Handbook of Smart Materials
in Analytical Chemistry
Handbook of Smart Materials in Analytical Chemistry

Volume I

Edited by

Miguel de la Guardia
University of Valencia
Burjassot, Spain

Francesc A. Esteve-Turrillas
University of Valencia
Burjassot, Spain

WILEY
Contents

List of Contributors xvii
Preface xxi

Volume I

1 Smart Materials: Made on Measure Reagents 1
Francesc A. Esteve-Turíllas and Miguel de la Guardia
1.1 Role of Smart Materials in Analytical Chemistry 1
1.2 Smart Materials for Sample Treatment 2
1.2.1 Solid-Phase Extraction 4
1.2.2 Solid-Phase Microextraction 6
1.2.3 Magnetic Extraction 6
1.2.4 Automatization and Miniaturization 8
1.3 Smart Materials for Analytical Determinations 9
1.3.1 Stationary Phases 9
1.3.2 Sensor Development 11
1.3.3 Immunoassays 12
1.3.4 Signal Enhancement 13
1.3.5 Laser Desorption/Ionization Mass Spectrometry 14
1.4 The Future Starts Now 14
Acknowledgements 15
References 16

2 Nanoconfined Ionic Liquids: Properties and Analytical Applications 23
Łukasz Marcinkowski, Adam Kloskowski, and Jacek Namieśnik
2.1 Introduction 23
2.2 Bulk Properties of Ionic Liquids 25
2.2.1 Solvation Versatility 29
2.2.2 Thermal Properties 29
2.2.3 Electrochemical Window 32
2.3 Confinement Effects 33
2.3.1 Structure of Confined Ionic Liquids 34
2.3.2 Impact of Confinement on Physicochemical Properties of Ionic Liquids 36
2.4 Preparation of Ionogels 43
2.4.1 In-Situ Impregnation 43
2.4.2 Post-impregnation 44
2.4.3 Other Methods 44
Contents

2.5 Analytical Applications of Ionic Liquids Confined in a Solid Matrix 44
2.5.1 Solid-Phase Extraction 45
2.5.2 Solid-Phase Microextraction 50
2.5.3 Stir-Bar Sorptive Extraction 55
2.5.4 Biosensors 56
2.6 Conclusions 58
References 59

3 Smart Porous Monoliths for Chromatographic Separations 73
Jorge Cesar Masini
3.1 Introduction 73
3.2 Temperature Responsive Polymers 75
3.2.1 Grafted on Organic Monoliths 75
3.2.2 Silica and Hybrid Monoliths 82
3.3 pH Responsive Monoliths 90
3.4 Salt Responsive Monoliths 90
3.5 Dual Mode Stimuli/Response 94
3.6 Temperature Responsive Molecularly Imprinted Monoliths 95
3.7 Conclusions and Outlook 96
Acknowledgements 98
References 98

4 Surfactant-Based Materials 103
Rodjana Burakham and Supalax Srijaranai
4.1 Surfactants 103
4.2 Roles of Surfactant in Modern Sample Preparation Techniques 104
4.3 Surfactant-Based Liquid-Phase Extraction 105
4.3.1 Cloud-Point Extraction 106
4.3.1.1 CPE of Trace Elements 107
4.3.1.2 CPE of Organic Analytes 115
4.3.1.3 CPE with External Forces 117
4.3.1.4 Other CPE Procedures 118
4.3.2 Surfactant-Assisted Emulsification 119
4.3.3 Ultrasound-Assisted Emulsification Microextraction 121
4.3.4 Vortex-Assisted Surfactant-Based Extraction 133
4.4 Surfactant-Modified Sorbents 143
4.4.1 Surfactant-Modified Mineral Oxides 144
4.4.2 Surfactant-Coated Magnetic Nanoparticles 147
4.5 Final Remarks 149
References 150

5 Molecularly Imprinted Materials 159
Takuya Kubo and Koji Otsuka
5.1 Introduction 159
5.2 Solid Phase Extraction for Environmental and Biological Samples 162
7.4.2.1 Chromatographic Competitive Binding Immunoassays 225
7.4.2.2 Chromatographic Immunometric Assays 227
7.5 Other Analytical Applications of Immunosorbent Columns 229
7.6 Conclusions 229
Acknowledgements 230
References 230

8 Nanomaterials for Use in Apta-Assays: Analytical Approach 243
Soodabeh Hassanpour, Ahad Mokhtarzadeh, Mohammad Hasanzadeh, Maryam Hejazi, and Behzad Baradaran
8.1 Introduction 243
8.2 Recent Methods for Aptamer Screening 244
8.2.1 SELEX Method 244
8.2.2 Cell-SELEX 246
8.3 Classification of Nanomaterials 246
8.3.1 Gold Nanoparticles 247
8.3.2 Carbon Based Nanomaterials 248
8.3.3 Quantum Dots 249
8.3.4 Graphene/Graphene Oxide (GO) 249
8.3.5 Other Nanoparticles 250
8.3.5.1 Magnetic Nanoparticles 250
8.3.5.2 Silica Nanoparticles (SiNPs) 251
8.4 Nanomaterial-Based Aptasensors for Analytical Applications 251
8.4.1 Colorimetric Nanomaterial-Based Aptasensors 252
8.4.2 Fluorometric Nanomaterial-Based Aptasensors 255
8.4.3 Electrochemical Nanomaterial-Based Aptasensors 259
8.4.4 Additional Detection Formats 261
8.5 Conclusion 263
References 263

9 Recent Nanomaterials-Based Separation Processes 273
Beatriz Fresco-Cala, Ángela I. López-Lorente, M. Laura Soriano, Rafael Lucena, and Soledad Cárdenas
9.1 Introduction 273
9.2 Carbon Nanoparticles-Based Separation Processes 275
9.2.1 Graphene and Graphene Oxide 276
9.2.2 Carbon Quantum Dots 278
9.2.3 Single-Walled Carbon Nanohorns 279
9.3 Metallic and Metal Oxide Nanoparticles-Based Separation Processes 280
9.3.1 Metallic Nanoparticles 280
9.3.2 Metal Oxide Nanoparticles 283
9.4 Nanoparticles-Based Monolithic Solids in Separation Processes 286
9.5 Polymeric Nanocomposites-Based Separations Processes 290
9.5.1 Core–Shell Composites 291
9.5.2 Nanoparticles Embedded in Polymeric Networks 292
9.5.3 Polymers Coated with NPs 293
9.5.4 Nanocellulose 294
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.6</td>
<td>Final Remarks and Perspectives</td>
<td>294</td>
</tr>
<tr>
<td></td>
<td>Acknowledgements</td>
<td>295</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>296</td>
</tr>
<tr>
<td>10</td>
<td>Semiconductor Quantum Dots in Chemical Analysis: From Binary to</td>
<td>309</td>
</tr>
<tr>
<td></td>
<td>Multinary Nanocrystals</td>
<td></td>
</tr>
<tr>
<td></td>
<td>João L.M. Santos, José X. Soares, S. Sofia M. Rodrigues, and David</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S.M. Ribeiro</td>
<td></td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>309</td>
</tr>
<tr>
<td>10.2</td>
<td>Binary Quantum Dots</td>
<td>312</td>
</tr>
<tr>
<td>10.3</td>
<td>Synthesis</td>
<td>313</td>
</tr>
<tr>
<td>10.4</td>
<td>Properties</td>
<td>314</td>
</tr>
<tr>
<td>10.5</td>
<td>Applications</td>
<td>315</td>
</tr>
<tr>
<td>10.6</td>
<td>Ternary Quantum Dots</td>
<td>320</td>
</tr>
<tr>
<td>10.7</td>
<td>Synthesis</td>
<td>323</td>
</tr>
<tr>
<td>10.8</td>
<td>Properties</td>
<td>325</td>
</tr>
<tr>
<td>10.9</td>
<td>Applications</td>
<td>326</td>
</tr>
<tr>
<td>10.10</td>
<td>Quaternary Quantum Dots</td>
<td>333</td>
</tr>
<tr>
<td>10.11</td>
<td>Synthesis</td>
<td>333</td>
</tr>
<tr>
<td>10.12</td>
<td>Properties</td>
<td>334</td>
</tr>
<tr>
<td>10.13</td>
<td>Applications</td>
<td>335</td>
</tr>
<tr>
<td>10.14</td>
<td>Summary and Outlook</td>
<td>335</td>
</tr>
<tr>
<td></td>
<td>Acknowledgements</td>
<td>336</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>336</td>
</tr>
<tr>
<td>11</td>
<td>Carbon-Based Nanomaterials in Analytical Chemistry</td>
<td>345</td>
</tr>
<tr>
<td></td>
<td>Sergio Armenta and Francesc A. Esteve-Turrillas</td>
<td></td>
</tr>
<tr>
<td>11.1</td>
<td>Carbon-Based Materials Progress</td>
<td>345</td>
</tr>
<tr>
<td>11.2</td>
<td>Fullerenes</td>
<td>346</td>
</tr>
<tr>
<td>11.3</td>
<td>Carbon Nanotubes</td>
<td>348</td>
</tr>
<tr>
<td>11.4</td>
<td>Graphene</td>
<td>349</td>
</tr>
<tr>
<td>11.5</td>
<td>Carbon Nanodots</td>
<td>351</td>
</tr>
<tr>
<td>11.6</td>
<td>Novel Carbon Materials</td>
<td>353</td>
</tr>
<tr>
<td>11.7</td>
<td>Analytical Applications of Carbon-Based Nanomaterials</td>
<td>354</td>
</tr>
<tr>
<td>11.7.1</td>
<td>Sample Treatment</td>
<td>354</td>
</tr>
<tr>
<td>11.7.2</td>
<td>Stationary Phases in Separation Sciences</td>
<td>358</td>
</tr>
<tr>
<td>11.7.3</td>
<td>Sensor Development</td>
<td>360</td>
</tr>
<tr>
<td>11.8</td>
<td>Actual State and Future Trends</td>
<td>362</td>
</tr>
<tr>
<td></td>
<td>Acknowledgements</td>
<td>362</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>363</td>
</tr>
<tr>
<td>12</td>
<td>Use of Magnetic Materials in Sample Preparation Techniques</td>
<td>375</td>
</tr>
<tr>
<td></td>
<td>Israel S. Ibarra Ortega and José A. Rodriguez</td>
<td></td>
</tr>
<tr>
<td>12.1</td>
<td>Introduction</td>
<td>375</td>
</tr>
<tr>
<td>12.2</td>
<td>Sample Preparation</td>
<td>375</td>
</tr>
<tr>
<td>12.3</td>
<td>Magnetic Solid Phase Extraction</td>
<td>377</td>
</tr>
<tr>
<td>12.4</td>
<td>Magnetic Silica Based Particles</td>
<td>379</td>
</tr>
<tr>
<td>12.5</td>
<td>Magnetic Ion Exchange</td>
<td>382</td>
</tr>
</tbody>
</table>
12.6 Magnetic Molecularly Imprinted Polymers 383
12.7 Magnetic Ionic Liquids 386
12.8 Magnetic Carbon Based Materials 394
12.9 On-Line MSPE 395
12.10 Conclusions and Future Trends 399

References 399

13 Restricted Access Materials for Sample Preparation 411
Lailah Cristina de Carvalho Abrão, Henrique Dipe de Faria, Mariane Gonçalves Santos, Adriano Francisco Barbosa, and Eduardo Costa Figueiredo

13.1 Introduction 411
13.2 Restricted Access Silica-Based Materials 412
13.2.1 Physical Unimodal Phases 412
13.2.2 Physical Bimodal Phases 412
13.2.3 Chemical Unimodal Phases 415
13.2.4 Chemical Bimodal Phases 415
13.3 Restricted Access Moleculely/Ionic Imprinted Polymer-Based Materials 416
13.4 Restricted Access Carbon Nanotubes and Activated Carbon Cloths-Based Material 419
13.5 Restricted Access Media Based on Supramolecular Solvents 420
13.6 Conclusions 420
Acknowledgements 430

References 430

14 Polymer Inclusion Membranes: Smart Materials for Sensing and Separation 439
Spas D. Kolev, M. Inês G.S. Almeida, and Robert W. Cattrall

14.1 Introduction 439
14.2 Chemical Sensing 442
14.2.1 Electrochemical Sensors 442
14.2.2 Optical Chemical Sensors 444
14.3 Sample Pre-treatment 449
14.3.1 Passive Transport 449
14.3.2 Electric Field Driven Transport 452
14.4 Passive Sampling 453
14.5 Conclusions and Future Directions 456

References 458

15 The Rise of Metal–Organic Frameworks in Analytical Chemistry 463
Idaira Pacheco-Fernández, Providencia González-Hernández, Jorge Pasán, Juan H. Ayala, and Verónica Pino

15.1 Introduction 463
15.2 MOFs as Sorbents in Solid-Based Microextraction Schemes 465
15.2.1 Miniaturized Solid-Phase Extraction 470
15.2.2 Micro Dispersive Solid-Phase Extraction 475
15.2.3 Dispersive Solid-Phase Extraction Using Magnetic-Based Sorbents 476
15.2.4 Solid-phase Microextraction 477
15.2.5 Stir Bar Sorptive Extraction 479
15.3 MOFs as Stationary Phases in Chromatographic Techniques 479
15.3.1 Performance of MOFs as Stationary Phases in Liquid Chromatography 480
15.3.2 Performance of MOF as Stationary Phases in Gas Chromatography 486
15.3.3 Performance of MOFs in Capillary Electrochromatography 487
15.3.4 Study of the Performance of MOFs in Different Chromatographic Techniques 488
15.4 Concluding Remarks 489
References 489

Volume II

16 Smart Materials and Green Analytical Chemistry 503
Maria Kuhtinskaja and Mihkel Koel
16.1 Introduction to Green Chemistry 503
16.2 Supports, Columns, Monoliths, Solid-Phase Packings 505
16.2.1 Silica-Based Materials 508
16.2.2 Polymeric Materials 509
16.2.3 Carbon-Based Materials 510
16.2.4 Other Inorganic Materials (Zeolites and Quantum Dots) 512
16.3 Specialised Supports and Packings 514
16.4 Modification of Solvents in Chromatography and Electrophoresis (Surfactants, Chiral Additives, Ionic Liquids) 516
16.5 Conclusions and Future Outlook 520
Acknowledgements 523
References 523

17 Smart Materials for Solid-Phase Extraction Applications 531
Enrique Javier Carrasco-Correa, María Vergara-Barberán, Ernesto Francisco Simó-Alfonso, and José Manuel Herrero-Martínez
17.1 Introduction 531
17.1.1 Solid-Phase Extraction (SPE): A Powerful Tool for Sample Preparation 531
17.1.2 SPE Formats 532
17.1.3 Novel Types of Sorbents 532
17.2 Polymer-Based Sorbents 535
17.3 Porous Materials 537
17.3.1 Mesoporous Materials 537
17.3.2 Monoliths 541
17.3.3 Metal–Organic Frameworks (MOFs) 543
17.4 Molecular Recognition Sorbents 545
17.4.1 Molecularly Imprinted Polymers (MIPs) 545
17.4.2 Immunosorbents 552
17.4.3 Aptamer-Based Sorbents 554
17.5 Nanostructured Materials 556
17.5.1 Metallic and Metal Oxide Nanoparticles 556
17.5.2 Carbonaceous Nanomaterials 557
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Nanofibers</td>
<td>563</td>
</tr>
<tr>
<td>17.5.3</td>
<td>Nanofibers</td>
<td>563</td>
</tr>
<tr>
<td>17.6</td>
<td>Conclusions</td>
<td>564</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>566</td>
</tr>
<tr>
<td>18</td>
<td>Smart Materials in Solid Phase Microextraction (SPME)</td>
<td>581</td>
</tr>
<tr>
<td></td>
<td>Germán Augusto Gómez-Ríos, Nathaly Reyes Garcés, and Marcos Tascon</td>
<td></td>
</tr>
<tr>
<td>18.1</td>
<td>SPME: One Concept with Multiple Formats</td>
<td>581</td>
</tr>
<tr>
<td>18.1.1</td>
<td>Introduction</td>
<td>581</td>
</tr>
<tr>
<td>18.1.2</td>
<td>Commercially Available SPME Extraction Phases for GC and LC Applications</td>
<td>583</td>
</tr>
<tr>
<td>18.1.3</td>
<td>SPME Geometries and Configurations</td>
<td>586</td>
</tr>
<tr>
<td>18.2</td>
<td>Non-specific Coatings</td>
<td>590</td>
</tr>
<tr>
<td>18.2.1</td>
<td>SPME Coatings Made of Polymeric Ionic Liquids (PILs)</td>
<td>590</td>
</tr>
<tr>
<td>18.2.2</td>
<td>SPME Coatings Made of Carbon Nanotubes (CNTs)</td>
<td>592</td>
</tr>
<tr>
<td>18.2.2.1</td>
<td>CNT Fiber SPME</td>
<td>594</td>
</tr>
<tr>
<td>18.2.2.2</td>
<td>CNTs In-Tube SPME</td>
<td>595</td>
</tr>
<tr>
<td>18.2.2.3</td>
<td>CNT Stir-Bar</td>
<td>596</td>
</tr>
<tr>
<td>18.3</td>
<td>Specific Coatings</td>
<td>596</td>
</tr>
<tr>
<td>18.3.1</td>
<td>Molecular Imprinted Polymers (MIPs)</td>
<td>596</td>
</tr>
<tr>
<td>18.3.2</td>
<td>Biologically-Based Selective Materials</td>
<td>600</td>
</tr>
<tr>
<td>18.3.3</td>
<td>Metal–Organic Frameworks (MOFs)</td>
<td>601</td>
</tr>
<tr>
<td>18.4</td>
<td>Direct Coupling of SPME Devices to Mass Spectrometry</td>
<td>603</td>
</tr>
<tr>
<td>18.5</td>
<td>Conclusions</td>
<td>604</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>606</td>
</tr>
<tr>
<td>19</td>
<td>Smart Materials in Miniaturized Devices</td>
<td>621</td>
</tr>
<tr>
<td></td>
<td>Mihkel Kaljurand</td>
<td></td>
</tr>
<tr>
<td>19.1</td>
<td>Microfluidics</td>
<td>621</td>
</tr>
<tr>
<td>19.1.1</td>
<td>Green Facets of Microfluidics and Parallelism with Computational Technology</td>
<td>622</td>
</tr>
<tr>
<td>19.2</td>
<td>Hydrogels</td>
<td>623</td>
</tr>
<tr>
<td>19.2.1</td>
<td>Hydrogel Micropump</td>
<td>625</td>
</tr>
<tr>
<td>19.2.2</td>
<td>Application of Hydrogels for Sample Preparation: Some Case Studies</td>
<td>626</td>
</tr>
<tr>
<td>19.3</td>
<td>Smart Droplets</td>
<td>628</td>
</tr>
<tr>
<td>19.3.1</td>
<td>Giant Electrorheological Fluid (GERF)</td>
<td>628</td>
</tr>
<tr>
<td>19.3.1.1</td>
<td>Electrorheological Fluid Physics</td>
<td>628</td>
</tr>
<tr>
<td>19.3.2</td>
<td>Droplets in Digital Microfluidics</td>
<td>630</td>
</tr>
<tr>
<td>19.3.2.1</td>
<td>Electrowetting Phenomenon</td>
<td>630</td>
</tr>
<tr>
<td>19.3.2.2</td>
<td>EWOD Based Digital Microfluidic Platforms</td>
<td>631</td>
</tr>
<tr>
<td>19.3.2.3</td>
<td>DMF Sample Preparation for Capillary Electrophoretic Analysis</td>
<td>631</td>
</tr>
<tr>
<td>19.3.2.4</td>
<td>Sample Preparation for Mass Spectrometry</td>
<td>632</td>
</tr>
<tr>
<td>19.3.2.5</td>
<td>Using DMF for Solid–Liquid Extraction and CE Analysis</td>
<td>633</td>
</tr>
<tr>
<td>19.3.2.6</td>
<td>Miscellaneous DMF Sample Preparation</td>
<td>636</td>
</tr>
<tr>
<td>19.4</td>
<td>Concluding Remarks: microfluidics as a Road to Greener Analytical Chemistry</td>
<td>638</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>639</td>
</tr>
</tbody>
</table>
20
Smart Materials as Stationary Phases in Chromatography
Constantinos K. Zacharis and Paraskevas D. Tzanavaras

- **20.1** Introduction 643
- **20.2** Particulate Sub-2 μm Stationary Phase 644
- **20.3** Mixed-Mode Stationary Phase 647
- **20.3.1** Reversed Phase (RP)/Ion-Exchange (IEC) Stationary Phases 648
- **20.3.2** RP/HILIC Stationary Phases 649
- **20.3.3** HILIC/IEC Stationary Phases 650
- **20.3.4** RP/HILIC/IEC Stationary Phases 650
- **20.4** Ionic Liquid-Based Stationary Phase 651
 - **20.4.1** Ionic Liquid-Based LC Stationary Phase 651
 - **20.4.2** Ionic Liquid-Based GC Stationary Phase 654
- **20.5** Monolithic Stationary Phase 654
- **20.6** Core–Shell Particles as Stationary Phase 656
- **20.7** Carbon-Based Nanomaterials as Stationary Phase 658
- **20.8** Metal–Organic Frameworks as Stationary Phases 661
- **20.9** Hybrid Organic–Inorganic Materials as Stationary Phase 662
- **20.10** Molecularly Imprinted Polymers as Stationary Phases 663
- **20.11** Conclusions 665
 References 665

21
Improved Capillary Electrophoresis Through the Use of Smart Materials
Mohammad Zarei

- **21.1** Introduction 675
- **21.2** Materials and Applications 676
 - **21.2.1** Polymer-Based Materials 676
 - **21.2.2** Metal–Organic Frameworks 677
- **21.3** Nanomaterials 679
 - **21.3.1** Carbon-Based Nanomaterials 680
 - **21.3.2** Metal Oxide Nanoparticles 681
 - **21.3.3** Metallic Nanoparticles 682
 - **21.3.4** Quantum Dots 683
 - **21.3.5** Polymer Nanoparticles 684
- **21.4** Biomaterials 684
- **21.5** Summary 690
 References 691

22
Immunoassays 699
Miguel Ángel González-Martínez, Rosa Puchades, and Ángel Maquieira

- **22.1** Introduction 699
- **22.1.1** Immunoassays and Antibodies 699
- **22.1.2** Types of Antibodies 701
- **22.1.3** Immunoassay Modes and Formats 702
 - **22.1.3.1** Label 702
 - **22.1.3.2** Phase 702
 - **22.1.3.3** Assay Format 703
22.1.4 Improving Analytical Properties. ‘Smartness’ in Immunoassay 705
22.2 Immunoassays on Disc Formats 706
22.3 Immunoassays Employing Nanoparticles 711
22.4 Immunoassays Using Restricted Access Materials 716
22.5 Immunoassays on Switchable Materials 718
22.6 Miscellaneous Approaches 720
22.7 Conclusions and Remarks 721
References 722

23 Nanoparticles Assisted Laser Desorption/Ionization Mass Spectrometry 729
Hani Nasser Abdelhamid

23.1 Introduction 729
23.2 MALDI‐MS Using Conventional Organic Matrices 730
23.3 Application of Nanoparticles for LDI‐MS 730
23.4 Analysis of Proteins and Peptides 732
23.5 Identification of Bacteria 734
23.6 Analysis of lipids (lipidomics) 734
23.7 Analysis of carbohydrates 735
23.8 Applications of Nanoparticles for Small Molecules 735
23.9 Imaging Using Nanoparticles 738
23.10 Advantages and Disadvantages of NPs for MALDI‐MS 738
23.11 Conclusions 739
Acknowledgements 740
References 740

24 Smart Materials in Speciation Analysis 757
Irina Karadjova, Tanya Yordanova, Ivanka Dakova, and Penka Vasileva

24.1 Introduction 757
24.2 Nanomaterials for Elemental Speciation Analysis 758
24.2.1 Metal Oxide Nanoparticles (MeOxNPs) 758
24.2.2 Magnetic SPE for Trace Element Speciation 759
24.2.3 Noble Metal Nanoparticles (NM‐NPs) 759
24.2.4 Carbon‐Based Nanomaterials 760
24.2.5 Ion Imprinted Polymers 761
24.3 Analytical Application of Smart Systems for Elemental Speciation 762
24.3.1 Speciation of Arsenic and Antimony 763
24.3.2 Speciation of Chromium 764
24.3.3 Speciation of Mercury 767
24.3.4 Speciation of Selenium 771
24.3.5 Speciation of Thallium 773
24.3.6 Speciation of Tin 775
24.3.7 Speciation of Vanadium 775
24.4 Smart Nanomaterials in Sensing of Trace Element Species 775
24.4.1 Sensing Nanomaterials and Smart Probes 775
24.4.2 Analytical Application of Sensing Probes 778
24.4.2.1 Speciation of Chromium 780
24.4.2.2 Speciation of Arsenic 781
24.4.2.3 Speciation of Mercury 781
24.5 Conclusions and Perspectives 783
Acknowledgements 783
References 784

25 Materials-Based Sample Preparation in Water Analysis 795
Nyi Nyi Naing and Hian Kee Lee
25.1 Introduction 795
25.2 Magnetic Nanoparticles in Sample Preparation 796
25.3 Biosorbents in Sample Preparation 799
25.4 Graphene and Graphene Related Materials 803
25.5 Molecularly Imprinted Polymers 807
25.6 Conclusion and Future Trends 811
References 814

26 MIPs and Aptamers as Artificial Receptors in Advanced Separation Techniques: Application in Food Analysis 825
Amina Rhouati, Idriss Bakas, and Jean Louis Marty
26.1 Introduction 825
26.2 Solid Phase Extraction (SPE) 826
26.3 Aptamers 827
26.3.1 In Vitro Selection of Aptamers 828
26.3.2 Binding Characteristics of Aptamers 829
26.3.3 Aptamer-Based Solid Phase Extraction 830
26.4 Molecularly Imprinted Polymers (MIPs) 832
26.4.1 Synthesis and Binding Characteristics of MIPs 832
26.4.2 Design of MIPs 834
26.4.3 MIP-Based Solid-Phase Extraction (SPE) 835
26.5 Applications of Aptamers and MIPs in Sample Preparation for Food Analysis 835
26.5.1 Pesticides 836
26.5.2 Mycotoxins 842
26.5.3 Pharmaceutical Residues 845
26.5.4 Others 847
26.6 Conclusion and Prospects 848
References 849

27 Smart Carbon Nanomaterials in Electrochemical Biosensing for Clinical Analysis 859
Susana Campuzano, Paloma Yáñez-Sedeño, and José Manuel Pingarrón
27.1 Electrochemical Immunosensors Involving Smart Carbon Nanomaterials 859
27.1.1 Carbon Nanotubes 860
27.1.2 Graphene 864
27.1.3 Fullerene C₆₀ 866
27.1.4 Carbon Nanohorns 869
27.1.5 Carbon Nanoparticles (CNPs) 871
List of Contributors

M. Inês G.S. Almeida
School of Chemistry
The University of Melbourne
Australia

Aziz Amine
University Hassan II of Casablanca
Morocco

Amina Antonacci
Department of Chemical Sciences and Materials Technologies
Institute of Crystallography
National Research Council
Rome
Italy

Fabiana Arduini
Department of Chemical Science and Technologies
University of Rome Tor Vergata
Italy

Sergio Armenta
Department of Analytical Chemistry
University of Valencia
Burjassot
Spain

Juan H. Ayala
Departamento de Química
(Unidad Departamental de Química Analítica)
Universidad de La Laguna
Spain

Behzad Baradaran
Immunology Research Center
Tabriz University of Medical Sciences
Iran

Adriano Francisco Barbosa
Laboratory of Toxicant and Drug Analysis
Federal University of Alfenas – Unifal-MG
Brazil

Rodjana Burakham
Materials Chemistry Research Center
Department of Chemistry and Center of Excellence for Innovation in Chemistry
Khon Kaen University
Thailand

Soledad Cárdenas
Departamento de Química Analítica
Instituto Universitario de Investigación en Química Fina y Nanoquímica IUIQFN
Universidad de Córdoba
Campus de Rabanales
Spain

Lailah Cristina de Carvalho Abrão
Laboratory of Toxicant and Drug Analysis
Federal University of Alfenas – Unifal-MG
Brazil
Robert W. Cattrall
School of Chemistry
The University of Melbourne
Australia

Stefano Cinti
Department of Chemical Science and Technologies
University of Rome Tor Vergata
Italy

Eduardo Costa Figueiredo
Laboratory of Toxicant and Drug Analysis
Federal University of Alfenas – Unifal-MG
Brazil

Francesc A. Esteve-Turrillas
Department of Analytical Chemistry
University of Valencia
Burjassot
Spain

Henrique Dipe de Faria
Laboratory of Toxicant and Drug Analysis
Federal University of Alfenas – Unifal-MG
Brazil

Gabriele Favaretto
Department of Chemical Sciences and Materials Technologies
Institute of Crystallography
National Research Council
Rome
Italy

Beatriz Fresco-Cala
Departamento de Química Analítica
Instituto Universitario de Investigación en Química Fina y Nanoquímica IUIQFN
Universidad de Córdoba
Campus de Rabanales
Spain

Mariane Gonçalves Santos
Laboratory of Toxicant and Drug Analysis
Federal University of Alfenas – Unifal-MG
Brazil

Providencia González-Hernández
Departamento de Química (Unidad Departamental de Química Analítica)
Universidad de La Laguna
Spain

Miguel de la Guardia
Department of Analytical Chemistry
University of Valencia
Burjassot
Spain

David S. Hage
Department of Chemistry
University of Nebraska
Lincoln
NE
USA

Mohammad Hasanzadeh
Drug Applied Research Center
Tabriz University of Medical Sciences
Iran

Soodabeh Hassanpour
Immunology Research Center
Tabriz University of Medical Sciences
Iran

Maryam Hejazi
Zabol University of Medical Sciences
Iran

Israel S. Ibarra
Area Academica de Quimica
Universidad Autónoma del Estado de Hidalgo
Mexico
Adam Kloskowski
Department of Physical Chemistry
Gdansk University of Technology
Poland

Spas D. Kolev
School of Chemistry
The University of Melbourne
Australia

Takuya Kubo
Graduate School of Engineering
Kyoto University
Japan

Ángela I. López-Lorente
Departamento de Química Analítica
Instituto Universitario de Investigación en Química Fina y Nanoquímica IUIQFN
Universidad de Córdoba
Campus de Rabanales
Spain

Rafael Lucena
Departamento de Química Analítica
Instituto Universitario de Investigación en Química Fina y Nanoquímica IUIQFN
Universidad de Córdoba
Campus de Rabanales
Spain

Łukasz Marcinkowski
Department of Physical Chemistry
Gdansk University of Technology
Poland

Jorge Cesar Masini
Instituto de Química
Universidade de São Paulo
Brazil

Ahad Mokhtarzadeh
Department of Biotechnology
Higher Education Institute of Rab-Rashid Immunology Research Center
Tabriz University of Medical Sciences
Iran

Danila Moscone
Department of Chemical Science and Technologies
University of Rome Tor Vergata
Italy

Jacek Namieśnik
Department of Analytical Chemistry
Gdansk University of Technology
Poland

Koji Otsuka
Graduate School of Engineering
Kyoto University
Japan

Idaira Pacheco-Fernández
Departamento de Química (Unidad Departamental de Química Analítica)
Universidad de La Laguna
Spain

Giuseppe Palleschi
Department of Chemical Science and Technologies
University of Rome Tor Vergata
Italy

Jorge Pasán
Departamento de Física (Laboratorio de Rayos X y Materiales Moleculares)
Universidad de La Laguna
La Laguna (Tenerife)
Spain

Verónica Pino
Departamento de Química (Unidad Departamental de Química Analítica)
Universidad de La Laguna
Spain

Saumen Poddar
Department of Chemistry
University of Nebraska
Lincoln
USA
List of Contributors

David S.M. Ribeiro
LAQV/REQUIMTE
University of Porto
Portugal

S. Sofia M. Rodrigues
LAQV/REQUIMTE
University of Porto
Portugal

Elliott Rodriguez
Department of Chemistry
University of Nebraska
Lincoln
USA

José A. Rodriguez
Area Academica de Quimica
Universidad Autónoma del Estado de Hidalgo
Mexico

João L.M. Santos
LAQV/REQUIMTE
University of Porto
Portugal

Viviana Scognamiglio
Department of Chemical Sciences and Materials Technologies
Institute of Crystallography
National Research Council
Rome
Italy

José X. Soares
LAQV/REQUIMTE
University of Porto
Portugal

M. Laura Soriano
Departamento de Química Analítica
Instituto Universitario de Investigación en Química Fina y Nanoquímica IUIQFN
Universidad de Córdoba
Campus de Rabanales
Spain

Supalax Srijaranai
Materials Chemistry Research Center
Department of Chemistry and Center of Excellence for Innovation in Chemistry
Khon Kaen University
Thailand

Jelena Vasiljevic
Department of Chemical Sciences and Materials Technologies
Institute of Crystallography
National Research Council
Rome
Italy
Preface

Analytical chemistry was dramatically changed when in the middle of the last century classical analytical methods were replaced by instrumental ones. A general complaint emerged about the absence, or strong reduction, of chemical behavior in the new methodologies and it is practically true that the advance of spectrometry and electroanalytical methods drastically reduced the use of reagents and moved to another scale of sensitivity, thus confirming the advantages of relative methods of analysis ahead of classical procedures based on stoichiometric reactions.

However, one century on, despite tremendous advancements, the new instruments do not provide the sensitivity we are looking for, nor the capability for multi-analyte determinations in a single sample. Moreover, there is a social demand for improved sensitivity and selectivity of measurements. So, nowadays we are forced to look again in our chemistry books to focus on the fundamentals of extraction, pre-concentration, and matrix removal to be able to lower the limit of detection values for the determination of target analytes. Additionally, we must search for new materials capable of producing extraordinary improvements of selectivity and sensitivity, as compared with direct measurements, and that means a return to consideration of chemical reactions at the molecular level. Thus, once again, chemistry is in the spotlight of our analysis.

Probably, some readers were a little confused on reading the title of this book and its context. For clarity, we have decided to extend the concept of smart materials and not only consider as smart those for which their characteristics and properties could be modulated by changes in external parameters like pH, ionic strength, temperature, or pressure. In fact, other materials, like enzymes, antibodies, molecularly imprinted polymers, restricted access materials, metal–organic frameworks, or aptamers, have been considered together with other nanomaterials, polymers, and composites due to the tremendous possibilities that they offer regarding analyte specific interactions, electronic properties, high surface area, magnetic behavior, size exclusion, signal enhancement, or robustness.

The main objective of this book is to explore the exciting possibilities offered by the new generation of materials capable of improving the performance of analytical determinations. New available reagents, obtained from natural sources or produced based on accurate selection and modification of raw ones, pave the way for the development of new platforms of analysis in which a balance is made between the use of instrumental techniques for detection and a series of reactions selected to create, or modify, smart materials in order to enhance the analytical features of methods.
The editors would like to acknowledge the positive response of all the invited authors which has made it possible to have 80 scientists with different areas of expertise collaborating across 20 different countries. It has been great to work with many people whose works are well known in international journals and further literature, even though in some cases we did not have the opportunity to meet them before writing this book. The main reason for this is the decision to select invited authors of chapters based on the author’s authority in their field and not on reasons of vicinity or friendship. However, we must confess that after collaborating on this project, we wish to meet all the authors and continue this fruitful cooperation in our everyday tasks and do not hesitate to view this project as just the beginning of a long story of cooperation in order to contribute to excellent analytical chemistry.

The present *Handbook of Smart Materials in Analytical Chemistry* is divided for practical reasons into two volumes; the first is devoted to the presentation of new materials for sample preparation and analysis, and the second is devoted to analytical processes and applications. Volume I is a small compendium of smart materials presently available always considering them in terms of their analytical chemistry advantages and uses. In this first volume we aim to give readers as complete an idea as possible about the new reagents as well as the advanced possibilities offered by the older ones. Thus, materials such as ionic liquids, porous monoliths, surfactants, molecularly imprinted polymers, enzymes and immunosorbents, nanomaterials, quantum dots, carbon based nanomaterials, restricted access materials, polymer membranes, and metal–organic frameworks are presented and evaluated through the 15 chapters. Volume II of the present handbook consists of a discussion of the role of smart materials in the improvement of analytical processes and applications. The first part of second volume depicts the use of novel materials in typical analytical procedures employed for both sample treatment and analytical determination, while the second part is focused on the presentation of the main applications of smart materials in different fields like environmental, food, clinical, and forensic. The editors hope that all the chapters included in the book provide plenty of ideas suitable to be employed in the laboratories of readers, to open up new ways in method development and application. Hence, we hope that the *Handbook of Smart Materials in Analytical Chemistry* will become a reference text in the field and that the efforts of all those who contributed to the book will be useful for you, the reader.

Finally, we would like to acknowledge the support and excellent work of the team of John Wiley & Sons who have helped us during all the steps of production of this book from the initial proposal to the final edition. Elsie Merlin, Emma Strickland, and Jenny Cossham, we are very happy to have had the opportunity to work with you.

We hope you enjoy the handbook.
Let our Analytical Chemistry become smart by working together.

Miguel de la Guardia and Francesc A. Esteve-Turrillas
Valencia, April 2018
1

Smart Materials

Made on Measure Reagents

Francesc A. Esteve-Turrillas and Miguel de la Guardia

Department of Analytical Chemistry, University of Valencia, Burjassot, Spain

1.1 Role of Smart Materials in Analytical Chemistry

Analytical chemistry can be considered, from an applied pragmatic point of view, as the development and application of chemical methods to find an appropriate answer to social and research and development challenges by solving underlying analytical problems [1]. Thus, analytical chemistry is a multidisciplinary science in continuous evolution that must be adapted to face new problems and limits. Modern analytical chemistry must be focused to provide validated methods and tools to fulfill solutions to present and future issues, in a rapid and efficient way without any reduction of the main figures of merit of available methods while reducing human and economic consumed resources, without forgetting to be environmentally conscientious. In this sense, the conception of Green Analytical Chemistry considers in its 12 principles aspects such as: (i) direct analytical techniques instead of sample treatment, (ii) sample and residue reduction, (iii) automatization and miniaturization, and (iv) multianalyte determination methods [2]. Improvements in current analytical instrumentation have allowed achievement of many of these milestones, but their use in combination with smart materials has allowed us to go a further step.

A specific definition of smart materials is that they have some properties that can be modulated significantly in a controlled way through external stimuli such as stress, temperature, pH, moisture, electric, or magnetic fields [3, 4]. However, in this book we have focused on the analytical process and define as smart materials those tailored, task-specific, or designed materials that provide tremendous enhancements of practical properties, at any level of sample preparation and analytical determination, such as their selectivity, sensitivity, easy automation, or speediness. Consequently, their use can incorporate added value to well-established analytical methods. Discoveries of novel functional materials have played very important roles in improving conventional analytical methods and in developing novel technologies and procedures, giving huge improvements in terms of sensitivity, selectivity, ease of use, rapidity, and miniaturization of modern analytical methods.
In recent years, the application of smart materials has attracted the attention of researchers, as shown by the high increase in published papers related to analytical determination using smart materials (Figure 1.1). Nanoparticles, carbon-based materials, ionic liquids (ILs), quantum dots (QDs), antibodies, immunomaterials, aptamers, metal–organic frameworks (MOFs), and molecularly imprinted polymers (MIPs) are among these new tools suitable for modifying the characteristics of analytical methods. These smart materials have been applied in different steps of an analytical process, affording high efficacy sorbents in sample treatment, improved stationary phases in chromatography, main molecular recognizing components of electrochemical sensors and portable systems, among other functions. In this chapter and throughout both volumes of the **Handbook of Smart Materials in Analytical Chemistry** the main advantages and uses of these special reagents will be analyzed in detail.

1.2 Smart Materials for Sample Treatment

Usually, an analytical procedure has been considered as a succession of steps systematically organized, like a chain made up of several links, with the treatment of samples being the most crucial step, and also the weakest, link (see Figure 1.2). Moreover, it has been quantified that sampling and sample treatment steps involve 67% of the analysis time, but most importantly they give rise to 60% of error sources [5]. Sample preparation generally involves the clean-up of the sample matrix and the enrichment of target analytes to provide an interference-free signal enhancement. Consequently, both the sensitivity and selectivity enhancement of the method are the main challenges.

Figure 1.1 Evolution of the number of articles published in per-reviewed journals related to analytical determination using smart materials, such as nanoparticles, carbon nanotubes (CNTs), graphene, ionic liquids (ILs), quantum dots (QDs), antibodies, immunomaterials, aptamers, metal–organic frameworks (MOFs), and molecularly imprinted polymers (MIPs). Source: Scopus (Elsevier B.V., Amsterdam, Netherlands).
In particular, sample preparation is the most critical step in the analysis of biological matrices, due to the complexity of the matrix and the presence of multiple interferents at diverse concentrations, such as protein, polypeptides, lipids, fatty acids, sugars, etc., together with analyte related species such as metabolites [6]. In this sense, the development and use of novel smart materials with improved properties for sample treatment is considered one of the most promising strategies to improve practical aspects and, in particular, to decrease analysis time and labor, together with an increase in the efficacy, selectivity, simplicity, and speed of the treatment. Obviously, the final analytical properties of the method not only depend on the sample treatment, they are strongly related to the employed separation method (liquid and gas chromatography, or capillary electrophoresis) and the detection technique. Thus, chromatography techniques coupled to mass spectrometry provide high selectivity and sample treatment is based on a simple clean-up of extracts or sample matrix directly to remove macromolecules and proteins using inexpensive and low selective sorbents; while using detection systems with relatively low selectivity, such as UV–visible, fluorescence, or ion mobility spectrometry, the use of sorbents with high selectivity toward target analytes is required. Thus, the application of smart materials for sample treatment can be summarized as: (i) increased selectivity in the target analyte retention and pre-concentration, (ii) high adsorption capacity due to the improved surface area to volume ratio, (iii) extension of novel chemical analyte–sorbent interactions with high extraction efficacy, and (iv) easy handling of materials and speed of processes related to the use of magnetic materials. On the other hand, the aforementioned advances provided by smart materials in the separation and determination steps focus on the improvement of selectivity including specificity in chiral analysis or the separation of strongly related chemical forms. In this sense, the use...
of smart materials for building column or capillary materials together with their use as mobile phases have been exciting possibilities in clinical, environmental, and food analysis.

Figure 1.3 shows the most promising smart materials employed as sorbents for selective and non-specific sample treatments. Smart materials employed for the selective extraction of target analytes include antibodies and aptamers, from biological sources, but also synthetic materials like MIPs, MOFs, and RAMs. In the case of non-specific sorbents, many sample treatment approaches have been developed using materials like graphene, carbon nanotubes (CNTs), silica nanomaterials and monoliths, surfactant-based compounds, or ionic liquids, which offer high extraction efficacies and could be also improved by the incorporation of modified surface activities for the selective extraction of target analytes. In fact, all the aforementioned smart materials have gained the attention of researchers to be employed as sorbent in different extraction techniques [7].

1.2.1 Solid-Phase Extraction

Worldwide, one of the most frequently used sample treatment techniques in laboratories is solid-phase extraction (SPE), where the target analytes are transferred to a solid sorbent from a liquid or dissolved sample; the analytes are released in a later step using elution solvents. SPE provides as main advantages simplicity, versatility, efficacy, low-cost, and high recoveries. Traditional SPE sorbents are based on adsorption, reversed phase, normal phase, and ion exchange interactions, using silica gels with chemically bonded stationary phases or porous polymers. The development of novel sorbents for SPE has played an important role in recent decades, in order to improve extraction efficiency and selectivity [8].

The use of carbon-based materials as SPE sorbents was introduced following the discovery of fullerene (C_{60}) in 1985, with the use of materials like single- and multi-walled CNTs, nanohorns, nanocones, nanofibers, graphene oxide, or graphene [9]. CNTs have been widely employed in recent years because of their π–π interactions with aromatic...
compounds, as well as their interesting properties like high surface area, easy functionalization, wide accessibility, and relatively low price [10]. The uses of graphene as SPE sorbent are reduced due to its lower water dispersibility. However, graphene oxide has gained great attention due to the surface incorporation of a wide range of functional groups like hydroxyls, carbonyls, or ketones, which improve the extraction efficacy [11]. Moreover, surface-modified graphene oxides promote van der Waals interactions that allow the retention of both hydrophilic and polar analytes [12].

SPE support selectivity was increased by the linking of enzymes to solid supports and can be greatly enhanced by using antibody-based materials, and also so-called immunosorbents, which involve antigen–antibody interactions that provide a selective extraction of target analytes with a minimal coextraction of sample matrix [13]. Antibodies are usually covalently coated, via amino, carboxyl, or thiol groups, to materials like carbohydrate polymers, as agarose and cellulose, or synthetic acrylamide, polymethacrylate, and polyethersulfone polymers [14]. Immunosorbents have been employed for the robust, quantitative, and selective SPE of a wide variety of antibiotics, hormones, pesticides, and mycotoxins in complex samples such as urine, soil, or food [15, 16]. Additionally, some selective immunoaffinity materials are nowadays commercially available for mycotoxin extraction from R-Biopharm AG (Darmstadt, Germany) and Merck (Darmstadt, Germany).

MIPs are cross-linked synthetic polymers, with a three-dimensional macromolecular structure, obtained by the co-polymerization of a functional monomer and a cross-linker in the presence of a template molecule. MIPs are considered as artificial biomimetic receptors with a high selectivity in the same range as that of antibodies and other biological receptors, but with an improved stability at extreme temperature and pH conditions, easy and low cost synthesis, and reusability [17]. The first reported use of MIPs, as selective sorbent for SPE, was made in 1994 [18]. Since then a rising number of MIPs have been synthetized for versatile use in sample preparation [19], including environmental [20] and food applications [21]. In fact, MIP-based SPE sorbents are widely established in current analytical methods, and they are commercially available from standard supply companies like Merck (Darmstadt, Germany) or Affinisep (Petit Couronne, France).

Aptamers are synthetic oligonucleotides with up to 110 single stranded base pairs able to retain specifically target molecules with a high selectivity due to the combination of hydrogen bonds, van der Waals forces, and dipole interactions.

The selectivity of aptamers is comparable to that obtained with antibodies, but they can be produced in vitro, avoiding the use of experimental animals and, thus, provide relatively low cost biomaterials. Molecular recognition sorbents based on aptamers show promising properties for SPE because of their high specificity and binding affinity, low cost, good stability, and easy in-vitro synthesis [22]. Applications of aptamer-based materials for SPE include the analysis of mycotoxins, drugs, antibiotics, and even persistent organic pollutants such as polychlorinated biphenyls [23, 24].

RAMs show a dual surface; the inner layer retains small molecules by both hydrophobic and hydrophilic interactions, while the external layer exhibits a size exclusion effect over the sample matrix. Thus, it allows the simple and easy extraction of target analytes from biological fluids, avoiding the retention of macromolecules from the matrix. RAMs have been employed for SPE in biological fluids for the analysis of drugs [25] or pesticides [26], even including inorganic species like Cu(II) and Cd(II) [27].
MOFs are distinctive materials made from metal ions and organic ligands with unusual properties, like high surface area, porosity, selectivity, and thermal and chemical stability [28]. MOFs have been employed for the SPE of compounds such as non-steroidal anti-inflammatory drugs [29], naproxen and its metabolites [30], and naphthol enantiomers [31].

1.2.2 Solid-Phase Microextraction

The solid-phase microextraction (SPME) technique was proposed by Pawliszyn and Arthur in 1990. It consists of a fused silica fiber, coated with a thin layer of an extracting material, fixed inside of the needle of a syringe [32]. Analyte extraction is carried out directly from liquid or dissolved samples or after a head-space thermal treatment from liquid or solid materials. Desorption of target analytes from the fiber is usually carried out by thermal desorption, which makes it easy to couple directly to gas chromatographic systems, but analysis by liquid chromatography or capillary electrophoresis is also possible. SPME provides great advantages for sample treatments, such as simplicity, versatility, sensitivity, short extraction time, reusability, solvent-free technique, robustness, and easy automation [33].

Commercial SPME devices are mainly coated with polymeric sorbents such as polydimethylsiloxane (PDMS) and polyacrylate, alone or in combination with divinylbenzene and/or carboxen depending on the final application. Extraction efficiency and selectivity of standard devices have been improved by the use of several smart materials as fiber coating materials, such as ionic liquids, polymeric ionic liquids, graphene, CNTs, MIPs, and MOFs [34]. These materials provided enhanced properties because of their easy synthesis, sensitivity, high thermal and chemical stability, reproducibility of measurements, and wide linear range. Regarding selectivity, carbon-based materials provide a moderate selectivity toward aromatic compounds due to their p-electron-rich structure, but a tunable selectivity for different analytes can be obtained by the use of ionic liquids, polymeric ionic liquids, MIPs, and MOFs [35]. Strategies to improve the extraction efficiency of SPME have focused on the use of nanomaterials, nanostructured polymers, and monolith packing capillaries [7].

Additionally, on-line SPME techniques are based on the adsorption of target analytes at the inner surface of an internally coated capillary column that is directly coupled online to a chromatography system. The extraction properties of the method mainly depend on the thickness and nature of the sorbent. Commercially available capillary columns have been traditionally employed for in-tube SPME, but they have been replaced by new coating materials with improved properties such as MIPs, immunosorbents, ionic liquids, nanoparticle-based materials, and monolithic capillary columns [36].

1.2.3 Magnetic Extraction

Dispersive SPE is an extraction method, where the extraction is carried out directly in the bulk sample solution instead of using a column filled with a solid material. The sorbent is dispersed into the sample solution to extract the target analytes or to remove matrix interferents. This technique has gained increased attention in recent years due to its high efficacy, speed, and simplicity. Dispersive SPE avoids the loading of large volumes of sample and increases the analyte mass transfer from the sample to the