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Preface

The traditional design philosophy for buildings and structures, which takes
almost exclusively only statics considerations into account, is being steadily sup-
plemented by the need for carrying out additional verifications concerning their
response and safety under dynamic loads. A reason for this may lie in the prolif-
eration of modern bold architectural design forms favouring unorthodox and/or
very slender structures, which are often susceptible to vibration under dynamic
excitation. In addition, satisfying higher safety demands is increasingly required for
buildings serving important societal needs (e.g. hospitals), or structures with high
intrinsic risk potential (e.g. large industrial units). A prerequisite for carrying out
complex dynamic analyses is a familiarity with the theoretical foundations and
numerical methods of structural dynamics together with experience in the appli-
cation of the latter and an insight into the nature of dynamic loads. The present book
addresses both students and practising civil engineers offering an overview of the
theoretical basics of structural dynamics complete with the relevant software for
analysing the response of structures subject to earthquake and wind loads
and illustrating its use by means of many examples worked out in detail, with input
files for the programmes included. In the spirit of “learning by doing”, it thus
encourages readers to apply the tools described to their own problems, allowing
them to become familiar with the broad field of structural dynamics in the process.
Chapter 1 deals with the basic theory of structural dynamics followed by chapters
on wind and earthquake loads. Chapters 4 and 5 deal with the behaviour of
buildings and industrial units under seismic loading, respectively, while the final
chapter is devoted to the application of wind engineering methods to slender
tower-like structures. May this book contribute to a deeper understanding and
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familiarity of civil engineering students and practising engineers with the standard
structural dynamics methods, enabling them to confidently carry out all necessary
calculations for evaluating and verifying the safety of buildings and structures!

Aachen, Germany Konstantin Meskouris
Aachen, Germany Christoph Butenweg
Bergisch Gladbach, Germany Klaus-G. Hinzen
Bochum, Germany Rüdiger Höffer
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Chapter 1
Basic Theory and Numerical Tools

Konstantin Meskouris

Abstract This chapter offers an overview of the theoretical foundations and the
standard numerical methods for solving structural dynamics problems, with empha-
sis placed firmly on the latter. Starting with the analysis of single degree of freedom
(SDOF) systems both in the time and in the frequency domain, it includes sec-
tions on the computation of elastic and inelastic response spectra, filtering in the
frequency domain, the analysis of nonlinear SDOF systems and the generation of
spectrum compatible ground motion time histories. Discrete multi-degree of free-
dom (MDOF) systems, condensation techniques and dampingmodels are considered
next. Both modal analysis (“response modal analysis”) and direct integration meth-
ods are employed, focussing especially on the behaviour of MDOF systems subject
to seismic excitations described by response spectra or sets of specific groundmotion
time histories. Detailed descriptions of the software used for solving the numerous
examples presented complete with full input-output parameter lists conclude the
chapter.

Keywords SDOF system · Seismic excitation · Response spectrum
Spectrum compatible accelerogram · Damping · MDOF system · Modal analysis
Direct integration

In this section, themost important basics of structural dynamics are introduced,which
are needed in the further chapters of this book. The explanation of the theoretical
derivation is kept to a minimum, while the emphasis is set on practical applications.
Formost algorithms, easy to use computing programs are provided,which application
is illustrated by several examples.

Electronic supplementary material The online version of this chapter
(https://doi.org/10.1007/978-3-662-57550-5_1) contains supplementary material, which is
available to authorized users.

© Springer-Verlag GmbH Germany, part of Springer Nature 2019
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2 1 Basic Theory and Numerical Tools

1.1 Single-Degree-of-Freedom Systems

Single-degree-of-freedom (SDOF) systems are the simplest oscillators. In spite of
their simplicity, they are being successfully used as numerical models in many real-
life cases. They are discussed in some detail in this chapter because of their wide
application range and also because due to their “straightforwardness” they are emi-
nently suitable for introducing basic structural dynamics methods and concepts.

1.1.1 Linear SDOF Systems in the Time Domain

Figure 1.1 depicts the standard case of a viscously damped SDOF system sub-
ject to a time-varying external load F(t). From the free-body diagram we obtain
by D’Alembert’s principle

FI + FD + FR � F(t) (1.1.1)

with FI, FD and FR as inertia, damping and restoring force, respectively. Setting the
inertia force equal tomass times acceleration, the damping force equal to a coefficient
c times velocity (linear viscous damping model) and the restoring force equal to dis-
placement times the spring stiffness k yields the following 2nd order inhomogeneous
linear ordinary differential equation (ODE) with constant coefficients:

m · ü + c · u̇ + k · u � F(t) (1.1.2)

In order to avoid numerical errors in practice, it is advisable to use a consistent
system of units, in which mass/force conversions are taken care of automatically.
This is e.g. the case when masses are expressed in tons (1 ton�1000 kg), forces in
kN, lengths in m and time in s. Accordingly, c in (1.1.2) might be given in units of
kN s/m, k in kN/m, F in kN and u in m.

The general solution of (1.1.2) is equal to the sum of the solution of the homoge-
neous equation (F(t)�0) and a “particular integral”. The homogeneous ODE

u(t)

F(t) 

m

k

c
F(t) FI 

FR 

FD m

Fig. 1.1 SDOF system with free-body diagram



1.1 Single-Degree-of-Freedom Systems 3

ü +
c

m
· u̇ + k

m
· u � 0 (1.1.3)

is satisfied by the function

u � eλt; u̇ � λ eλt; ü � λ2eλt (1.1.4)

leading to the characteristic equation

λ2 +
c

m
λ + ω2

1 � 0; ω2
1 � k

m
(1.1.5)

with ω1 as circular natural frequency of the system. Its solutions are given by

λ1,2 � − c

2m
±
√( c

2m

)2 − ω2
1 (1.1.6)

The behaviour of the solution of the ODE depends on whether the radicand in
Eq. (1.1.6) is less than, equal to or greater than zero, corresponding to the under-
damped, critically damped and overdamped case, respectively. In the latter case, λ1

and λ2 are real and no vibration occurs. The critical damping is defined as the value
of c for which the radicand is equal to zero:

c

2m
� ω1 → ckrit � 2mω1 � 2

√
km (1.1.7)

The dimensionless ratio D or ξ of the actual damping coefficient, c, to the critical
damping, ckrit, called “damping ratio”, is regularly used for quantifying damping.
The following expressions hold:

D � ξ � c

ckrit
� c

2mω1
;
c

m
� 2ξω1 (1.1.8)

Table 1.1 summarizes some typical values for the damping ratio for low-amplitude
building vibrations.

Introducing the damping ratio ξ and the natural circular frequency ω1, the differ-
ential equation (1.1.3) can also be written as:

ü + 2ξω1u̇ + ω2
1u � 0 (1.1.9)

Table 1.1 Damping ratios
for different structural types

Type of structure Damping ratio D or ξ (%)

Steel structure, welded 0.2–0.3

Steel structure, bolted 0.5–0.6

Reinforced concrete 1.0–1.5

Masonry 1.5–2
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Its solution is

u(t) � e−ξω1t
(
C1 cos

√
1 − ξ2ω1t + C2 sin

√
1 − ξ2ω1t

)
(1.1.10)

where C1, C2 are integration constants. For general initial conditions u(0) �
u0, u̇(0) � u̇0 this leads to

u(t) � e−ξω1t(u0 cos
√
1 − ξ2ω1t +

(u̇0 + ξω1u0)

ω1

√
1 − ξ2

sin
√
1 − ξ2ω1t) (1.1.11)

This expression can be further simplified by introducing the damped natural cir-
cular frequency ωD (corresponding damped natural period TD):

ωD � ω1

√
1 − ξ2; TD � 2π/ωD (1.1.12)

In the case of forced vibrations, Eq. (1.1.9) reads

ü + 2ξω1u̇ + ω2
1u � F(t)

m
� f(t) (1.1.13)

The general solution of (1.1.13) is given by the sum of the homogeneous solution
Eq. (1.1.11) and the particular integral (DUHAMEL integral)

up(t) � 1

ωD

t∫
0

f(τ)e−ξω1(t−τ) sinωD(t − τ)dτ (1.1.14)

The DUHAMEL integral can be evaluated numerically for arbitrary forcing func-
tions F(t). Alternatively, Eq. (1.1.13) can be solved by various Direct Integration
algorithms as explained later.

Another widely used damping parameter, in addition to the critical damping ratio
D or ξ according to Eq. (1.1.8), is the so-called logarithmic decrement�. It is defined
as the natural logarithm of the ratio of the amplitudes of two successive positive (or
negative) peaks:

� � ln
ui
ui+1

� ln
e−ξω1ti cosωDti

e−ξω1ti+1 cosωDti+1
� ln e−ξω1(ti−ti+1) � ξω1(ti+1 − ti)

� ξω1
2π

ωD
� ξω1TD � ξω1

2π

ω1

√
1 − ξ2

� ξ
2π√
1 − ξ2

(1.1.15)

For the lightly damped systems normally encountered in structural dynamics, it
is sufficiently accurate to write

ξ � D ≈ �

2π
(1.1.16)



1.1 Single-Degree-of-Freedom Systems 5

Fig. 1.2 Free vibration with
viscous damping
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The logarithmic decrement can be experimentally determined from time-history
measurements of free vibrations. Normally, two peaks u1 and un+1 occurring at times
t1 and tn+1 and spanning n vibration cycles are considered, in which case we obtain

� � 1

n
ln

u1
un+1

(1.1.17)

As an example, Fig. 1.2 shows the (calculated) displacement time history for a
SDOF system with a natural period of T1 �0.20 s, an initial velocity at t�0 of
0.6 m/s and a damping value of D�5%. The positive peak amplitudes of the first
four cycles are given as 0.01785, 0.01304, 0.009518, 0.006949 and 0.005071 m,
leading to a logarithmic decrement of

� � ln
0.01785

0.01304
≈ 1

4
ln

0.01785

0.005071
� 0.315; D ≈ �

2π
� 0.05 (1.1.18)

As mentioned above, the differential equation of motion for the linear SDOF
oscillator given by Eq. (1.1.2) with the general initial conditions u(0) � u0, u̇(0) �
u̇0 can also be solved by Direct Integration in the time domain. There exist many
suitable algorithms for solving this classical initial-value problem.

Two issues are of central importance for the choice of an integration scheme,
namely its stability and its accuracy. An unconditionally stable algorithm is present
if the solution u(t) remains finite for arbitrary initial conditions and arbitrarily large
�t/T ratios, �t being the time step employed in the integration and T the natu-
ral period of the SDOF system, T � 2π

√
m/k. A conditionally stable algorithm

(which is generally more accurate than an unconditionally stable one) implies that
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the solution remains finite only if the ratio �t/T does not exceed a certain value.
For SDOF systems with known T it is easy to choose a suitable integration time step
�t; however, unconditionally stable algorithms are generally preferable, especially
if nonlinearities are to be considered.

The accuracy of a Direct Integration algorithm depends on the loading function
f(t), the system’s properties and especially on the ratio of the time step�t to the period
T. The deviation of the computed solution from the true one makes itself felt as an
elongation of the period and a decay of the amplitude of the former, corresponding
to a fictitious additional damping.

Integration algorithms may also be divided into single-step and multi-step meth-
ods, which can also be implicit or explicit. Single-step methods, which are quite
popular in structural dynamics, furnish the values of u, u̇ and ü at time t + �t as
functions of the same variables at time t alone, while multi-step methods require
additional values at times t− �t, t− 2�t etc. Multi-step methods therefore involve
additional initial computations (e.g. by a single-step algorithm), while single-step
methods are “self-starting”. Explicit algorithms furnish the solution at time t + �t
directly, while in implicit methods the unknowns appear on both sides of algebraic
equations and must be determined by solving the corresponding equation system (or
just one equation for a SDOF system). This shortcoming of implicit algorithms is
offset by their better stability properties.

The well-known NEWMARK β-γ-algorithm, to be used here, is an implicit,
single-step scheme with two parameters β and γ which determine its stability and
accuracy properties. Considering the time points t1 and t2, with t2 � t1 + �t, the
dynamic equilibrium of the SDOF system at time t2 is given by

mü2 + cu̇2 + ku2 � F(t2) � F2 (1.1.19)

Introducing increments of the displacement, velocity, acceleration and external
force according to �u � u2 −u1,�u̇ � u̇2 − u̇1 etc. leads to the incremental version
of Eq. (1.1.2)

m�ü + c�u̇ + k�u � �F (1.1.20)

The increments �ü, �u̇ can be given as functions of the displacement increment
�u and the known values of velocity and acceleration at time t1:

�u̇ � γ

β�t
�u − γ

β
u̇1 − �t(

γ

2β
− 1)ü1

�ü � 1

β(�t)2
�u − 1

β�t
u̇1 − 1

2β
ü1 (1.1.21)

Values of β�1/4 and γ�1/2 correspond to an unconditionally stable scheme
which assumes a constant acceleration ü between t1 and t2. For β�1/6 and γ�1/2
the integrator is only conditionally stable and the acceleration varies linearly between
t1 and t2. The displacement increment �u is given by
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�u � f∗

k∗ (1.1.22)

with

k∗ � m
1

β�t2
+ c

γ

β�t
+ k (1.1.23)

and

f∗ � �F + m(
u̇1

β�t
+
ü1
2β

) + c

(
γu̇1
β

+ ü1�t(
γ

2β
− 1)

)
(1.1.24)

The NEWMARK algorithm is used in the programs SDOF1 and SDOF2, details
on which can be found in Appendix. The SDOF1 program deals with the case when
F(t) is an arbitrary piecewise linear function, while SDOF2 considers steady-state
excitations of the type F(t) � A · sin(�1t) + B cos(�2t). For SDOF1 it is usually
necessary to first use the program LININT, also described in Appendix, for deter-
mining additional values of the forcing function F(t) for the chosen time step �t by
linear interpolation.

Example 1.1
The task is to determine the maximum displacement u of the girder and also the
maximum bending moment at the base of the central column for the frame shown
in Fig. 1.3. Further data: Mass m�12 t (assumed to be concentrated in the girder),
damping value D�1%, bending stiffness values EIG �1.25× 105 kNm2, EI1 �0.75
× 105 kNm2, all beams and columns are considered to be inextensional (EA → ∞).

The single-story two-bay frame can be modelled using a SDOF idealization as
depicted in Fig. 1.1, with mass m�12 t and spring stiffness k in kN/m. The latter can
be determined from statics as the reciprocal of the horizontal girder displacement u
due to a unit force F�1.0 kN (program FRAME) or by carrying out a static conden-
sation for the horizontal girder displacement as a master DOF (program CONDEN,
see Sect. 1.2.1). Here, the first approach will be used based on the discretization

4.
75

 m
 

5.00 m 5.00 m 

F(t) m, EIG

u(t) 

EI
1

2E
I 1

EI
1

F(t) 

t, s 

1500 kN 

0.0025 0.0050 

Fig. 1.3 Plane frame with triangular loading function F(t)
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1 2 3 

4 5 

1 

2 
3 4 5 

6 

Fig. 1.4 Discretization and input file for a unit load at DOF no. 2

of Fig. 1.4 (see input description for the program FRAME in Appendix), using the
6-DOF beam element shown in Fig. 1.46. For more details on the use of the program
FRAME and the matrix deformation method of analysis employed here see Example
1.5.

The program FRAME yields a horizontal displacement of the girder due to the
unit load (1 kN) equal to 6.292 × 10−5 m. The reciprocal is the spring stiffness,
which in this case equals k�15,893 kN/m. With k and m known, the undamped
circular natural frequency of the frame is

ω1 �
√

k

m
�
√
15,893

12
� 36.39

rad

s
(1.1.25)

the corresponding natural period being equal to

T1 � 2π

ω1
� 0.173 s (1.1.26)

In view of the characteristics of the load function, a time step�t of 0.5× 10−3 s is
chosen and the program LININT used to create the file RHS.txt as input file for the
programSDOF1. For 600 time points (fromzero to 0.3 s) Fig. 1.5 shows the computed
time history for the horizontal displacement of the girder (solid line). The maximum
displacement is reached at time t�0.046 s and is equal to 0.008445 m or 8.4 mm.
In view of the short duration of the excitation, a simple check on the validity of this
result can be carried out by using the principle of impulse and momentum, which
states that the final momentum of a mass m may be obtained by adding its initial
momentum (which, in this case, is zero) to the time integral of the force during the
interval considered. This allows the velocity at time t�0.005 s to be determined as
follows:
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m · u̇1 +
0.005∫
0

F(t)dt � m · u̇2

→ u̇(0.005) �
1
21500 · 0.005 kN s

12 t
� 0.3125

m

s
(1.1.27)

Equation (1.1.11) yields the following expression for the displacement u(t):

u(t) � e−0.01·36.39·t 0.3125

36.39
√
1 − 0.012

sin
√
1 − 0.012 · 36.39 · t (1.1.28)

This function, depicted as a dashed line in Fig. 1.5, is in almost perfect agreement
with the solution obtained using Direct Integration (solid line). From the maximum
displacement umax �0.00845 m at t�0.046 s the maximum restoring force is deter-
mined as FR,max �umax · k�0.00845 · 15,893�134 kN. Using the program FRAME
with 134 kN as the load corresponding to DOF no. 2 yields a bending moment at the
base of the central column equal to 276 kNm. The bending moment diagram for the
entire structure is shown in Fig. 1.6.

For a quick assessment of the maximum response of linear undamped SDOF
systems subject to impulsive loading, shock or response spectra are quite useful.
They present dynamic magnification factors, defined as ratios of maximum dynamic
displacements udyn,max to their static counterparts ustat as functions of the impulse
length ratio t1/T, that is the duration t1 of the impulse divided by the natural period
of the SDOF system. Figure 1.7 shows shock spectra for three impulsive loading
shapes, namely rectangular, trapezoidal and triangular.

Fig. 1.5 Time histories for
the girder horizontal
displacement
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Fig. 1.6 Bending moment
diagram at t�0.00455 s
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Fig. 1.7 Shock spectra for
different impulsive loading
shapes
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A cursory look at Fig. 1.7 would seem to suggest that dynamic magnification
factors do not exceed 2.0, which, however, is not the case. As an example, Figs. 1.8
and 1.9 show some more shock spectra for piecewise linear and sinusoidal impulse
shapes. In Fig. 1.8 the solid line corresponds to the positive/negative impulse shown
to the left and the dashed line to the positive/positive one shown to the right, while
in Fig. 1.9 the solid line corresponds to the single half-sine and the dashed line to
the double half-sine impulse.
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Fig. 1.8 Additional shock
spectra for further polygonal
impulses
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A special case with significant practical importance is the linear SDOF system
subject to stationary harmonic excitation as shown schematically in Fig. 1.10.

Its equation of motion is given by

ü + 2ξω1u̇ + ω2
1u � Fo

m
sin�t (1.1.29)

It has the general solution

u(t) � exp(−ξω1t)(A sinωDt + B sinωDt)

+
Fo
k

1

(1 − β2)2 + (2ξβ)2
[(1 − β2) sin�t − 2ξβ cos�t] (1.1.30)

where β is the ratio of the excitation frequency to the natural frequency of the system,
that is

β � �

ω1
(1.1.31)
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Fig. 1.9 Shock spectra for
sinusoidal impulses
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Fig. 1.10 SDOF system
under harmonic excitation

u(t)

F0 sin( t)

m
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c

The first part of the expression in Eq. (1.1.30) is the solution of the homogeneous
differential equation; its constants A and B must be determined from the initial
conditions. The second part is the particular integral which depends on the loading;
this is the most important part of the system response, since the first part is eventually
damped out, as is evident from the factor e−ξω1t. The second part of the solution can
be written down in the form

u(t) � uR sin(�t − ϕ) (1.1.32)



1.1 Single-Degree-of-Freedom Systems 13

Fig. 1.11 Magnification
factor V for different
damping ratios D
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with

uR � Fo
k
[(1 − β2)2 + (2ξβ)2]−0.5 (1.1.33)

and

ϕ � arctan
2ξβ

1 − β2
(1.1.34)

From Eq. (1.1.33) the dynamic magnification factor V defined as

V � [(1 − β2)2 + (2ξβ)2]−0.5 (1.1.35)

can be extracted. It is seen to be equal to the ratio of the dynamic to the static response
of the harmonically excited SDOF system, where the maximum dynamic response
is given by

max up(t) � uR � F0
k
V (1.1.36)

Figure 1.11 shows V as a function of the frequency ratio for three damping ratios,
namelyD�5, 10 and 20%; clearly, for undamped systems (ξ�0), V tends to infinity.

Peak values of the magnification factor occur at the frequency ratio

β �
√
1 − 2ξ2 (1.1.37)
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Fig. 1.12 Example 1.2, time
history of displacement
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They amount to

max V � 1

2

1

ξ
√
1 − ξ2

(1.1.38)

For a damping ratio of 1% this gives a peak value of 50, for 5% of about 10 and
even for a highly damped system with D�20% we obtain V�2.55.

Example 1.2
Consider the system of Fig. 1.10 with the following data: Spring stiffness k�9000
kN/m, m�10 t, F0 �25 kN, ��20 rad/s and D�5%. Determine the displacement
and velocity time histories u(t) and u̇(t) as well as the maxima of the restoring force
and the damping force.

The circular natural frequencyω1 of the SDOF system is equal to
√

k
m �

√
9000
10 �

30 rad
s , corresponding to T1 �0.21 s. The programSDOF2produces the results shown

for the time histories of the displacement (Fig. 1.12) and the velocity (Fig. 1.13)
using a time step of 0.005 s. The maximum restoring force FR occurs at time 0.25 s,
corresponding to a maximum displacement of −0.00688 m, and is equal to k · umax

�−61.9 kN, while the maximum velocity of 0.161 m/s, occurring at t�0.32 s,
produces a damping force equal to

2 · ξ · ω1 · m · u̇ � 2 · 0, 05 · 30 · 10 · 0.161 � 4.83 kN (1.1.39)

Both these values were reached during the initial vibration stage, before the vis-
cous damping mechanism eliminated the contribution of the “homogeneous” part
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Fig. 1.13 Example 1.2, time
history of velocity
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of the solution. In the subsequent steady-state harmonic vibration stage, with a fre-
quency ratio of

β � �

ω1
� 20

30
� 0.667 (1.1.40)

the maximum displacement amounts to

max up(t) � F0
k
V � 25

9000
V(0.667) � 25

9000
1.79 � 0.005m (1.1.41)

Since here u(t) is a sine wave with circular frequency �, the maximum velocity
is readily determined as

max u̇ � � · umax � 20 · 0.005 � 0.1m/s (1.1.42)

1.1.2 Linear SDOF Systems in the Frequency Domain

It can be shown that any real periodic function of time with period T

f(t + T) � f(t) (1.1.43)

can be expressed in the form
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f(t) � a0 +
∞∑
k�1

ak cosωkt +
∞∑
k�1

bk sinωkt (1.1.44)

with the coefficients

a0 � ω

2π

2π
ω∫

0

f(t)dt � 1

T

T∫
0

f(t) dt (1.1.45)

and

ak � 2

T

T/2∫
−T/2

f(t) cosωkt dt (1.1.46)

bk � 2

T

T/2∫
−T/2

f(t) sinωkt dt (1.1.47)

Here, ωk � k2π
T , k�1, 2, …∞. The coefficients ak and bk can be regarded as the

real and imaginary part, respectively, of the harmonic component associated with
the circular frequency ωk. They can be displayed along a frequency axis at discrete
points ωk with an increment in rad/s equal to

�ω � 2π

T
;

2

T
� �ω

π
(1.1.48)

Figure 1.14 shows such “comb spectra” consisting of discrete values of the coef-
ficients ak and bk every (2π/T) rad/s.

Fig. 1.14 “Comb spectra” for periodic functions
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For a0 �0 we obtain

f(t) �
∞∑
k�1

⎛
⎜⎝ 2

T

T/2∫
−T/2

f(t) · cosωktdt

⎞
⎟⎠ cosωkt

+
∞∑
k�1

⎛
⎜⎝ 2

T

T/2∫
−T/2

f(t) · sinωktdt

⎞
⎟⎠ sinωkt (1.1.49)

or, using Eq. (1.1.44)

f(t) �
∞∑
k�1

⎛
⎜⎝�ω

π

T/2∫
−T/2

f(t) · cosωktdt

⎞
⎟⎠ cosωkt

+
∞∑
k�1

⎛
⎜⎝�ω

π

T/2∫
−T/2

f(t) · sinωktdt

⎞
⎟⎠ sinωkt (1.1.50)

For an aperiodic function we can assume T → ∞, �ω → dω and

f(t) �
∞∫

ω�0

1

π

⎛
⎝

+∞∫
−∞

f(t) · cosωt dt

⎞
⎠ · cosωt dω

+

∞∫
ω�0

1

π

⎛
⎝

+∞∫
−∞

f(t) · sinωt dt

⎞
⎠ · sinωt dω (1.1.51)

Introducing

A(ω) � 1

2π

∞∫
−∞

f(t) cosωt dt, B(ω) � 1

2π

∞∫
−∞

f(t) sinωt dt (1.1.52)

leads to

f(t) � 2

∞∫
ω�0

A(ω) · cosωt dω + 2

∞∫
ω�0

B(ω) · sinωt dω (1.1.53)

and, considering that

A(ω) · cosωt � A(−ω) · cos(−ωt)

B (ω) · sinωt � B(−ω) · sin(−ωt) (1.1.54)
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Fig. 1.15 Time domain
function

to

f(t) �
∞∫

−∞
A(ω) · cosωt dω +

∞∫
−∞

B(ω) · sinωt dω (1.1.55)

With complex coefficients

F(ω) � A(ω) − i · B(ω) (1.1.56)

we finally obtain

F(ω) � 1

2π

⎛
⎝

∞∫
−∞

f(t) cosωt dt

⎞
⎠− i

1

2π

⎛
⎝

∞∫
−∞

f(t) sinωt dt

⎞
⎠

F(ω) � 1

2π

⎛
⎝

∞∫
−∞

f(t)[cosωt − i sinωt]dt

⎞
⎠ (1.1.57)

This is the formal definition of the FOURIER transform F(ω) of the time domain
function f(t):

F(ω) � 1

2π

∞∫
−∞

f(t)e−iωtdt (1.1.58)

The inverse transform is given by

f(t) �
∞∫

−∞
F(ω)eiωtdω (1.1.59)

F(ω) and f(t) form a “FOURIER transform pair”. As a simple practical example
for transforming a time domain function into the frequency domain, consider the
“boxcar” function shown in Fig. 1.15.

The function is even, f(t)� f(−t), so that in Eq. (1.1.52) B(ω)�0. We obtain


