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Introduction

The topic of design patterns sounds dry, academically dull and, in

all honesty, done to death in almost every programming language
imaginable—including programming languages such as JavaScript

that aren’t even properly object-oriented programming (OOP)! So why
another book on it? I know that if you're reading this in a bookstore, you
probably have a limited amount of time to decide whether this is worth the
investment.

I decided to write this book to fill a gap left by the lack of patterns
books in the .NET space. Plenty of books have been written over the years,
but not one has attempted to research all the ways in which modern C#
and F# language features can be used to implement design patterns and
present corresponding examples. Having just completed a similar body of
work for C++,' I thought it fitting to replicate the process with .NET.

Now, on to design patterns. The original design patterns book? was
published with examples in C++ and Smalltalk and, since then, plenty of
programming languages have incorporated certain design patterns directly
into the language. For example, C# directly incorporated the Observer
pattern with its built-in support for events (and the corresponding event
keyword).

Design patterns are also a fun investigation of how a problem can
be solved in many different ways, with varying degrees of technical
sophistication and different sorts of trade-offs. Some patterns are more

'Dmitri Nesteruk, Design Patterns in Modern C++ (New York, NY: Apress, 2017).

2Erich Gamma, Richard Helm, Raplph Johnson, and John Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software (Reading, MA: Addison
Wesley, 1994).
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INTRODUCTION

or less essential and unavoidable, whereas other patterns are more of a
scientific curiosity (but nevertheless are discussed in this book, because
I'm a completionist).

Readers should be aware that comprehensive solutions to certain
problems often result in overengineering, or the creation of structures and
mechanisms that are far more complicated than necessary for most typical
scenarios. Although overengineering is a lot of fun (hey, you get to really
solve the problem and impress your coworkers), it’s often not feasible due
to time, cost, and complexity constraints.

Who This Book Is For

This book is designed to be a modern-day update to the classic Gang of
Four (GoF, referring to the four authors) book, targeting specifically the C#
and F# programming languages. My focus is primarily on C# and the object-
oriented paradigm, but I thought it fair to extend the book to cover some
aspects of functional programming and the F# programming language.

The goal of this book is to investigate how we can apply the latest
versions of C# and F# to the implementation of classic design patterns.
At the same time, it’s also an attempt to flesh out any new patterns and
approaches that could be useful to .NET developers.

Finally, in some places, this book is quite simply a technology demo
for C# and F#, showcasing how some of the latest features (e.g., dynamic)
make difficult problems a lot easier to solve.

Xiv



INTRODUCTION

On Code Examples

The examples in this book are all suitable for putting into production, but a

few simplifications have been made to aid readability:

I use public fields. This is not a coding
recommendation, but rather an attempt to save you
time. In the real world, more thought should be given
to proper encapsulation and, in most cases, you
probably want to use properties instead.

I often allow too much mutability either by not using
readonly or by exposing structures in such a way that
their modification can cause threading concerns. We
cover concurrency issues for a few select patterns, but I
haven’t focused on each one individually.

I don’t do any sort of parameter validation or exception
handling, again to save some space.

You should be aware that most of the examples leverage the latest

version of C# and generally use the latest C# language features that are

available to developers. For example, I use dynamic, pattern matching, and

expression-bodied members liberally.

At certain points in time, I reference other programming languages

such as C++ or Kotlin. It is sometimes interesting to note how designers of

other languages have implemented a particular feature. C# is no stranger

to borrowing generally available ideas from other languages, so I mention

those when we come to them.
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CHAPTER 1

The SOLID Design
Principles

SOLID is an acronym that stands for the following design principles (and
their abbreviations):

» Single Responsibility Principle (SRP).

e Open-Closed Principle (OCP).

e Liskov Substitution Principle (LSP).

o Interface Segregation Principle (ISP).

e Dependency Inversion Principle (DIP).

These principles were introduced by Robert C. Martin in the early
2000s; in fact, they are just a selection of five principles out of dozens that
are expressed in Martin’s books and his blog. These five particular topics
permeate the discussion of patterns and software design in general, so
before we dive into design patterns (I know you're eager), we're going to do
a brief recap of what the SOLID principles are all about.

Single Responsibility Principle
Suppose you decide to keep a journal of your most intimate thoughts. The

journal has a title and a number of entries. You could model it as follows:

© Dmitri Nesteruk 2019 3
D. Nesteruk, Design Patterns in .NET, https://doi.org/10.1007/978-1-4842-4366-4_1



CHAPTER 1  THE SOLID DESIGN PRINCIPLES

public class Journal

{
private readonly List<string> entries = new List<string>();
// just a counter for total # of entries
private static int count = 0;

}

Now, you could add functionality for adding an entry to the journal,
prefixed by the entry’s ordinal number in the journal. You could also have
functionality for removing entries (implemented in a very crude way here).
This is easy:

public void AddEntry(string text)

{
entries.Add($"{++count}: {text}");
}
public void RemoveEntry(int index)
{
entries.RemoveAt(index);
}

The journal is now usable as:

var j = new Journal();
j.AddEntry("I cried today.");
j.AddEntry("I ate a bug.");

It makes sense to have this method as part of the Journal class because
adding a journal entry is something the journal actually needs to do. It is
the journal’s responsibility to keep entries, so anything related to that is fair
game.

Now, suppose you decide to make the journal persist by saving it to a
file. You add this code to the Journal class:
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public void Save(string filename, bool overwrite = false)

{
File.WriteAllText(filename, ToString());

}

This approach is problematic. The journal’s responsibility is to keep
journal entries, not to write them to disk. If you add the persistence
functionality to Journal and similar classes, any change in the approach
to persistence (say, you decide to write to the cloud instead of disk) would
require lots of tiny changes in each of the affected classes.

I want to pause here and make a point: An architecture that leads to you
having to make lots of tiny changes in lots of classes, whether related (as in
a hierarchy) or not, is typically a code smell—an indication that something’s
not quite right. Now, it really depends on the situation: If you're
renaming a symbol that is being used in a hundred places, I would argue
that’s generally okay because ReSharper, Rider, or whatever integrated
development environment (IDE) you use will actually let you perform a
refactoring and have the change propagate everywhere. When you need to
completely rework an interface, though, it can be a very painful process!

We therefore state that persistence is a separate concern, one that is
better expressed in a separate class. We use the term separation of concerns
(sadly, the abbreviation SoC is already taken) when talking about the
general approach of splitting code into separate classes by functionality. In
the cases of persistence in our example, we would externalize it like so:

public class PersistenceManager
{
public void SaveToFile(Journal journal, string filename,
bool overwrite = false)
{
if (overwrite || !File.Exists(filename))
File.WriteAllText(filename, journal.ToString());
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This is precisely what we mean by single responsibility: Each class
has only one responsibility, and therefore has only one reason to change.
Journal would need to change only if there is something more that needs
to be done with respect to in-memory storage of entries; for example,
you might want each entry prefixed by a timestamp, so you would
change the Add() method to do exactly that. On the other hand, if you
wanted to change the persistence mechanic, this would be changed in
PersistenceManager.

An extreme example of an anti-pattern’ that violates the SRP is called
a God Object. A God Object is a huge class that tries to handle as many
concerns as possible, becoming a monolithic monstrosity that is very
difficult to work with. Strictly speaking, you can take any system of any
size and try to fit it into a single class, but, more often than not, you'd
end up with an incomprehensible mess. Luckily for us, God Objects
are easy to recognize either visually or automatically (just count the
number of methods) and, thanks to continuous integration and source
control systems, the responsible developer can be quickly identified and
adequately punished.

Open-Closed Principle

Suppose we have an (entirely hypothetical) range of products in a
database. Each product has a color and size and is defined as follows:

public enum Color

{

Red, Green, Blue

'An anti-pattern is a design pattern that also, unfortunately, shows up in code
often enough to be recognized globally. The difference between a pattern and an
anti-pattern is that anti-patterns are typically patterns of bad design, resulting in
code that is difficult to understand, maintain, and refactor.

6
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public enum Size
{

Small, Medium, Large, Yuge
}

public class Product
{
public string Name;
public Color Color;
public Size Size;

public Product(string name, Color color, Size size)

{
// obvious things here
}
}

Now, we want to provide certain filtering capabilities for a given set
of products. We make a ProductFilter service class. To support filtering
products by color, we implement it as follows:

public class ProductFilter
{
public IEnumerable<Product> FilterByColor
(IEnumerable<Product> products, Color color)
{
foreach (var p in products)
if (p.Color == color)
yield return p;

Our current approach of filtering items by color is all well and good,
although of course it could be greatly simplified with the use of LINQ. So,
our code goes into production but, unfortunately, some time later, the
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boss asks us to implement filtering by size, too. So we jump back into
ProductFilter.cs, add the following code, and recompile:

public IEnumerable<Product> FilterBySize
(IEnumerable<Product> products, Size size)

{
foreach (var p inm products)
if (p.Size == size)
yield return p;
}

This feels like outright duplication, doesn’t it? Why don’t we just write
a general method that takes a predicate (i.e., a Predicate<T>)? Well, one
reason could be that different forms of filtering can be done in different
ways: For example, some record types might be indexed and need to be
searched in a specific way; some data types are amenable to search on a
Graphics processing units (GPU) whereas others are not.

Furthermore, you might want to restrict the criteria one can filter on.
For example, if you look at Amazon or a similar online store, you are only
allowed to perform filtering on a finite set of criteria. Those criteria can be
added or removed by Amazon if they find that, say, sorting by number of
reviews interferes with the bottom line.

Okay, so our code goes into production but, once again, the boss
comes back and tells us that now there is a need to search by both size and
color. So what are we to do but add another methods?

public IEnumerable<Product> FilterBySizeAndColor(
IEnumerable<Product> products,
Size size, Color color)

{
foreach (var p in products)
if (p.Size == size 8& p.Color == color)
yield return p;
}
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What we want, from this scenario, is to enforce the open-closed
principle that states that a type is open for extension, but closed for
modification. In other words, we want filtering that is extensible (perhaps
in a different assembly) without having to modify it (and recompiling
something that already works and might have been shipped to clients).

How can we achieve it? Well, first of all, we conceptually separate
(SRP!) our filtering process into two parts: a filter (a construct that takes all
items and only returns some) and a specification (a predicate to apply to a
data element).

We can make a very simple definition of a specification interface:

public interface ISpecification<T>

{
bool IsSatisfied(T item);

}

In this code, type T is whatever we choose it to be: It can certainly be a
Product, but it can also be something else. This makes the entire approach
reusable.

Next up, we need a way of filtering based on ISpecification<T>: This
is done by defining, you guessed it, an IFilter<T>:

public interface IFilter<T>

{
IEnumerable<T> Filter(IEnumerable<T> items, ISpecification<T>
spec);

}

Again, all we are doing is specifying the signature for a method called
Filter() that takes all the items and a specification, and returns only
those items that conform to the specification.
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Based on these interface definitions, the implementation of an
improved filter is really simple:

public class BetterFilter : IFilter<Product>
{

public IEnumerable<Product> Filter(IEnumerable<Product> items,

ISpecification<Product> spec)
{
foreach (var i in items)
if (spec.IsSatisfied(i))
yield return i;

Again, you can think of an ISpecification<T> thatis being passed
in as a strongly typed equivalent of a Predicate<T> that has a finite set of
concrete implementations suitable for the problem domain.

Now, here’s the easy part. To make a color filter, you make a
ColorSpecification:

public class ColorSpecification : ISpecification<Product>

{

private Color color;

public ColorSpecification(Color color)

{

this.color = color;

}

public bool IsSatisfied(Product p)
{

return p.Color == color;

}
}

10
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Armed with this specification, and given a list of products, we can now
filter them as follows:

var apple = new Product("Apple", Color.Green, Size.Small);
var tree = new Product("Tree", Color.Green, Size.large);
var house = new Product(“"House", Color.Blue, Size.large);

Product[] products = {apple, tree, house};

var pf = new ProductFilter();

WritelLine("Green products:");

foreach (var p in pf.FilterByColor(products, Color.Green))
WriteLine($" - {p.Name} is green");

This code gets us “Apple” and “Tree” because they are both green. Now,
the only thing we have not implemented so far is searching for size and color
(or, indeed, explaining how you would search for size or color, or mix different
criteria). The answer is that you simply make a composite specification (or a
combinator). For example, for the logical AND, you can make it as follows:

public class AndSpecification<T> : ISpecification<T>

{

private readonly ISpecification<T> first, second;

public AndSpecification(ISpecification<T> first,
ISpecification<T> second)

{
this.first = first;
this.second = second;

}

public override bool IsSatisfied(T t)

{
return first.IsSatisfied(t) && second.IsSatisfied(t);

}
}

11
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Now, you are free to create composite conditions on the basis of
simpler ISpecifications. Reusing the green specification we made earier,
finding something green and big is now as simple as this:

foreach (var p in bf.Filter(products,
new AndSpecification<Product>(
new ColorSpecification(Color.Green),
new SizeSpecification(Size.Large))))
{
WritelLine($"{p.Name} is large");
}

// Tree is large and green

This was a lot of code to do something seemingly simple, but the benefits
are well worth it. The only really annoying part is having to specify the
generic argument to AndSpecification—remember, unlike the color and
size specifications, the combinator is not constrained to the Product type.

Keep in mind that, thanks to the power of C#, you can simply introduce
an operator & (important: note the single ampersand here; 8& is a by-
product) for two ISpecification<T> objects, thereby making the process
of filtering by two (or more) criteria somewhat simpler. The only problem
is that we need to change from an interface to an abstract class (feel free to
remove the leading I from the name).

public abstract class ISpecification<T>

{
public abstract bool IsSatisfied(T p);

public static ISpecification<T> operator &(
ISpecification<T> first, ISpecification<T> second)

{

return new AndSpecification<T>(first, second);

}
}

12
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If you now avoid making extra variables for size and color
specifications, the composite specification can be reduced to a single line:?

var largeGreenSpec = new ColorSpecification(Color.Green)
& new SizeSpecification(Size.large);

Naturally, you can take this approach to extreme by defining extension
methods on all pairs of possible specifications:

public static class CriteriaExtensions
{
public static AndSpecification<Product> And(this Color color,
Size size)
{
return new AndSpecification<Product>(
new ColorSpecification(color),
new SizeSpecification(size));

}
}

with the subsequent use:
var largeGreenSpec = Color.Green.And(Size.Large);

However, this would require a set of pairs of all possible criteria,
something that is not particularly realistic, unless you use code generation,
of course. Sadly, there is no way in C# of establishing an implicit
relationship between an enum Xxx and an XxxSpecification.

Figure 1-1 is a diagram of the entire system we've just built.

*Notice we're using a single & in the evaluation. If you want to use &8, you'll also
need to override the true and false operators in ISpecification.

13
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T T
ISpecification IFilter

> IsSatisfied() > Filter()

> operator&()

T

ColorSpecification SizeSpecification BetterFilter
@1 color @l size
> IsSatisfied() O IsSatisfied()

Figure 1-1. Visual representation of the system built

So, let’s recap what OCP is and how the given example enforces it.
Basically, OCP states that you shouldn’t need to go back to code you have
already written and tested and change it. That is exactly what’s happening
here! We made ISpecification<T> and IFilter<T> and, from then on, all
we have to do is implement either of the interfaces (without modifying the
interfaces themselves) to implement new filtering mechanics. This is what
is meant by “open for extension, closed for modification.”

One thing worth noting is that conformance with OCP is only possible
inside an object-oriented paradigm. For example, F#’s discriminated
unions are by definition not compliant with OCP because it is impossible
to extend them without modifying their original definition.

Liskov Substitution Principle

The Liskov Substitution Principle, named after Barbara Liskov, states that if
an interface takes an object of type Parent, it should equally take an object
of type Child without anything breaking. Let’s take a look at a situation
where LSP is broken.
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Here’s a rectangle; it has width and height and a bunch of getters and
setters, and a property getter for calculating the area:

public class Rectangle

{
public int Width { get; set; }
public int Height { get; set; }

public Rectangle() {}
public Rectangle(int width, int height)

{
Width = width;
Height = height;
}

public int Area => Width * Height;
}

Suppose we make a special kind of Rectangle called a Square. This
object overrides the setters to set both width and height:

public class Square : Rectangle

{
public Square(int side)
{
Width = Height = side;
}
public new int Width
{
set { base.Width = base.Height = value; }
}

15
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public new int Height

{
set { base.Width = base.Height = value; }
}
}

This approach is evil. You cannot see it yet, because it looks very
innocent indeed: The setters simply set both dimensions (so that a square
always remains a square). What could possibly go wrong? Well, suppose
we introduce a method that makes use of a Rectangle:

public static void UseIt(Rectangle r)
{

r.Height = 10;

WritelLine($"Expected area of {10*r.Width}, got {r.Area}");
}

This method looks innocent enough if used with a Rectangle:

var rc = new Rectangle(2,3);
UseIt(rc);
// Expected area of 20, got 20

However, this innocuous method can seriously backfire if used with a
Square instead:

var sq = new Square(5);
UseIt(sq);
// Expected area of 50, got 100

The preceding code takes the formula Area = Width x Height as
an invariant. It gets the width, sets the height to 10, and rightly expects
the product to be equal to the calculated area. Calling this method with a
Square yields a value of 100 instead of 50. I'm sure you can guess why this is.
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