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Preface

Modelling and simulation is becoming an essential tool to assess the behavior of
large complex energy systems against ever more stringent safety, availability,
environmental, economic and societal constraints prompted by the ongoing energy
transition. Indeed, the large number of requirements to be considered and the
complex physical interactions between systems and their environment call for
efficient means for quantitative and qualitative analysis of the systems physical and
functional behavior.

System modelling, also called 0D/1D modelling, is the discipline at the cross-
roads between detailed 3D physical modelling such as computational fluid
dynamics and functional modelling such as control system design. It aims at rep-
resenting the physical behavior of the whole system using first principle physical
laws. These laws are averaged in space and are closed with empirical correlations in
order to compute the quantities of interest to the engineer while avoiding unrealistic
assumptions and minimizing computational time. Physical modelling is most often
used for simulation which consists in predicting the system’s behavior from given
initial conditions over a given time period. Thanks to 0D/1D modelling, the time
periods can extend over several time scales (from seconds to years), and simulation
can usually be performed much faster than real time on ordinary laptops. This
convenience is especially needed for simulation over long time periods. 0D/1D
modelling is also used for assessing and monitoring the system current state in
combination with other techniques such as data assimilation that aim at using the
knowledge embedded in the models to improve data quality.

0D/1D modelling can cover the whole system engineering lifecycle, from pre-
liminary design to commissioning, operation and maintenance. It can be used for
diverse tasks such as the optimal sizing of a refueling cavity, the optimal plant
startup that consists in minimizing startup delay while meeting operational con-
straints, the assessment of steam generator clogging while the plant is in operation,
the monitoring and diagnostics of efficiency degradation due to thermal losses,
operators training, etc.
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This book is about the science and art of physical system modelling applied to
thermal power plants with a library of component models called ThermoSysPro
which is used at EDF (and also other organizations) for the engineering of power
plants at the design and operation phases. The ambition is to show how to make
power plant models that provide convincing simulation results. To that end, it
contains EDF’s long standing experience in power plant modelling and simulation.
The equations used in the component models are presented in detail with their
validity domains using mathematical notation in a tool-independent way. They are
justified with respect to fundamental knowledge in thermodynamics and heat
transfer using analytical derivations or proofs when necessary. For each component
model, a small test-case with simulation results is given. Models of thermal power
plants (fossil fuel fired and solar) are presented with results of numerical simulation
and practical hints on how to build them with the library. In addition, comparison
with real manufacturer data is provided in the case of a combined cycle power
plant. Some insight is also given on the internal structure of the library for the
interested reader.

The whole space of the book is dedicated to the physical and mathematical
aspects of power plant modelling. Although they are important, the numerical
aspects are not considered. This is made possible thanks to the Modelica technology
that emerged at the turn of the twenty-first century and that is now fully operational
in several commercial and open source tools. It allows to translate automatically
models equations into efficient simulation code. Therefore, although this book relies
on Modelica to produce numerical results, it is not an introduction to modeling and
simulation with Modelica, so it does not present the language nor does it mention
the associated techniques. Moreover, the lessons learned from this book can be used
with any kind of tool, not only Modelica tools.

The book is intended to students and confirmed practitioners in power plant
modelling and simulation. All models presented in the book can be found in the
ThermoSysPro library which is released under open source license and freely
available to the public.

Chatou, France Daniel Bouskela
October 2018 Baligh El Hefni
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Chapter 1
Introduction toModeling and Simulation

Abstract Power plant modeling plays a key role in many purposes, like process
design assessment, the assessment, and prediction of plant performance, operating
procedure evaluation, control system design, and system prognosis and diagnosis.
The present chapter introduces the discipline of 0D/1D modeling applied to thermal
hydraulics and their main applications to real-life systems: how 0D/1D modeling
relates to the 3D physical equations, what are the fundamental assumptions
underlying 0D/1D physical models and the main limitations of the numerical sol-
vers commonly used for such models, what is the rationale for a 0D/1D component
models library and what kinds of real-life systems can be modeled and simulated
for different purposes (plant sizing, control, operation and maintenance, prognosis,
diagnosis and monitoring). Also, in this chapter, many questions are answered:
what is a system, what is a model and modeling, what is simulation and why is
modeling important?

1.1 Systems, Complex Systems, and Cyber-Physical
Systems

A usual systems engineering definition of a system is that it is “a set of interrelated
parts that work together to accomplish a common purpose or mission” (Cloutier
et al. 2015).

Systems are decomposed into subsystems and objects at the lowest level. They
are dynamically structured using abstract concepts such as modes, states, events,
and trajectories. Modes refer to the logical or functional states of the system (e.g.
started, stopped, closed, open, dysfunctional, under maintenance), whereas states
refer to the physical states of the system (e.g. temperature, mass flow rate, angular
velocity). Events cause switching between modes. Trajectories are the evolution in
time of the states. Systems interact with their environment via inputs and outputs.
The inputs represent the action of the environment on the system, whereas the
outputs represent the influence of the system on the environment.
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For instance, a cooling system whose mission is to cool machines can be
decomposed into three subsystems: a pumping system composed of pumps that
circulates water around the equipment to be cooled, a feed water system composed
of a tank and switch valves that ensures sufficient water pressure at the pumping
system inlet, and a group of heat exchangers that transfers heat to the environment.
A given pump can be in various normal or dysfunctional modes: started, stopped,
cavitating, broken, etc. The pump hydraulic state is most frequently described by
the pump head (the variation of pressure through the pump) and the pump volu-
metric flow rate (the amount of liquid volume that goes through the pump casing
per time unit). The mechanical state of the pump can be given by the angular
velocity and the torque of the shaft. However, if the shaft is broken into two parts,
then the mechanical state involves the angular velocities and the torques of each end
of the broken shaft. Therefore, the state of a broken shaft has twice as many state
variables as a normal one. This shows that mode switching can cause a complete
structural change in the system description. The temperature of the environment is
an input of the system (in such case it is assumed that the system does not change
the temperature of the environment), and the heat released to the environment is an
output of the system.

Although there is no widely accepted definition of a complex system, we will
consider as complex systems the systems composed of numerous tightly interacting
subsystems. Cyber-physical systems are complex systems having software and
physical subsystems in tight interaction or deeply intertwined. Good examples of
cyber-physical systems are power plants, cars, planes, power grids, etc.
Cyber-physical systems exhibit emerging behaviors that are not necessarily fore-
seen at design time and that appear at operation time due to the multiple interactions
(the whole is more than the sum of its parts). One of the main challenges of physical
modeling and simulation is to be able to predict emerging behaviors. However, the
objective of this book is not to show how to do that, but to provide the fundamental
knowledge in terms of physical equations for the thermal hydraulic parts of the
systems that are necessary for this goal in particular, and more generally for any
other purpose requiring the understanding of the physical behavior of the system.

1.2 What is System Modeling?

Generally speaking, modeling is the process of representing a particular concept,
physical phenomenon, or real-world object using abstract notations including but
not limited to mathematical symbols. In this book, modeling is referred to as
deriving from physical laws a valid set of mathematical equations that describe the
system physical behavior in order to assess quantitatively how the system performs
its duties according to some prescribed mission, e.g., to verify whether a power
plant complies with operating rules during start-up or shutdown. Other ways of
modeling complex systems such as state diagrams or other kinds of schemas, in
particular for the purpose of expressing requirements, assumptions, or logical
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behavior, are not considered here. However, such models are necessary for the
design of control systems and can be considered as the environment of the physical
system (i.e., they interact with the physical system via inputs and outputs). Also,
stochastic models are not explicitly dealt with, but randomness can be introduced
into physical models by replacing scalar variables with distributions in the physical
equations and using Monte Carlo simulations to compute the response of the system
to uncertainties.

Physical modeling is not limited to assessing the dynamic behavior of the sys-
tem. It can also be used to compute isolated operating points. This is called static
modeling, as opposed to dynamic modeling that aims at computing systems tra-
jectories. Static modeling is mainly used for system sizing and optimization at
design time, while dynamic modeling is often used for system control design and
optimization at operation time. System diagnosis may use static or dynamic mod-
eling depending on the phenomena to be explored.

1.3 What is Simulation?

Simulation is an experiment conducted on a model. As mathematical models are
considered here, simulations are numerical experiments conducted with a
computer-executable version of the model, which is usually obtained by compiling
with a compiler the model expressed in a computer language into a machine exe-
cutable code. The computer language used for modeling is called a modeling
language. The challenge for the user is then to write the model’s equations in the
modeling language.

There are roughly two kinds of modeling languages: imperative languages and
equational languages. Imperative languages such as Fortran, C, C++, Java, Python,
etc. are used for imperative programming, which consists in writing explicitly the
algorithms that compute the model’s equations. This requires a significant effort
from the user who must translate manually the equations that express mathematical
relations into sequence of computing instructions that computes the numerical
solution of the equations. It is more convenient to perform this tedious task auto-
matically by using an equational language that lets the user express the model’s
equations directly in equational form, hence, with very little transformation of the
original equations as written on paper. Modelica is an equational language.
Modelica compilers translate equational models into imperative programs, which
are in turn compiled with regular compilers (C, C++, Fortran, etc.) to produce
executable code. Modelica has been used in this book to write and verify models
equations.

Experiments with the same model differ according to the numerical values
provided to the inputs of the model and to the initial values of the state variables,
which are also called inputs in the sequel. Those values must be physically con-
sistent in order to provide correct results. Consistency cannot be obtained using the
model’s equations because the unknowns are computed using the inputs as known
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variables. In other words, the known variables are not constrained by the model’s
equations. So although, from a numerical point of view, any input can produce
numerical results, any input cannot produce valid numerical results. Therefore,
consistency of the inputs must be achieved by other means such as data assimila-
tion, for instance, which is the science of producing the best estimate of the initial
state of a system by combining information from observations of that system (e.g.
via sensors) with an appropriate model of the system (i.e., the model at hand to be
initialized), see Swinbank et al. (2003). This technique which uses continuous
optimization algorithms is successfully used in meteorology and can be applied to
any physical system provided it has only continuous inputs to be assimilated (this
excludes the assimilation of logical inputs such as the on–off position of a switch).
Another technique, which is used in this book, is to compute the inputs from the
knowledge of the nominal operating point using inverse computation on square
systems of equations (i.e., having as many unknowns as equations). The drawback
of this technique is that one has to make a choice between redundant information in
order to obtain a square system (e.g., if two valve positions influence a single state,
one has to make a choice between the two valve positions). This technique is used
in this book as it is more readily available with existing modeling and simulation
tools than optimization techniques.

To summarize, a simulation run consists essentially in solving an initial value
problem, i.e., a differential-algebraic equation with correct initial values for the state
variables and correct values for the inputs. Inputs with fixed values all along a
simulation run are often called parameters. This will be looked at in more detail in
the sequel.

1.4 What is 0D/1D Modeling?

Physical equations are functions of space and time. 3D models involve the three
space coordinates. However, when dealing with space and time, it is often desirable
to reduce the number of space coordinates to speed-up the computation of trajec-
tories as the full model’s equations must be computed at each time step. Reducing
the dimensionality of the problem by going from three space coordinates down to
one or even zero space coordinates is called 0D/1D modeling as opposed to 3D
modeling. This is obtained by exploiting the geometrical properties of the model
such as the cylindrical symmetry of a pipe. In the sequel, this discussion is restricted
to thermal hydraulic systems which are the scope of this book.

Thermal hydraulics is the application of fluid dynamics for heat and mass
transfer in energy systems such as power plants. Phenomena studied include con-
vection, conduction, radiation, phase change, single-phase (liquid or vapor),
two-phase (liquid and vapor), and multi-phase flows (for example water/steam with
air). The most common fluids used in power plants are water/steam and flue gases,
but other fluids can be used as well such as molten salt.

4 1 Introduction to Modeling and Simulation



The dynamic physical behavior of thermal hydraulic systems is described with
partial derivative equations (PDEs) that express the three fundamental conservation
laws of mass (1.1), momentum (1.2), and energy (1.3).

D
Dt

Z
V

q � dV ¼ 0 ð1:1Þ

D
Dt

Z
V

q �~v � dV ¼~f ð1:2Þ

D
Dt

Z
V

q � u � dV ¼ _Qþ _W ð1:3Þ

where D=Dt stands for the material derivative (that takes into account the fluid
motion), V is the fluid volume, q is the fluid density,~v is the fluid velocity,~f are the
external volume and surface forces acting upon the fluid (such as pressure and
friction), u is the fluid internal energy, _Q and _W are, respectively, the amount of
heat and work received by the fluid per unit time.

These equations are closed by closure laws (fluid correlations) that compute
unknown quantities found in~f such as pressure loss or heat exchange coefficients as
functions of the pressure P and the temperature T of the fluid. State equations are
used to compute q and u with respect to P and T.

The 0D/1D modeling approach consists in averaging physical quantities over the
cross-sectional area A perpendicular to the main flow direction x, then along the
main flow direction x:

Z
V

�dV ¼
Z
Dx

Z
A

�dA
2
4

3
5 � dx ð1:4Þ

where Dx is a length increment and V ¼ A � Dx.
In practice, this method consists in:

1. Dividing the system into control volumes V ¼ A � Dx along the main flow
direction;

2. Averaging the physical quantities using (1.4) for all individual control volumes;
3. Connecting the control volumes along the main flow direction to account for the

variation of the physical quantities along that direction in steps corresponding to
the lengths Dx of the control volumes.

Dx is adapted to the study at hand. It, therefore, can be small or large without
limitation. Dx is equal to zero for components considered as a singularities such as
valves. It is large for long pipes or large vessels when no information is needed
regarding the distribution of physical quantities along the component length. One
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must note that the choice of Dx does not induce any approximation in itself as
computed quantities are considered as averaged quantities over V ¼ A � Dx, but the
larger Dx, the lower the resolution of the computation in space.

0D/1D modeling gives the ability to choose the space resolution of realistic
models described from first principle physics. It, therefore, allows to adjust the
space resolution in order to compute large transients for complex systems for
engineering studies that often require simulation speed orders of magnitude faster
than real time. Therefore, the main benefit of this method is to allow the realistic
modeling and simulation of complex systems over large transients.

As the only differential variable left in 0D/1D models is dt, 0D/1D models are
sets of differential-algebraic equations (DAEs):

C � _x ¼ f ðx; p; uÞ ð1:5Þ

where C is a coefficient matrix, x is the state vector of the system, _x is the time
derivative of x (not to be confounded with the length increment Dx above), p are
fixed parameters (such as fixed boundary conditions), and u are inputs of the system
(such as variable boundary conditions). Note that x may contain time derivatives.

If C is invertible, then (1.5) can be transformed into an ordinary differential
equation (ODE) and integrated with standard ODE numerical solvers:

_x ¼ C�1 � f ðx; p; uÞ ð1:6Þ

If C is not invertible, then (1.5) is a true DAE that cannot be transformed into an
ODE and its resolution is more problematic.

If C is not invertible because it contains rows equal to zero, then (1.5) can be
written as the following DAE:

_x ¼ D�1 � f ðx; a; p; uÞ
0 ¼ gðx; a; p; uÞ

�
ð1:7a; bÞ

where a are the algebraic variables, i.e., the variables from x in (1.5) with zero
coefficients for _x, coefficient matrix D is coefficient matrix C without the rows and
columns corresponding to the algebraic variables a, and x are the remaining dif-
ferential variables, i.e., the variables from x in (1.5) with nonzero coefficients for _x.

Equation (1.7b) is a frequent case that appears when dynamics are neglected.
It can be solved with numerical solvers that combine the resolution of ODEs with
algebraic equations. If the size of x is equal to zero, then (1.7a, b) boils down to
(1.7b) and the model is purely static. This case is frequently encountered in sizing
problems. Off-the-shelf Modelica tools solve (1.7a, b) although they allow to
express the problem as (1.5). If C is not invertible, then a division by zero occurs at
simulation time.

If C contains predicates (i.e., Boolean conditions) that depend on elements of x,
and if the predicates are such that C is not invertible at some instants t, then the
system may be considered as a series of commuting DAEs such as (1.7a, b) with
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varying structure (i.e., varying sizes for x, a, p, and u) from one DAE to the other.
Such systems are called multi-mode systems. There is currently no industrial tool
able to solve such systems although a prototype was developed in the framework of
the ITEA2 MODRIO project (2012–2016); (Elmqvist et al. 2014; Bouskela 2016),
and the development of an industrial tool is ongoing in the framework of the FUI
ModeliScale project (started in 2018).

1.5 What is a 0D/1D Thermal Hydraulic Component
Models Library?

When using DAEs such as (1.5) to represent the fundamental equations of thermal
hydraulics, integration of (1.1)–(1.3) must be performed over the various compo-
nent volumes considered in the system model (pipes, valves, pumps, heat
exchangers, turbines, etc.). The various ways of choosing the appropriate closure
laws and of performing the integration over the various component volumes
commonly found in the systems to be modeled result in the different 0D/1D
component models that populate the library.

Therefore, a library component model is a DAE such as (1.5) that depends on
inputs u and parameters p. The parameters are set according to the problem at hand.
They usually represent quantities that are given as designers’ assumptions or as
measured quantities on the system or on its environment. The inputs are given as
test scenarios or as outputs from neighboring components. The latter case is known
as connecting the model component to its neighboring components. The way to
perform such connections has a strong influence on the structure of the component
models. The way to organize the component models in the library in order to be
able to compose a full model by interconnecting them is referred to as the structure
of the library in the sequel.

In order for library component models to be fully reusable, i.e., to be used in any
model without modification, they should exhibit the following good properties:

1. Be acausal;
2. Be properly parameterized.

Being acausal means that when written as (1.7a, b), the DAE may be solved in
any of the variables x, _x, a, p, or u. This is needed because the outputs of one
component model are the inputs of its connected ones, and therefore, the known or
unknown status of the variables depends on the way the component models are
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connected together to form the full model. The process of assigning this status to all
variables in the model is known as causality analysis1 and is performed automat-
ically by Modelica tools.

Be properly parameterized means that a proper set of parameters should be
defined in order to account for most possible usages of the component model, while
keeping the size of the set as small as possible.

1.6 What are 0D/1D Models Useful for?

The purpose of 0D/1D models is not to discover or study new physical phenomena,
but to understand the physical behavior of systems using the standard laws of
physics complemented with physical correlations for various engineering purposes
at design, commissioning, or operation time. To that end, it is only necessary to
monitor a small number of significant variables called the variables of interest. This
is why the space averaging operations to reduce the dimensionality of the problem
from 3 to 1 or 0 are acceptable, provided that uncertainty margins are correctly
computed to take into account requirements related to safety limits for instance.
This allows fast computation of the system behavior all along its trajectory in time.

In the very early phases of system design, one is generally concerned with the
logical behavior of the system in order to verify that the system will correctly
perform its missions from a functional standpoint. The physical aspects are not very
important at this stage. However, at the detailed design phase, when functions must
be implemented into physical pieces of equipment, it becomes important to evaluate
different implementation alternatives quantitatively in order to make sure that the
system’s requirements, in particular those involving real-time physical constraints
such as safety, are satisfied while avoiding oversizing (as lack of precise quanti-
tative assessment most often results in excessive operational margins), oversizing
leading in turn to delays and over costs. This can be achieved using 0D/1D models,
in particular static models for the sizing of nominal operating points, and dynamic
models for the design, verification, and validation of control systems.

At commission time, 0D/1D models can be used to prepare the acceptance tests.

1The word causality in causality analysis should not be confounded with the word causality in
physical causality which means that causes always precede their effects. However, there is a
relationship between the two notions. The objective of causality analysis is to assign each
unknown variable to a unique equation that computes this variable and vice versa. State derivatives
are assigned in the most obvious way to equations such as (1.7a). Such assignments are confor-
mant with physical causality as state derivatives (predictors) are thus computed from the state past
values. However, algebraic variables are assigned to equations such as (1.7b) whose physical
causalities are lost as algebraic equations are obtained by neglecting the dynamics of the system
that force the physical causalities. The result of the analysis may, thus, not reflect the physical
causality of the real system for the algebraic variables. This is why algebraic variables should not
be used in a model when causalities are important, such as the feedback loop of a control system.
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At operation time, 0D/1D models are useful to predict the short-term behavior of
the system to make the right operation decision, for instance, to optimize plant
start-ups while complying with equipment operational constraints. Operators can be
trained for the conduct of difficult transients (i.e., transients that are rarely per-
formed and are subject to tight safety constraints) using 0D/1D models. 0D/1D
models can also be used in combination with plant onsite measurements to monitor
and assess the plant performance degradations such as wear or clogging in order to
provide key economic performance indicators for the plant and anticipate on
maintenance actions in order to reduce plant shutdown for maintenance and cor-
relatively increase plant availability.

Beyond individual power plants, there is a growing need to assess the collective
behavior of energy networks when submitted to perturbations such as changes in
regulatory, economic, or weather conditions, and how well the power system can
adapt to dynamic and changing conditions, see, e.g., EPRI (2016). The growth in
variable generation such as solar (photovoltaic and thermodynamic) and wind is a
strong driver for the use of 0D/1D for large-scale energy systems. This new need
prompted the launch of the ModeliScale project that aims at upscaling Modelica to
very large multi-mode physical systems.

Figure 1.1 presents the different stages of the systems lifecycle, from design to
operation, where 0D/1D models are useful.

Fig. 1.1 Using 0D/1D models from system design to system operation. (Source MODRIO pro-
ject, with permission from the author: Audrey Jardin)
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Chapter 2
Introduction to Thermodynamics
and Heat Transfer

Abstract Thermodynamics is the science that deals with the exchange of energy in
the form of heat and work and with the different states (solid, liquid, gas, etc.) and
properties (density, viscosity, thermal conductivity, etc.) of substances that are
related to energy and temperature. Thermodynamics is formalized into three basic
laws, the first law being the conservation of energy, and the second and third laws
being related to the notion of entropy and is completed by the three main laws for
heat transfer: radiation, convection, and conduction. In this chapter, we introduce
first the properties of substances (density, pressure, and temperature), energy,
enthalpy, and entropy, then the concept of state variables, the different types of
thermodynamic systems, the first and second thermodynamic laws, the thermody-
namics cycles (ideal and actual Brayton cycles, ideal and actual Rankine cycles),
the ideal gas law, and the three heat transfer processes (radiation, convection, and
conduction). It is shown why these different notions are essential in order to
compute the complete thermal-hydraulic state of the system, which is the main
challenge of 0D/1D modeling and simulation for that field.

2.1 What Are Thermodynamics and Thermal Hydraulics?

Thermodynamics can be defined in two ways: the science of heat and thermal
machines or the science of large systems (i.e., composed of many particles) in
equilibrium. In this book, the two aspects will be considered because power plants
are thermal machines that produce mechanical energy using heat and mass transfer.
As thermal machines, they are subjected to thermodynamic cycles (cf. Sect. 2.9),
and as they use fluids to transfer energy from the reactor to the turbine, they are
subjected to the laws of thermal hydraulics which is the combination of hydraulics
with thermodynamics.

The two main concepts in thermodynamics are heat and temperature. These two
quantities are defined and used in two ways that reflect the two aspects of ther-
modynamics: via the efficiency of thermal machines and via statistics (averages)
over volumes containing large numbers of particles. These quantities are governed
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by the first and second laws of thermodynamics. Heat and temperature are related
via the concept of entropy, with the fundamental formula:

dS ¼ dQrev

T
ð2:1Þ

where dS is the variation of entropy of the system that receives dQrev amount of
heat energy during a reversible process at temperature T.

The two additional concepts used for hydraulics are the conservation of mass
and the conservation of momentum.

2.2 Thermodynamic Processes

A thermodynamic process is a change in the system state from an initial state in
equilibrium to a final state in equilibrium. When the initial and final states are the
same, the process is called a cycle.

A reversible process is a process in which the system is in equilibrium at each
step. This corresponds to an ideal infinitely slow transformation of the system
where each step of the process is a system state.

An irreversible process is a process that is not reversible. This corresponds to
real processes where changes between the initial and final states occur out of
equilibrium.

2.3 Properties of Substances

Properties of substances are quantities such as mass, temperature, volume, and
pressure. Properties are used to define the current physical state of a substance.

Thermodynamic properties are divided into two general classes: intensive and
extensive properties.

An intensive property is independent of the mass of the substance. Temperature,
pressure, specific volume, and density are examples of intensive properties.

The value of an extensive property is directly proportional to the mass of the
substance. The internal energy or the enthalpy is an example of extensive proper-
ties. Mass and volume are also extensive properties.

Thus, if a quantity of matter in a given state is divided into two equal parts in
mass, each part will have the same value of the intensive property as the original
and half the value of the extensive property.

Relationships between properties are expressed in the form equations which are
called equations of state. The most famous state equation is the ideal gas law that
relates the pressure, volume, and temperature of an ideal gas (cf. Sect. 2.10).
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2.3.1 Density and Specific Volume

Density, also called mass density, is an intensive property defined as the mass of a
substance per unit volume:

q ¼ m
V

ð2:2Þ

where m is the mass and V is the volume of the body.
The specific volume is the inverse of the density:

v ¼ V
m
¼ 1

q
ð2:3Þ

The SI unit for volume is m3 (cubic meters), for density is kg m−3 (kilograms per
cubic meter), and for specific volume is m3 kg−1 (cubic meters per kilogram).

2.3.2 Pressure

Pressure is an intensive property. The pressure at a point of fluid continuum is
defined as the normal compressive force per unit area at that point.

Atmospheric pressure serves as a suitable reference for pressure measurement.
Pressure above the atmospheric pressure is called the gauge pressure. Pressure below
the atmospheric pressure is called vacuum or subatmospheric pressure. The rela-
tionships between the pressures stated for different references are shown in Fig. 2.1.

The SI unit for pressure is Pa (pascal). Pressure is also commonly expressed in
bars (1 bar = 105 Pa).

Atmospheric pressure
reference

Absolute zero 
reference

Gauge pressure

Vacuum

Fig. 2.1 Pressure references
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