COMPLETE BOOK OF FRAMING
An Illustrated Guide for Residential Construction
Scot Simpson

RSMeans
FROM THE GORDIAN GROUP
WILEY
COMPLETE BOOK OF FRAMING
An Illustrated Guide for Residential Construction
Scot Simpson
Table of Contents

About the Author xi
Acknowledgments xiii
Introduction xv

Chapter 1: Introduction to Framing
- Framing Terms 4
- Framing Lumber 6
- Framing Sheathing 7
- Engineered Wood Products 8
- Lumber and Wood Structural Panel Grade Stamps 12
- Framing Nails 13
- Framing Tools 14
- The Switch to Cordless Tools 16
- Framing Tool Truck 17
- Cutting Lumber 18
- Protecting Lumber from Decay 19
- Preservative Treated Wood 21

Chapter 2: Nailing Patterns
- Nail Top Plate to Studs 26
- Nail Bottom Plate to Studs 26
- Nail Double Plate to Top Plate 27
- Nail Corner 27
- Nail Walls Together or Nail Double Studs 27
- Nail Trimmer to Stud 28
Concrete Nailing 28
Nail Bearing and Nonbearing Walls to Floor Perpendicular to Joists 29
Nail Bearing and Nonbearing Walls to Floor Parallel to Joists 29
Nail Header to Stud 30
Nail Let-in Bracing 31
Nail End of Joist 32
Nail Rim Joist 32
Nail Sheathing 33
Nail Built-up Girders and Beams 34
Nail Joist Blocking 34
Nail Lapping Joists 35
Nail Drywall Backing 35
Nail Trusses to Wall 36
Nail Ceiling Joist, Rafters, and Ridge 36
Nail Rafters to Wall 37
Nail Blocks 37
Nail Fascia and Bargeboard 38

Chapter 3: Floor Framing 39
Step 1–Crown and Place Joists 42
Steps 2 and 3–Nail Rim Joists in Place and Cut Joists to Length 43
Step 4–Nail Joists in Place 44
Step 5–Frame Openings in Joists 45
Steps 6 and 7–Block Bearing Walls and Nail Joists to Walls 46
Step 8–Drywall Backing 47
Step 9–Subfloor Sheathing 48

Chapter 4: Wall Framing 49
Step 1–Spread Headers 52
Step 2–Spread Makeup 53
Steps 3–7–Assemble Wall 54
Step 8–Square Wall 55
Step 9–Sheathe Wall 56
Step 10–Install Nail-Flange Windows 57
Chapter 5: Roof Framing

Roof Framing Terms
Step 1–Finding the Lengths of Common Rafters
Step 2–Cut Common Rafter
Step 3–Set Ridge Board
Step 4–Set Common Rafters
Step 5–Find Length of Hip and Valley Rafters
Step 6–Cut Hip and Valley Rafters
Step 7–Set Hip and Valley Rafters
Step 8–Set Jack Rafters
Step 9–Block Rafters and Lookouts
Step 10–Set Fascia
Step 11–Install Sheathing
Learning Rafters by Example
Ceiling Joists
Step 1–Spread Trusses
Step 2–Sheathe Gable Ends
Step 3–Set Gable Ends
Step 4–Roll Trusses
Steps 5–8

Chapter 6: Doors, Windows, and Stairs

Door Framing Terms
Installation of Exterior Doors
Installation of Nail-Flange Window
Installation of Window Flashing
Steps for Window Flashing Installation When Windows Installed Before WRB (Weather Resistant Barrier)
Steps for Window Flashing Installation When Windows Installed After WRB (Weather Resistant Barrier)
Installation of Sliding Glass Doors
Installation of Stairs 126
Circular Stairs 131

Chapter 7: Layout 139
Wall Layout 142
Joist Layout 157
Rafter or Truss Layout 159
Roof Layout 159

Chapter 8: Engineered Wood Products 161
Engineered Panel Products 164
Engineered Lumber Products 165

Chapter 9: Wind and Earthquake Framing 185
The Strength of Good Framing 188
Understanding Structural Loads 188
Building Code Load Requirements 189
Regional Considerations 190
Framing Details 190
Hold-Downs 197
Positive Placement Nail Guns 202

Chapter 10: Building Code Requirements 205
Introduction to Building Codes 208
Framing According to Code 212
Protection from Decay 230
Termite Protection 238

Chapter 11: Green Framing 239
Green Framing Feeling 242
Advanced Framing 242
Material Selection 244
Structural Insulated Panels (SIPs) 245
SIP Installation 245
SIP Tools 251

Chapter 12: Preparing for a Job 253
Developing a Job Start Checklist 256
Reviewing the Plans and Making Preparations 259
Organizing the Job Site 263
Chapter 13: Managing the Framing Start 267
 Checking Exterior Wall Dimensions 270
 Checking Reference Lines for Square 271
 Adjusting Reference Lines 272
 Checking the Building for Level 274

Chapter 14: Managing a Framing Team 279
 Managing Your Team 282
 The Role of Lead Framers 283
 Quality Control 292
 Organizing Tools and Materials 293
 Teaching Framers 296
 Framing Tips for Every Task 298
 Planning and Scheduling 306
 Recordkeeping 308
 Productivity 310

Chapter 15: Safety 317
 Personal Protective Equipment 320
 Hand Tools 321
 Ladders 323
 Fall Protection 323
 Rough Terrain Forklift Safety 325
 Housekeeping 327

Chapter 16: Healthy Framing 331
 Healthy Framing 333
 Injuries and Prevention 334
 NIOSH Lifting Equation 336
 Power Tool Weights 337
 Lumber Weight Chart 338
 Stretching 339
 Noise 340

Glossary 343

Spanish Framing Terms 351

Index 359
ABOUT THE AUTHOR

Scot Simpson has recently retired from a lifetime of framing houses, schools, and commercial buildings for 41 years. He owned a construction firm for 36 years. His firm, S.S. Framing, Inc., was based in Edmonds, WA. He developed and refined the methods in this book and used them to train his crews. Scot is the author of two other construction books and many articles for construction magazines, such as *Fine Homebuilding* and the *Journal of Light Construction*. He developed and hosted the video “Resisting the Forces of Earthquakes” with the Earthquake Engineering Research Institute and the International Conference of Building Officials.

Scot is a member of the International Code Council (ICC), the Construction Specifications Institute (CSI), and the Associated General Contractors of America (AGC), and was 2006 Chairman of the ABC Framers Council. He has presented training and seminars for the National Association of Homebuilders, the American Forest and Paper Association, and the International Conference of Building Officials, among others, in the U.S., Japan, Korea, the Czech Republic, Bulgaria, Spain, Greece, and Mexico.

Scot holds an MBA from Kent State University, as well as a BA and technical certificates in carpentry instruction, lumber grading, and industrial first aid.
The author appreciates and would like to acknowledge the following individuals and organizations whose efforts and documents have provided content for this book:

Allan R. Simpson, Jr.; Dr. Alan Kelley; Lara Simpson, Bruce Simpson; Mars Simpson; Casey Miller; Dave Neiger; Jeff Harding; John E. Farrier
APA, the Engineered Wood Association; The Association of Mechanical Engineers (ASME);
Digital Canal Corporation; iLevel, a Weyerhaeuser Business, Boise, Idaho; The International Code Council (ICC); The Mason Contractors Association of America (MCAA); Simpson Lumber Company; The Simpson Strong-Tie Company; The Truss Plate Institute; the U.S. Geological Survey National Seismic Hazard Mapping Project; the Western Wood Products Association (WWPA); and Premier Building Systems.
INTRODUCTION

I was a framing contractor for 36 years. I’ve spent most of my career as a lead framer, directing my framing crews and training workers to become framers. In my teaching, I found that much of the information I needed was not available in a good book, so I wrote one, *Framing & Rough Carpentry*. As I started spending more of my time training and working with lead framers, I again looked for a good, easy-to-understand reference. I didn’t find what I needed, so I wrote another book, *Advanced Framing Methods*, that provides all the information a framer needs to move up to the next level—becoming a lead framer. *The Complete Book of Framing* is the combination of those two books, updated with full-color illustrations and photographs, plus additional information—all presented in what I’ve come to think of as a “framer-friendly” format.

Now, as a retired framer, I realize how much I abused my body during a lifetime of framing. While updating this book I added a section on “Healthy Framing”—what you need to know about how framing affects your body; and what you can do to minimize those effects.

If you’re a novice with no framing experience, you’ll see the basics of framing shown in a simple, step-by-step style that makes it easy to learn. Where possible, I included both photographs and drawings for each step—for quick and complete learning. The advanced information will be more difficult for a novice to understand, but getting a good feel for the framing basics that come before it will help. The more advanced tasks are also explained with photos and clear drawings.

If you’re already an experienced framer, the book gives you some unique tools that you won’t find anywhere else. For example, after struggling with rafters and rake walls for years, I developed a diagonal percent system that makes it easier. I use this for finding rafter lengths and rake wall stud heights. The book also explains all the “classic” methods for doing these tasks, but once you try the diagonal percent system, I doubt you’ll go back to the old methods. Another example of the book’s unique style of presentation is the layout language, which I developed for my first book.

If you’re a lead framer, all the basic framing steps presented are important for reference and to help you teach and train crews. Most valuable, however, will be the guidance on managing a framing crew. Once you become a lead framer, your productivity is defined by the productivity of your crew. You’ll need to think about the information they need and how to teach and manage them most effectively. Chapter 14 of this book is like a mini framer management course.
The charts and graphs in the book present information that is needed to manage a framing crew, but is not readily available. For example, the *International Building Code* chart makes it easy to reference the latest information governing framing. The Standard Framing Dimensions chart gathers the information that you “sort-of” remember, but it helps to have it handy for quick reference.

This book covers all the major topics related to framing. Each is presented in the easiest learning method. Because the framing tasks are diverse and vary in complexity, the format also varies a little throughout the book. All of the topics are covered in a framer-friendly way.

Framing is very rewarding work, both physically and mentally. One of the biggest challenges, however, is getting accurate information every time so that your framing is structurally sound, and provides the frame for a beautiful building. This book will assist you in that task.

Happy Framing,

Scot

Note: This book is intended to provide useful information for understanding residential framing, but it is not a substitute for professional construction, engineering, or repair evaluations, recommendations, or services. Readers should obtain assistance from appropriate experts, as needed.
Chapter One

INTRODUCTION TO FRAMING
Contents

Framing Terms 4
Framing Lumber 6
Framing Sheathing 7
Engineered Wood Products 8
Lumber and Wood Structural Panel Grade Stamps 12
Framing Nails 13
Framing Tools 14
Cordless Tools 16
Framing Tool Truck 17
Cutting Lumber 18
Protecting Lumber from Decay 19
Preservative Treated Wood 21
Chapter One

INTRODUCTION TO FRAMING

The trade of wood framing comprises the rough carpentry skills needed to produce the “skeleton” of a building and its first layer of “skin.” The skeleton consists of the structural lumber forming the floors, walls, and roof. The skin consists of the lumber that encloses the skeleton and provides a surface for subsequent layers of protective and decorative finish materials.

This chapter is an illustrated review of a framer’s most basic tools, materials, and terminology. This basic information is often not even taught on the job site, so if you don’t know it when you arrive for work, you will have to play a guessing game or ask a lot of questions.

The detailed illustrations serve as a handy reference and help to reduce confusion when different words are used for the same item. Confusion can arise when framers move from job site to job site and work with different people. For example, bottom plates are often known as sole plates, backers as partitions, and trimmers as jack studs. But it doesn’t matter what they are called as long as you know what they are. There is also a more detailed list of framing terms with definitions at the back of the book.

The suggested organization for a framing tool truck presented in this chapter is just an example of how a truck might be set up for tool storage. Its purpose is, once again, to reduce confusion and make the job easier. It is amazing how much time can be spent looking for tools and nails if they aren’t put where you expect them to be.
Framing Terms

Bearing Walls

Bearing walls support the main weight of an upper portion of a building, such as a ceiling, floor, or roof. Nonbearing walls provide little or no support to those upper portions. Remove nonbearing walls, and the upper portions will stand; remove bearing walls, and the upper portions will fall.

Nonbearing Walls
Some of these terms vary in different parts of the country. For example, the bottom plate is sometimes called the sole plate.
Lumber is sized in “nominal,” as opposed to “actual,” dimensions. A nominal dimension rounds off the actual dimension to the next highest whole number. For example, a piece of lumber that actually measures 1-\(\frac{1}{2}\)" \(\times\) 3-\(\frac{1}{2}\)" is rounded off to the nominal 2" \(\times\) 4".

Framing Lumber

<table>
<thead>
<tr>
<th>Actual dimensions</th>
<th>Nominaldimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(\frac{1}{2})"</td>
<td>2 (\times) 4</td>
</tr>
<tr>
<td>3(\frac{1}{2})"</td>
<td>3 (\times) 4</td>
</tr>
<tr>
<td>5(\frac{1}{2})"</td>
<td>4 (\times) 4</td>
</tr>
<tr>
<td>7(\frac{1}{4})"</td>
<td>4 (\times) 6</td>
</tr>
<tr>
<td>9(\frac{1}{4})"</td>
<td>4 (\times) 8</td>
</tr>
<tr>
<td>11(\frac{1}{4})"</td>
<td>4 (\times) 10</td>
</tr>
</tbody>
</table>

Framer-Friendly Tips

At the mill, this lumber starts out as the actual dimensions, but after it has been surfaced and dried, it is reduced to the nominal dimension.
Framing Sheathing

Engineered Panel Products
Sheathing comes in 4' × 8' sheets. The thicknesses most commonly used in framing are \(\frac{1}{2} '' \), \(\frac{5}{8} '' \), and \(\frac{3}{4} '' \).

The engineered panel products on this wall provide the strength needed for the high ceiling of this elementary school.

GWB = Gypsum wallboard (also called drywall or sheetrock). The most common thicknesses are \(\frac{1}{2} '' \) and \(\frac{5}{8} '' \).

Dens Glass® gypsum sheathing is a brand that has fiberglass mat, which provides mold and moisture resistance and is gold in color.

Although not as common in house framing, gypsum wallboard can be used on exterior walls, such as for apartments and condos, and commercial buildings for fire protection.
Engineered wood products are becoming more and more a part of our everyday framing. The strengths of these different products vary. Whenever you use engineered wood, it is important that you understand the qualities of the specific product you are planning to use, as well as structural considerations and any restrictions on cutting and installation.

Engineered wood products can be divided into two categories: engineered panel products and engineered lumber products. Engineered panel products include plywood, oriented strand board (OSB), waferboard, composite, and structural particleboard. Engineered lumber products include I-joists, glu-lam beams, LVLs (laminated veneer lumber), PSLs (parallel strand lumber), LSLs (laminated strand lumber), OSL (oriented strand lumber), and CLT (cross-laminated timber.)

Engineered wood products have structural qualities different than those of traditional wood, so they must be used within the specification set by the manufacturer. When these products are specified on the plans, the architect or engineer who specified them will have checked with the structural engineer to ensure proper use.

Engineered panel products have been around for years and are treated in a
manner similar to engineered wood products. The 4’ × 8’ typical sheets are strongest in the direction of the grain. For floors and roofs, these sheets should be laid perpendicular to the direction of the supporting members. The strength of the panels comes from the panel cantilevering over the supports—so each piece should be at least as long as two support members.

Glu-lam beams, LVLs, PSLs, and LSLs can be cut to length, but should not be drilled or notched without checking with manufacturers’ specifications.

I-joists are becoming more widely used. Although the Engineered Wood Association has a standard for I-joists, not all I-joists manufacturers subscribe to that standard. Consequently, it is important to follow the manufacturer’s instructions whenever using I-joists. Installation instructions are usually delivered with the load for each job. The illustration shows some of the typical instructions.

Certain features are common among all I-joists. Rim and blocking may be of I-joist or solid rim board. Typical widths are 9-1/2”, 11-7/8”, 14”, 16”, and 20”.

Web stiffeners are used to add to the strength at bearing points. If the bearing point is at the bottom flange, then the web stiffener, which is the thickness of the flange on one side of the web, is held tight to the bottom. There should be at least a 1/8” space between the top flange and the web stiffener. If the bearing point is at the top flange, then the web stiffener is held tight to the top with at least 1/8” between the bottom flange and the web stiffener.
Section view of I-joist. Please note the components of the joist (darker colors) and the web stiffener (lighter color). Fasteners are shown in black.
Squash blocks are pieces of lumber installed alongside TJIs at points of heavy loading. They prevent the weight from crushing the TJI. They are typically dimensional lumber like 2 × 4s or 2 × 6s. They should be cut \(\frac{1}{16} \)" longer than the I-joist to take the load off the I-joists.

I-joist hardware, such as hangers, is usually delivered with the I-joist package. However, standard I-joist hardware can be purchased separately.

I-joists typically require a 1-\(\frac{3}{4} \)" bearing. You can cut the end of an I-joist as long as it is not cut beyond a line straight up from the end of the bearing. However, no cuts should extend beyond a vertical line drawn from the end of the bearing point.

Framer-Friendly Tips

Check the floor above for posts, columns, or concentrated loads so you can install squash blocks while you are joistng.

Squash blocks should be \(\frac{1}{16} \)" greater than the I-joist height.
Lumber and Wood Structural Panel Grade Stamps

Lumber and wood structural panels are graded for strength and different uses. Each piece of lumber is stamped for identification before it is shipped. Architects specify grades of lumber and wood structural panels for various purposes, and framers need to make sure the right wood is used.

Wood Structural Panels

<table>
<thead>
<tr>
<th>Framing</th>
<th>Grade</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light framing
2 × 2 thru 4 × 4</td>
<td>Construction
Standard and better Utility</td>
<td>Plates
Sills
Studs</td>
</tr>
<tr>
<td>Stud
2 × 2 thru 4 × 18</td>
<td>Stud</td>
<td>studs
Cripples</td>
</tr>
<tr>
<td>Structural framing
Select structural
No. 1 and BTR
No. 1
No. 2
No. 3</td>
<td></td>
<td>Studs
Plates
Rafters
Headers
Posts
Beams</td>
</tr>
</tbody>
</table>

Lumber

1. Panel grade 11. APA’s performance rated panel standard
2. Span rating 12. HUD recognition
3. Sized less than full length/width 13. Referenced product standard
5. Siding face grade 15. Panel grade, Canadian standard
6. Species group number 16. Panel mark—Rating and end-use designation per the Canadian standard
7. Bond classification 17. Canadian performance rated panel standard
8. Decimal thickness designation (this value is generally at or near the lowest tolerance specified in PS 1 or PS 2) 18. Panel face grain orientation indicator
9. Mill number
10. Product standard

Framer-Friendly Tips

The specification on your plans should tell you the grade you need to use.

- **WWPA certification mark** certifies Association Quality standards and is a registered trademark.
- **Mill identification** Firm name, brand, or assigned mill number. WWPA can be contacted to identify an individual mill whenever necessary.
- **Grade designation** Grade name, number, or abbreviation.
- **Species identification** Indicates species by individual species or species combination.
- **Condition of seasoning** Indicates condition of seasoning at time of surfacing:
 - MC-15 – KD-15: 15% maximum moisture content
 - S-DRY – KD: 19% maximum moisture content
 - S-GRN: over 19% moisture content (unseasoned)

Images of grade stamps courtesy of APA, The Engineered Wood Association and WWPA, the Western Wood Products Association