses the underlying mechanism of disease onset along with therapeutic effects of different phytochemicals and traditional herbal formulations in both crude and synergistic forms. Chapter 11, “Therapeutic Potential of Metallo-Herbal Nanoceuticals: Current Status and Future Perspectives,” describes the metallo-herbal formulations of ancient Indian Ayurvedic medicine and their implications in alternative therapies. Chapter 12, “Green Tea Polyphenols: A Putative Mechanism for Cytotoxic Action against Cancer Cells,” discusses a copper-dependent pro-oxidant mechanism of action of green tea polyphenols that accounts for their observed chemopreventive properties. Chapter 13, “Nature’s Armamentarium against Malaria: Antimalarial...
and Their Semisynthetic Derivatives,” focuses on the putative sources of new drugs or prototypes from plant sources with antiplasmodial activity. Chapter 14, “Nutraceutical-Based Pharmacological Intervention in the Management of Liver Diseases,” describes dietary natural products as key elements for prevention and treatment of liver diseases.

We express our gratitude to all the authors for valuable contributions from around the globe. It is indeed their willingness to share their onerous experiences that has facilitated this piece of scientific literature. We appreciate the support of Ms. Mindy Okura-Marszycki (Senior Acquisitions Editor) for working out the procedural framework of our book proposal. Fortunately, we had Ms. Kshitija Iyer and Mr. Antony Sami (Project Editors), Priya Subbrayal (Production editor), who were instrumental in ensuring the required basics of attractive and meaningful academic production. We are indeed honored to have Professor Fred Stevens introducing the substance of the book in the foreword.

Lastly, we wish that the audience will like the content of this book and that this book will, as desired, serve as a promising literature for inspiring researchers who intend to explore the vast armamentarium of natural products for disease prevention and drug discovery.

Mohammad Fahad Ullah, Saudi Arabia
Aamir Ahmad, USA