Numerical
Python

Scientific Computing and Data Science
Applications with Numpy,
SciPy and Matplotlib

Second Edition

Robert Johansson

Apress:

Numerical Python

Scientific Computing and Data
Science Applications with Numpy,
SciPy and Matplotlib

Second Edition

Robert Johansson

Apress’

Numerical Python: Scientific Computing and Data Science Applications with
Numpy, SciPy and Matplotlib

Robert Johansson
Urayasu-shi, Chiba, Japan

ISBN-13 (pbk): 978-1-4842-4245-2 ISBN-13 (electronic): 978-1-4842-4246-9
https://doi.org/10.1007/978-1-4842-4246-9

Library of Congress Control Number: 2018966798

Copyright © 2019 by Robert Johansson

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Todd Green

Development Editor: James Markham

Coordinating Editor: Jill Balzano

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio rights,
please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484242452. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-4246-9

To Mika and Erika.

Table of Contents

About the AUROFcccciicmmmiimsinn s XV
About the Technical REVIEWErScussssmssssssssassssnssssssssassssnssssnsssassssnssssnsssassssanssas xvii
L1 T LT (1 XXi
Chapter 1: Introduction to Computing with Python.............ccccuscmnismnisnnssenmssnssssnsnses 1
Environments for Computing With PYthON ..o 5
11110 OSSOSO 6
101 0] 1] OSSR 7
(0TI 0] S 8
Input and OutPUL CACKINGccvcrirrcrcr s 9
Autocompletion and Object INtroSPECtioNccoveevvrenrisernsesne e 11
DOCUMENTALIONcveeereesrseer e re e nr s 11
Interaction with the System Shell ... ———— 12
IPYThON EXTENSIONS ...ccuciviiieiiricre et sese et sa e st s st e saesae st s e nsesne s 13

B 111 0] S 19
The Jupyter QECONSOIEcccevrerireierr e 20

The Jupyter NOtEDOOKcccceiiiirsee e e 21

10)] o OSSR 24

0 T TR 25

o T T =Y 26
MarKAOWN CelIS.......cciereriiirciise s 28

Rich OUEPUL DISPIAYvverrerrereriereresesseressesassessessessesessessessessssessesaesssssssessessessssessessesssssssesseses 30
NDCONVEIT ..ot e e 34

TABLE OF CONTENTS

Spyder: An Integrated Development ENVIrONMENtcccvvevenvrnnenennsensene s sessessessessssessessenes 37
SoUrCE Code EdItOr.........cvieccriririrecscse s 38
CONSOIES IN SPYUBE ...ceuereerrereriererereeseresserresessesse s e see e s e ssessese s e ssesaese e e ssesaesaesesaesaesaessenensessens 40
0 o7 T= ot 5] 0T o] TR 40

1] 4= OSSPSR 41

FUrhEr REAUING ...cc.civeiiiriere ettt e e 41

25 (=] =] T T 41

Chapter 2: Vectors, Matrices, and Multidimensional Arraysccccussssesnssssssnnnsass 43

IMPOrting the MOTUIES ..o 44

The NUMPY Array ODJECTccovceeierircsire e 44
D7 L B 1] 01 TSRS 46
Order of Array Data in MemMOIY........cccovevnnnmnessnse s s ss s s sessesenns 49

(o LT 017 R 50
Arrays Created from Lists and Other Array-Like ODJECES........ccccvvererrrerierieressenserereesessessenes 52
Arrays Filled With COnStant VaIUESccccevevrreriererssinsere s sessesesessssessessessssessessessssessessesees 52
Arrays Filled with Incremental SEQUENCEScccverrererrereriererrerere s s e sessessessesessessesas 54
Arrays Filled with Logarithmic SEQUENCESccvcererrrrierererersenere s e ssessssessesees 54
MESNGIIA AITAYS ..veveererrerresersersessessssesessesassessessessesss e ssessessessssesaesaesessessesaessssessessesssssnsessenes 55
Creating UninitialiZed AFTAYScvvvrerrerernsenseriesesessessessessssessessessessssessessesssssssessessesssssnsessens 56
Creating Arrays with Properties 0f Other Arrays.........ccevrevernrenserenessensessessssessessessesessessessens 56
Creating MatriX AFTAYScuiverrerererserseressssessesessessssessessessessssessessessssessesaessessssessessessssessessens 57

INAEeXiNG @NA SHCING......ccvrerirercre s e st neens 58
0NE-DimeNnSIONAl ATTAYS......cccvirreririnerniesissesise s se s e st e e et 58
MultidimensSional ArTAYScccvierernsirere e s r e 60
VIBWS ...t e e e e R e R e e e R e e r R 62
Fancy Indexing and Boolean-Valued INAEXiNG..........ccccverrererinrennnnenierses e sessessee e sesaens 63

Reshaping and RESIZING.........ccccorererereneneneresesesesese s sesse s sesss e s ssssssenns 66

VECtOriZEU EXPrESSIONSvveruerrererserersesessesessessssesessesseses e ssesaeses e s e ssesseses e ssesaessssensesaesssnennensens 70
Arithmetic OPerations........c.cucviereresernsesse e 72
Elementwise FUNCLIONSccoccericeiicsincse e 76

TABLE OF CONTENTS

Aggregate FUNCLIONS ... s 79
Boolean Arrays and Conditional EXPreSsionsocceermnssmnessnssssssesesssssssesesessssssens 82
e 0] 0T U0 85
OPErations ON AITAYScccererererrsseesese e s r e se e sesp s 87
Matrix and Vector Operations........c.ccececerverrernesierrersee s see e se s e e s sessae s saessesssesnesaennens 88
SUMIMAIY....ceiieeteerese s e en e Re s e e e e e Re e e R e e n e e e Re e Re e nrn e e nrnnnns 95
FUINEI REAUINGcvvveciiriris e s 95
31C] (<] T[T 96
Chapter 3: Symbolic COMPULiNGcccrrrusssmmnmmssssnnnmmssssssnmsssssnsnmsssssnsnssssssnsnssssssnnnssss 97
IMPOIEING SYMPY ...t e e p e 98
£ 0] 99
0T8T N 102
(0] TES 0] 109
Manipulating EXPreSSIiONScuvvririninsiniesiesississe e sessessessesessessessessssessessessssessessessesssssssesaens 110
SIMPIFICALION.....cve i ————— 111
EXPANG.....ciiec et r e e e e n e n e R ar 112
Factor, Collect, and COMDBINEc.ceevverieererierienree s sesssesesesseessessessesssessesaessesssesaessessenns 114
Apart, Together, and CanCelcccvernininninnn e 115
SUDSHIULIONS ... 115
Numerical EValUGLION ... s 117
{021 T 118
DLE 1T LA S 119
INTEQIAIS ... ———————————— 121
B3] -1 OO 123
1T N 125
SUMS AN PrOUCTESccererircccri s 126
EQUALIONS ...t s e e e e e e e e e b 127
LiNEar AlgEDIa......cocevivirsirere e e e a e e nae 130

vii

TABLE OF CONTENTS

£ 11134 7P 134
FUrther REAUINGcocvviiirirrcn s e s e s s e 134
RETEIBNCE.ce et 134
Chapter 4: Plotting and Visualizationccsusssmmmsssnsmssssnmsssssssssssssssssssssnsssssnssssns 135
IMPOrtiNg MOUUIES ..ot e s r e s s e e n e s an e 136
GELtiNG STAEA.......ceeeeeeeeeee e e 137
Interactive and Noninteractive MOdes..........ccoveceerererenernserere s 141
FIQUIE .t s e p e R e e e R r e e e e nnnas 143
N 145
o 1 T 0TSSR 146
LiNE PrOPEITIES ...t 147
[T 1< 1 0 OSSR 152
Text Formatting and ANNOTAtiONS.........cocvcvvriere s 153
Ly o (0] 0T o (T 156
AdvaNCed AXES LAYOULScccveriiiniiriress s ss st s sre st s s e s s 168
TS . 168
10170] 0] £ 170
1010 70] (0] 72 4 o OO 172
610 o< 3OO 173
Colormap PlOTS......coiiiircr e e e 174
S D PIOES .t —————————————— 177
31111117 o OO S 180
FUMNEr REAUINGceeeeeeeriecreresere e 180
RETEIBINCESuccceriris s 181
Chapter 5: Equation SOIVINGcccursemmmmssssnnnmmsssssnnmssssssnsssssssssnsssssssnssssssssnssssssnnnnss 183
IMPOItING MOAUIES ... 184
Linear EQUAtion SYSTEMScccoieeriirernserrnesese s s s ss s s 185
SQUAIE SYSTEIMSveviericcrineire e n e e e nnnne e np s 186
Rectangular SYSTEMS........cccvverrinenisrssse s 192

viil

TABLE OF CONTENTS

Eigenvalue ProbDIEmS..........c it 196
Nonlinear EQUALIONScccieriiirieriere s s sr s s se s s s se s s st 198
Univariate EQUALIONS..........cccviierininine s s s st 199
Systems of Nonlinear EQUALiONS.........cccooviiirininnnni s sse s sessessens 207
BT 111 7 o SRS 212
FUMhEr REAUING ...ceuerveieirere e serere s ses st se e ssesas e s saesaesa s e s sae s s e e s e saesaesa s e saesaesannsnnesnens 212
RETEIBINCESvvccire i ———————— 212
Chapter 6: Optimization..........ccccvninnmeemmnn s ————————————— 213
IMPOItING MOGUIEScveeeieerrresire e ne s 214
Classification of Optimization ProblEmScccvrerinnrrninennsnsere s sse s ssesessessesnes 214
Univariate Optimization.........c.ccovvviinnnnin e 217
Unconstrained Multivariate Optimization............ccccviinrnininn s 221
Nonlinear Least SQUAre ProbIEMS.........cvccvverereererreriessssssesesessssessessesssssssessesssssssessessesssssssessens 230
Constrained Optimization...........cciniininn s —————————— 232
Linear Programming.........cccccuirinnsnieniesin s s se s st s e s sassss e ssessessssssnesne s 238
B30T 111 T o SR 241
FUMhEr REAUING ...ccuevvereeerere e sersere st s st se s s sae e s saesaesa s e s saesa e e s e saesaesa s e saesnesasnensesnees 241
RETEIBINCESvecce it ———— 242
Chapter 7: Interpolation...........cccccnunnsmemmmnmmmnnmmsssssssnmmssssss s 243
IMPOItING MOGUIESceveerieeriresire st e nr s 244
0T (T 0] 2 1[0 SRR 244
POIYNOMIAIS ... e s s e n e 245
Polynomial INterpolationcccveerecerinnennesrese e 249
£ 0T T= L1 =T 10 L] O 255
Multivariate INterpolation...........cccorrnininn s ——— 258
B30T 1117 o SRS 265
FUtNEr REAUINGceveeicerir ettt n e s s a e 265
RETEIBINCEScuecce e 265

ix

TABLE OF CONTENTS

Chapter 8: Integration........ccccccnrnssnmnnmnssssssnmmsssssnnmmssssssnmssssssnesssssnesass s 267
IMPOrtiNg MOQUIEScoereeer s s 268
Numerical Integration Methods............ccuvvrreniinrns s 269
Numerical Integration With SCIPY.........cccccvvrirrininere s sessessessessssessesaens 274

Tabulated INtegrand............ccocivennirir e ————— 277
Multiple INtegration..........covincn e ———————— 280
Symbolic and Arbitrary-Precision Integration...........c.coeevnrnnenninsnnsessesss s 285

LiNg INTEQIalS......cccoeereereerin e ne e nr s 288
INtegral TrANSTOIMSvccverere e e e e s ae s ae e e e saesae e e e naennens 289
SUMIMANY ..ttt e s e R e e e e e R e e e e e e e Re e R e e e e e Re e R e R e e e e e Re R e e e e e Renrs 292
FUMNEr REAUINGcecereeeriecrrsesisese s 293
RETEIBNCESvvierieiiii i ————— 293

Chapter 9: Ordinary Differential Equations.........cccccusemmrrnssssnnnmnssssnsnmsssssssssssssnnns 295
IMPOrtiNg MOQUIEScoereee e e e e st nne 296
Ordinary Differential EQUAtiONS........c.cccvvvernenenism s sssss e sessesenns 296
SymDbOIic SOIULION 10 ODES.......ccccverererrererereesessereseesessessessessesessessessesssessessessssessessesssssssessesses 298

Direction Fields.........oucccvviiiiiii s ———————— 304

Solving ODEs Using Laplace TranSformations ... 309
Numerical Methods for SOIVING ODESccccerervirreererierses e serses e e sesseessesessessssssessessenns 313
Numerical Integration of ODES USING SCIPYcccvvirnininesersse s s 317
£ 11134 R 332
FUrther REAUINGcovviirir s 333
RETEIBINCES ... s 333

Chapter 10: Sparse Matrices and Graphs.........couummmmmimmemmsmsmsmee—————— 335
IMPOrtiNg MOUUIESc.veiririe et s e s s r e s e e a e s an e 336
Sparse MatriCeS iN SCIPYcccoeorrererererere s 336

Functions for Creating Sparse MatriCes.........c.cccvirnrnininnnnnnnesn s sessesnes 342

Sparse Linear Algebra FUNCTIONS..........ccovrnininnns s 345

TABLE OF CONTENTS

Linear EQUAtion SYSIEMSccvcevivrirere s sersere s s sesse e sss s saeses e ssessesassessesne s 345
Graphs AN NETWOIKScoverervereriererseressessssessessessessssessessessssessessesssssssessesaesssssssessesssssssssneees 352
SUMIMAIY ..t s b e e e e b b e e e e Re e A e e e e e Re e Re A e e e e e Re R e e e e naennn 360
FUMNEr REAUINGccoveveerieerrsesisese s 361
RETEIBNCEScvccrirr i ————— 361
Chapter 11: Partial Differential EQUAtionsccccnsemmrmnsssssnnmnssssnnsssssssssssssssnnns 363
IMPOItiNG MOAUIES ...t 364
Partial Differential EQUALIONScccoecerniennneninese s sesse s 365
Finite-Difference Methods ... ————- 366
Finite-Element Methods...........cccvnminns s 373
Survey 0f FEM LIDFariesccccvivnininienisinene s sse s sssse s ssssessessesssssssessessens 377
Solving PDES USiNg FENICS ..o s s s s e sssssssssssesssseenns 378

£ 1134 7R 403
Further REAUINGcocviiiirr s s e e st 403
RETEIBINCES.....cucuccirerici 404
Chapter 12: Data Processing and AnalySiS......ucccusrmsssannnmsssssnnnssssssnnsssssssnnssssssnnnnss 405
IMPOrtiNg MOUUIES ..ot e a e s s e e n e s 406
Introduction t0 Pandas...........ccuccvnmin s ——————— 407
3] (- 407
DALAFTAME ...t —————————— 410

TIME SIIBS....civiriiiiri i —————————— 422

The Seaborn GraphiCs LiDrary.......ccueeeensesnesesssesssesssesssssessssssssssssssssesssssssssssssssssssssssssssnnns 434

£ 11134 7R 440
FUrther REAUINGcoeviiircirrr e s e 440
RETBIBINCEScucuccireri i 441
Chapter 13: StatistiCS ... ——————— 443
IMPOrtiNg MOUUIESc.eeiririe et r e s s e e n e e 444
Review of Statistics and Probabilityc.ooorerrrennee e 444
Random NUMDEIS ... s 446

TABLE OF CONTENTS

Random Variables and Distributions ..., 451
HyPOTheSIS TESTINGccueeeeecrer e e 460
Nonparametric Methods ... e 466
£ 1§14 7P 469
FUrther REAUINGcocvicirrrr e s et 470
RETEIBINCEScucuciiri i s 470
Chapter 14: Statistical Modelingccuserssssnsssssnsssssnsssssnsssssnsssssnsssssnsssssnnssssanssssns 471
IMPOrtiNg MOUUIES ..ot e e e r e e s a e s 472
Introduction to Statistical MOUElINGccoreiererrrrrr s 473
Defining Statistical Models With Patsy.........c.ccccurvrrnrnnnennesnse s s 474
I T Tl (=T o (1] 0] | S S 485
EXamPIE DAtaSets......ccoceveriiriiriirne s re e s s 494
DiSCrete REQIESSION.......cccciirerirer et b e nne 496
LOQISTIC REOIESSIONceeeeereeririeerterererseesaesaeresseessessesessae s e s e s saessesaesae e s essesaenasensesaesaennen 496
P0ISSON MOGEIcviiciiri i ——— 502
TIME SEIIBS ..evvcciri e —————— 506
£ 11134 R 511
FUrther REAUINGcoevvicirir e e s e s e 511
RETEIBINCEScucecuiiriris i 511
Chapter 15: Machine Learningccccuussssessmsssssssnsssssssnssssssssnssssssssnsssssssnnssssssnnnnss 513
IMPOrtiNg MOUUIES ..ot s s r e s s e e a e s 514
Brief Review of Maching Learning........c.cccoverererernsrensenesese s ses e sessesenns 515
REOIESSION ...ttt r e e e R e e e ne e 518
ClasSIfICALION......ccuirirrie e ———————————————— 529
LT g T TS 535
B30T 111 T o TSSO 540
FUtNEr REAUINGceeeiiiirir ettt se e e s s 540
RETEIBINCEScuuice it ————— 541

xii

TABLE OF CONTENTS

Chapter 16: Bayesian StatiSticS........cciumnmmmmmmssssnnnmmsssnnnmmssssssnmnssssssnsssssssssesssssnnns 543
IMPOrtiNg MOQUIES ... s s 544
Introduction to Bayesian StatistiCsc.ccvvrerrisrnsnnsn s 545
Model DefinitioN ... ————— 548

Sampling Posterior DiStriDULIONS.......ccccvvrrceriere s sassessesnens 553
LiNEar REGIESSION.cciuevrererrererreserseressessssesessessessssessesasssssessessesssssssessesassssnsssessesssnsssesneses 558
SUMIMANY ..ttt e e e R e e e e e R e b e e e e e Re e R e e e e e Re e Re R e e e e e Re e R e e e e e Renns 571
FUMNEr REAUINGcveereeerieerinesis e 572
RETEIBNCEScvieeeeiii i 572

Chapter 17: Signal ProceSSiNgucceurrssssssssesssssnssssssssnsssssssssnsssssssnnsssssssnsssssssnnnnss 573
IMPOrtiNg MOQUIESceereeer e s 574
SPECITAI ANAIYSIS....evireerriserrnriserese s e s r e se s e e e e r e e e e r e e e r s 574

Fourier TransSforms ... 575
WINAOWING....iueeerierreerencser s e e r e se s e s nre e e nnenrnne e 581
B3 LT (0T 2= OSSPSR 585
[0 L (=T R 590
ConvolUtioN FIErS......cccoviii s 590
FIR @nd IR FIEIS ...vovivieeiciiiiissssssssssss s 593
SUMIMANY ..ttt R e e e e e R e e e e e e e R e R e e e e e Re e Re R e e e e e Re R e e e e e aennis 598
FUMNEr REAUINGceecereeeriecrisesise e 599
RETBIBNCES ... viviereeiiic i ————— 599

Chapter 18: Data Input and Qutput..........cccciriimmninnnnnns s —————— 601
IMPOrtiNg MOQUIEScoereeer e st nne 602
Comma-Separated ValUES..........ccueriininininn e s sss s sae s s snes 603
3 D O 608

PUBDY e eeeeereeeesesseeeseseeessessessesssseesesssseseseeseeeeeaseeseseseeeeseeseet e e eet e s eeee e eeee e eee e e seeeeneseeees 610
PYTADIES ..ot e 623
LT R 1D 0] (T 629

xiii

TABLE OF CONTENTS

USON ottt 631
SerAlIZALIONcovercci e ————————————————— 636
11T 111 17 o SO ST S SSR 639
01 1<T T Vo] o SR 639
RETEIBINCE..... ..t ———————— 640
Chapter 19: Code Optimization........cccccemmmmrrnnssssssssssmnmmmmesssssssssssnsssee s ssssssssnnes 641
IMPOItING MOAUIESceveeereeriresirese e e 644
NUMDA.....ci i ——————— 644
{057 30 652
10T 111 1T o OSSOSO 664
FUtNEr REAUINGceveiiiirer ettt sa e s s s a e s s n e e 665
RETEIBINCEScuecce e 665
Appendix: Installation......coouceememmmmmmmmnssssssnmrr s ————————— 667
Miniconda and CoNdA ..o 668
A Complete ENVIFONMENL........ccoceveieririerers s sessesesse e e ssessessesssssssessessesssssssessesasssssensesaens 676
£ T 680
FUMNEr REAUINGcveeeeeerieerinesine e 680
INA@X.ciieiiiesriesnsnsne s s ——————————————— 683

Xiv

About the Author

Robert Johansson is an experienced Python programmer
and computational scientist, with a Ph.D. in Theoretical
Physics from Chalmers University of Technology, Sweden.
He has worked with scientific computing in academia and
industry for over 10 years, and he has participated in both
open source development and proprietary research projects.
His open source contributions include work on QuTiP, a
popular Python framework for simulating the dynamics of

\ quantum systems; and he has also contributed to several
other popular Python libraries in the scientific computing
landscape. Robert is passionate about scientific computing

and software development and about teaching and communicating best practices for
bringing these fields together with optimal outcome: novel, reproducible, and extensible
computational results. Robert’s background includes 5 years of postdoctoral research in
theoretical and computational physics, and he is now working as a data scientist in the
IT industry.

About the Technical Reviewers

Massimo Nardone has more than 24 years of experiences
in security, web/mobile development, cloud, and IT
architecture. His true IT passions are security and Android.
He has been programming and teaching how to program
with Android, Perl, PHP, Java, VB, Python, C/C++, and
MySQL for more than 20 years.
He holds an M.Sc. degree in computing science from the
University of Salerno, Italy.

He has worked as a project manager, software engineer,
research engineer, chief security architect, information
security manager, PCI/SCADA auditor, and senior lead IT security/cloud/SCADA
architect for many years.

His technical skills include security, Android, cloud, Java, MySQL, Drupal, Cobol,
Perl, web and mobile development, MongoDB, D3, Joomla!, Couchbase, C/C++, WebGL,
Python, Pro Rails, Django CMS, Jekyll, Scratch, etc.

He worked as visiting lecturer and supervisor for exercises at the Networking
Laboratory of the Helsinki University of Technology (Aalto University). He holds four
international patents (PKI, SIP, SAML, and Proxy areas).

He currently works as chief information security officer (CISO) for Cargotec Oyj, and
he is a member of the ISACA Finland Chapter Board.

Massimo has reviewed more than 45 IT books for different publishers and has
coauthored Pro JPA 2 in Java EE 8 (Apress, 2018), Beginning EJB in Java EE 8
(Apress, 2018), and Pro Android Games (Apress, 2015).

xvii

ABOUT THE TECHNICAL REVIEWERS

Chinmaya Patnayak is an embedded software developer at
NVIDIA and is skilled in C++, CUDA, deep learning, Linux,
and file systems. He has been a speaker and instructor for
deep learning at various major technology events across
India. Chinmaya holds an M.Sc. degree in physics and

B.E. in electrical and electronics engineering from BITS
Pilani. He has previously worked with Defence Research

and Development Organization (DRDO) on encryption
algorithms for video streams. His current interest lies in
neural networks for image segmentation and applications in biomedical research and
self-driving cars. Find more about him at http://chinmayapatnayak.github.io.

Michael Thomas has worked in software development

for more than 20 years as an individual contributor, team
lead, program manager, and vice president of engineering.
Michael has more than 10 years of experience working with
mobile devices. His current focus is in the medical sector,
using mobile devices to accelerate information transfer

between patients and health-care providers.

David Stansby is a Ph.D. student at Imperial College
London and an active Python developer. He is on the core
development team of Matplotlib, Python’s most popular
plotting library, and the creator of HelioPy, a Python package
for space science data analysis.

xviii

http://chinmayapatnayak.github.io/

ABOUT THE TECHNICAL REVIEWERS

Jason Whitehorn is an experienced entrepreneur and
software developer and has helped many oil and gas
companies automate and enhance their oilfield solutions
through field data capture, SCADA, and machine learning.
Jason obtained his B.SC. in computer science from Arkansas
State University, but he traces his passion for development
back many years before then, having first taught himself

to program BASIC on his family’s computer while still in
middle school.

When he’s not mentoring and helping his team at work, writing, or pursuing one of
his many side projects, Jason enjoys spending time with his wife and four children and
living in the Tulsa, Oklahoma region. More information about Jason can be found on his
web site: https://jason.whitehorn.us.

https://jason.whitehorn.us/

Introduction

Scientific and numerical computing is a booming field in research, engineering, and
analytics. The revolution in the computer industry over the last several decades has
provided new and powerful tools for computational practitioners. This has enabled
computational undertakings of previously unprecedented scale and complexity. Entire
fields and industries have sprung up as a result. This development is still ongoing, and
itis creating new opportunities as hardware, software, and algorithms keep improving.
Ultimately the enabling technology for this movement is the powerful computing
hardware that has been developed in recent decades. However, for a computational
practitioner, the software environment used for computational work is as important as, if
not more important than, the hardware on which the computations are carried out. This
book is about one popular and fast-growing environment for numerical computing: the
Python programming language and its vibrant ecosystem of libraries and extensions for
computational work.

Computing is an interdisciplinary activity that requires experience and expertise
in both theoretical and practical subjects: a firm understanding of mathematics and
scientific thinking is a fundamental requirement for effective computational work.
Equally important is solid training in computer programming and computer science.
The role of this book is to bridge these two subjects by introducing how scientific
computing can be done using the Python programming language and the computing
environment that has appeared around this language. In this book the reader is assumed
to have some previous training in mathematics and numerical methods and basic
knowledge about Python programming. The focus of the book is to give a practical
introduction to computational problem-solving with Python. Brief introductions to the
theory of the covered topics are given in each chapter, to introduce notation and remind
readers of the basic methods and algorithms. However, this book is not a self-consistent
treatment of numerical methods. To assist readers that are not previously familiar with
some of the topics of this book, references for further reading are given at the end of each
chapter. Likewise, readers without experience in Python programming will probably find
it useful to read this book together with a book that focuses on the Python programming
language itself.

xxi

INTRODUCTION

How This Book Is Organized

The first chapter in this book introduces general principles for scientific computing
and the main development environments that are available for work with computing in
Python: the focus is on IPython and its interactive Python prompt, the excellent Jupyter
Notebook application, and the Spyder IDE.

In Chapter 2, an introduction to the NumPy library is given, and here we also
discuss more generally array-based computing and its virtues. In Chapter 3, we turn our
attention to symbolic computing - which in many respects complements array-based
computing - using the SymPy library. In Chapter 4, we cover plotting and visualization
using the Matplotlib library. Together, Chapters 2 to 4 provide the basic computational
tools that will be used for domain-specific problems throughout the rest of the book:
numerics, symbolics, and visualization.

In Chapter 5, the topic of study is equation solving, which we explore with both
numerical and symbolic methods, using the SciPy and SymPy libraries. In Chapter 6, we
explore optimization, which is a natural extension of equation solving. Here we mainly
work with the SciPy library and briefly with the cvxopt library. Chapter 7 deals with
interpolation, which is another basic mathematical method with many applications of
its own, and important roles in higher-level algorithms and methods. In Chapter 8, we
cover numerical and symbolic integration. Chapters 5 to 8 cover core computational
techniques that are pervasive in all types of computational work. Most of the methods
from these chapters are found in the SciPy library.

In Chapter 9, we proceed to cover ordinary differential equations. Chapter 10 is
a detour into sparse matrices and graph methods, which helps prepare the field for
the following chapter. In Chapter 11, we discuss partial differential equations, which
conceptually are closely related to ordinary differential equations, but require a different
set of techniques that necessitates the introduction of sparse matrices, the topic of
Chapter 10.

Starting with Chapter 12, we make a change of direction and begin exploring data
analysis and statistics. In Chapter 12, we introduce the Pandas library and its excellent
data analysis framework. In Chapter 13, we cover basic statistical analysis and methods
from the SciPy stats package. In Chapter 14, we move on to statistical modeling,
using the statsmodels library. In Chapter 15, the theme of statistics and data analysis
is continued with a discussion of machine learning, using the scikit-learn library. In
Chapter 16, we wrap up the statistics-related chapters with a discussion of Bayesian
statistics and the PyMC library. Together, Chapters 12 to 16 provide an introduction to

xxii

INTRODUCTION

the broad field of statistics and data analytics: a field that has been developing rapidly
within and outside of the scientific Python community in recent years.

In Chapter 17, we briefly return to a core subject in scientific computing: signal
processing. In Chapter 18, we discuss data input and output, and several methods for
reading and writing numerical data to files, which is a basic topic that is required for
most types of computational work. In Chapter 19, the final regular chapter in this book,
two methods for speeding up Python code are introduced, using the Numba and Cython
libraries.

The Appendix covers the installation of the software used in this book. To install
the required software (mostly Python libraries), we use the conda package manager.
Conda can also be used to create virtual and isolated Python environments, which is an
important topic for creating stable and reproducible computational environments. The
Appendix also discusses how to work with such environments using the conda package

manager.

Source Code Listings

Each chapter in this book has an accompanying Jupyter Notebook that contains the
chapter’s source code listings. These notebooks, and the data files required to run them,
can be downloaded by clicking the Download Source Code button located at
WWW.apress.com/9781484242452.

xxiii

http://www.apress.com/9781484242452

CHAPTER 1

Introduction to Computing
with Python

This book is about using Python for numerical computing. Python is a high-level,
general-purpose interpreted programming language that is widely used in scientific
computing and engineering. As a general-purpose language, Python was not specifically
designed for numerical computing, but many of its characteristics make it well suited
for this task. First and foremost, Python is well known for its clean and easy-to-read
code syntax. Good code readability improves maintainability, which in general results in
fewer bugs and better applications overall, but it also enables rapid code development.
This readability and expressiveness are essential in exploratory and interactive
computing, which requires fast turnaround for testing various ideas and models.

In computational problem-solving, it is, of course, important to consider the
performance of algorithms and their implementations. It is natural to strive for
efficient high-performance code, and optimal performance is indeed crucial for many
computational problems. In such cases it may be necessary to use a low-level program
language, such as C or Fortran, to obtain the best performance out of the hardware that
runs the code. However, it is not always the case that optimal runtime performance is the
most suitable objective. It is also important to consider the development
time required to implement a solution to a problem in a given programming language
or environment. While the best possible runtime performance can be achieved in a
low-level programming language, working in a high-level language such as Python usually
reduces the development time and often results in more flexible and extensible code.

These conflicting objectives present a trade-off between high performance and
long development time and lower performance but shorter development time. See
Figure 1-1 for a schematic visualization of this concept. When choosing a computational
environment for solving a particular problem, it is important to consider this trade-off
and to decide whether man-hours spent on the development or CPU-hours spent on

© Robert Johansson 2019
R. Johansson, Numerical Python, https://doi.org/10.1007/978-1-4842-4246-9_1

CHAPTER 1 INTRODUCTION TO COMPUTING WITH PYTHON

running the computations is more valuable. It is worth noting that CPU-hours are cheap
already and are getting even cheaper, but man-hours are expensive. In particular, your
own time is of course a very valuable resource. This makes a strong case for minimizing
development time rather than the runtime of a computation by using a high-level
programming language and environment such as Python and its scientific computing
libraries.

Trade-off between
low- and high-level languages

A
CPU time e |OW-level language

memmemnmens high-level language

Best possible
performance

after a significant \

amount of

development \

effort

/ / Development time

Development effort until first runnable
code that solves the problem

Figure 1-1. Trade-off between low- and high-level programming languages.
While a low-level language typically gives the best performance when a significant
amount of development time is invested in the implementation of a solution to a
problem, the development time required to obtain a first runnable code that solves
the problem is typically shorter in a high-level language such as Python.

A solution that partially avoids the trade-off between high- and low-level languages
is to use a multilanguage model, where a high-level language is used to interface
libraries and software packages written in low-level languages. In a high-level scientific
computing environment, this type of interoperability with software packages written in
low-level languages (e.g., Fortran, C, or C++) is an important requirement. Python excels
at this type of integration, and as a result, Python has become a popular “glue language”
used as an interface for setting up and controlling computations that use code written

in low-level programming languages for time-consuming number crunching. This is an

2

CHAPTER 1 INTRODUCTION TO COMPUTING WITH PYTHON

important reason for why Python is a popular language for numerical computing. The
multilanguage model enables rapid code development in a high-level language while
retaining most of the performance of low-level languages.

As a consequence of the multilanguage model, scientific and technical computing
with Python involves much more than just the Python language itself. In fact, the Python
language is only a piece of an entire ecosystem of software and solutions that provide a
complete environment for scientific and technical computing. This ecosystem includes
development tools and interactive programming environments, such as Spyder and
IPython, which are designed particularly with scientific computing in mind. It also
includes a vast collection of Python packages for scientific computing. This ecosystem
of scientifically oriented libraries ranges from generic core libraries - such as NumPy,
SciPy, and Matplotlib - to more specific libraries for particular problem domains.
Another crucial layer in the scientific Python stack exists below the various Python
modules: many scientific Python library interface, in one way or another; low-level
high-performance scientific software packages, such as for example optimized LAPACK
and BLAS libraries' for low-level vector, matrix, and linear algebra routines; or other
specialized libraries for specific computational tasks. These libraries are typically
implemented in a compiled low-level language and can therefore be optimized and
efficient. Without the foundation that such libraries provide, scientific computing with
Python would not be practical. See Figure 1-2 for an overview of the various layers of the
software stack for computing with Python.

'For example, MKL, the Math Kernel Library from Intel, https://software.intel.com/en-us/
intel-mkl; openBLAS, https://www.openblas.net; or ATLAS, the Automatically Tuned Linear
Algebra Software, available at http://math-atlas.sourceforge.net

https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl
https://www.openblas.net
http://math-atlas.sourceforge.net

CHAPTER 1 INTRODUCTION TO COMPUTING WITH PYTHON

IPython console, Jupiter Notebook, Spyder, ...

Python 2, Python 3, ...

numpy, scipy, matplotlib, ...

OS, BLAS, LAPACK, ...

Figure 1-2. An overview of the components and layers in the scientific computing
environment for Python, from a user’s perspective from top to bottom. Users
typically only interact with the top three layers, but the bottom layer constitutes a
very important part of the software stack.

Tip The SciPy organization and its web site www.scipy.org provide a
centralized resource for information about the core packages in the scientific
Python ecosystem, and lists of additional specialized packages, as well as
documentation and tutorials. As such, it is a valuable resource when working
with scientific and technical computing in Python. Another great resource is the
Numeric and Scientific page on the official Python Wiki: http://wiki.python.
org/moin/NumericAndScientific.

Apart from the technical reasons for why Python provides a good environment for
computational work; it is also significant that Python and its scientific computing libraries
are free and open source. This eliminates economic constraints on when and how
applications developed with the environment can be deployed and distributed by its users.
Equally significant, it makes it possible for a dedicated user to obtain complete insight on
how the language and the domain-specific packages are implemented and what methods
are used. For academic work where transparency and reproducibility are hallmarks, this

4

http://www.scipy.org
http://wiki.python.org/moin/NumericAndScientific
http://wiki.python.org/moin/NumericAndScientific

CHAPTER 1 INTRODUCTION TO COMPUTING WITH PYTHON

is increasingly recognized as an important requirement on software used in research. For
commercial use, it provides freedom on how the environment is used and integrated into
products and how such solutions are distributed to customers. All users benefit from the
relief of not having to pay license fees, which may otherwise inhibit deployments on large
computing environments, such as clusters and cloud computing platforms.

The social component of the scientific computing ecosystem for Python is another
important aspect of its success. Vibrant user communities have emerged around the core
packages and many of the domain-specific projects. Project-specific mailing lists, Stack
Overflow groups, and issue trackers (e.g., on Github, waw.github.com) are typically very
active and provide forums for discussing problems and obtaining help, as well as a way of
getting involved in the development of these tools. The Python computing community also
organizes yearly conferences and meet-ups at many venues around the world, such as the
SciPy (http://conference.scipy.org) and PyData (http://pydata.org) conference series.

Environments for Computing with Python

There are a number of different environments that are suitable for working with

Python for scientific and technical computing. This diversity has both advantages

and disadvantages compared to a single endorsed environment that is common in
proprietary computing products: diversity provides flexibility and dynamism that lends
itself to specialization for particular use-cases, but on the other hand, it can also be
confusing and distracting for new users, and it can be more complicated to set up a

full productive environment. Here I give an orientation of common environments for
scientific computing, so that their benefits can be weighed against each other and an
informed decision can be reached regarding which one to use in different situations and
for different purposes. The three environments discussed here are

e The Python interpreter or the IPython console to run code
interactively. Together with a text editor for writing code, this
provides a lightweight development environment.

o The Jupyter Notebook, which is a web application in which Python
code can be written and executed through a web browser. This
environment is great for numerical computing, analysis, and
problem-solving, because it allows one to collect the code, the output
produced by the code, related technical documentation, and the
analysis and interpretation, all in one document.

http://www.github.com
http://conference.scipy.org
http://pydata.org

CHAPTER 1 INTRODUCTION TO COMPUTING WITH PYTHON

o The Spyder Integrated Development Environment, which can be
used to write and interactively run Python code. An IDE such as
Spyder is a great tool for developing libraries and reusable Python
modules.

All of these environments have justified use-cases, and it is largely a matter of
personal preference which one to use. However, I do in particular recommend exploring
the Jupyter Notebook environment, because it is highly suitable for interactive and
exploratory computing and data analysis, where data, code, documentation, and results
are tightly connected. For development of Python modules and packages, I recommend
using the Spyder IDE, because of its integration with code analysis tools and the Python
debugger.

Python, and the rest of the software stack required for scientific computing with
Python, can be installed and configured in a large number of ways, and in general the
installation details also vary from system to system. In Appendix 1, we go through one
popular cross-platform method to install the tools and libraries that are required for
this book.

Python

The Python programming language and the standard implementation of the Python
interpreter are frequently updated and made available through new releases.? Currently,
there are two active versions of Python available for production use: Python 2 and
Python 3. In this book we will work with Python 3, which by now has practically
superseded Python 2. However, for some legacy applications, using Python 2 may still be
the only option, if it contains libraries that have not been made compatible with Python
3. Ttis also sometimes the case that only Python 2 is the available in institutionally
provided environments, such as on high-performance clusters or universities’ computer
systems. When developing Python code for such environments, it might be necessary

to use Python 2, but otherwise, I strongly recommend using Python 3 in new projects. It
should also be noted that support for Python 2 has now been dropped by many major

*The Python language and the default Python interpreter are managed and maintained by the
Python Software Foundation: http://www.python.org.

6

http://www.python.org

CHAPTER 1 INTRODUCTION TO COMPUTING WITH PYTHON

Python libraries, and the vast majority of computing-oriented libraries for Python now
support Python 3. For the purpose of this book, we require version 2.7 or greater for the
Python 2 series or Python 3.2 or greater for the preferred Python 3 series.

Interpreter

The standard way to execute Python code is to run the program directly through the
Python interpreter. On most systems, the Python interpreter is invoked using the python
command. When a Python source file is passed as an argument to this command, the
Python code in the file is executed.

$ python hello.py
Hello from Python!

Here the file hello.py contains the single line:
print("Hello from Python!")

To see which version of Python is installed, one can invoke the python command
with the --version argument:

$ python --version
Python 3.6.5

It is common to have more than one version of Python installed on the same system.
Each version of Python maintains its own set of libraries and provides its own interpreter
command (so each Python environment can have different libraries installed). On many
systems, specific versions of the Python interpreter are available through the commands
such as, for example, python2.7 and python3.6. It is also possible to set up virtual
python environments that are independent of the system-provided environments. This
has many advantages and I strongly recommend to become familiar with this way of
working with Python. Appendix A provides details of how to set up and work with these
kinds of environments.

CHAPTER 1 INTRODUCTION TO COMPUTING WITH PYTHON

In addition to executing Python script files, a Python interpreter can also be used
as an interactive console (also known as a REPL: Read-Evaluate-Print-Loop). Entering
python at the command prompt (without any Python files as argument) launches the
Python interpreter in an interactive mode. When doing so, you are presented with a
prompt:

$ python

Python 3.6.1 |Continuum Analytics, Inc.| (default, May 11 2017, 13:04:09)
[GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.57)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>>

From here Python code can be entered, and for each statement, the interpreter
evaluates the code and prints the result to the screen. The Python interpreter itself
already provides a very useful environment for interactively exploring Python code,
especially since the release of Python 3.4, which includes basic facilities such as a
command history and basic autocompletion (not available by default in Python 2).

IPython Console

Although the interactive command-line interface provided by the standard Python
interpreter has been greatly improved in recent versions of Python 3, it is still in certain
aspects rudimentary, and it does not by itself provide a satisfactory environment for
interactive computing. IPython? is an enhanced command-line REPL environment for
Python, with additional features for interactive and exploratory computing. For example,
IPython provides improved command history browsing (also between sessions), an
input and output caching system, improved autocompletion, more verbose and helpful
exception tracebacks, and much more. In fact, IPython is now much more than an
enhanced Python command-line interface, which we will explore in more detail later

in this chapter and throughout the book. For instance, under the hood IPython is a

3See the IPython project web page, http://ipython.org, for more information and its official
documentation.

8

http://ipython.org

CHAPTER 1 INTRODUCTION TO COMPUTING WITH PYTHON

client-server application, which separates the frontend (user interface) from the backend

(kernel) that executes the Python code. This allows multiple types of user interfaces

to communicate and work with the same kernel, and a user-interface application can

connect multiple kernels using IPython’s powerful framework for parallel computing.
Running the ipython command launches the IPython command prompt:

$ ipython

Python 3.6.1 |Continuum Analytics, Inc.| (default, May 11 2017, 13:04:09)
Type 'copyright', 'credits' or 'license' for more information

IPython 6.4.0 -- An enhanced Interactive Python. Type '?' for help.

In [1]:

Caution Note that each IPython installation corresponds to a specific version

of Python, and if you have several versions of Python available on your system,
you may also have several versions of IPython as well. On many systems, IPython
for Python 2 is invoked with the command ipython2 and for Python 3 with
ipython3, although the exact setup varies from system to system. Note that here
the “2” and “3” refer to the Python version, which is different from the version of
IPython itself (which at the time of writing is 6.4.0).

In the following sections, I give a brief overview of some of the IPython features
that are most relevant to interactive computing. It is worth noting that IPython is used
in many different contexts in scientific computing with Python, for example, as a
kernel in the Jupyter Notebook application and in the Spyder IDE, which are covered
in more detail later in this chapter. It is time well spent to get familiar with the tricks
and techniques that IPython offers to improve your productivity when working with
interactive computing.

Input and Output Caching

In the IPython console, the input prompt is denoted as In [1]: and the corresponding
output is denoted as Out [1]:, where the numbers within the square brackets are
incremented for each new input and output. These inputs and outputs are called cells in
IPython. Both the input and the output of previous cells can later be accessed through

