Lecture Notes in Computational Intelligence and Decision Making

Advances in Intelligent Systems and Computing

Volume 1020

Series Editor
Janusz Kacprzyk, Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland

Advisory Editors
Nikhil R. Pal, Indian Statistical Institute, Kolkata, India
Rafael Bello Perez, Faculty of Mathematics, Physics and Computing, Universidad Central de Las Villas, Santa Clara, Cuba
Emilio S. Corchado, University of Salamanca, Salamanca, Spain
Hani Hagras, School of Computer Science & Electronic Engineering, University of Essex, Colchester, UK
László T. Kóczy, Department of Automation, Széchenyi István University, Gyor, Hungary
Vladik Kreinovich, Department of Computer Science, University of Texas at El Paso, El Paso, TX, USA
Chin-Teng Lin, Department of Electrical Engineering, National Chiao Tung University, Hsinchu, Taiwan
Jie Lu, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
Patricia Melin, Graduate Program of Computer Science, Tijuana Institute of Technology, Tijuana, Mexico
Nadia Nedjah, Department of Electronics Engineering, University of Rio de Janeiro, Rio de Janeiro, Brazil
Ngoc Thanh Nguyen, Faculty of Computer Science and Management, Wroclaw University of Technology, Wroclaw, Poland
Jun Wang, Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
The series “Advances in Intelligent Systems and Computing” contains publications on theory, applications, and design methods of Intelligent Systems and Intelligent Computing. Virtually all disciplines such as engineering, natural sciences, computer and information science, ICT, economics, business, e-commerce, environment, healthcare, life science are covered. The list of topics spans all the areas of modern intelligent systems and computing such as: computational intelligence, soft computing including neural networks, fuzzy systems, evolutionary computing and the fusion of these paradigms, social intelligence, ambient intelligence, computational neuroscience, artificial life, virtual worlds and society, cognitive science and systems, Perception and Vision, DNA and immune based systems, self-organizing and adaptive systems, e-Learning and teaching, human-centered and human-centric computing, recommender systems, intelligent control, robotics and mechatronics including human-machine teaming, knowledge-based paradigms, learning paradigms, machine ethics, intelligent data analysis, knowledge management, intelligent agents, intelligent decision making and support, intelligent network security, trust management, interactive entertainment, Web intelligence and multimedia.

The publications within “Advances in Intelligent Systems and Computing” are primarily proceedings of important conferences, symposia and congresses. They cover significant recent developments in the field, both of a foundational and applicable character. An important characteristic feature of the series is the short publication time and world-wide distribution. This permits a rapid and broad dissemination of research results.

** Indexing: The books of this series are submitted to ISI Proceedings, EI-Compendex, DBLP, SCOPUS, Google Scholar and Springerlink **

More information about this series at http://www.springer.com/series/11156
Lecture Notes in Computational Intelligence and Decision Making

Collecting, analysis, and processing information are one of the current directions of modern computer science. Many areas of current existence generate a wealth of information which should be stored in a structured manner, analyzed, and processed appropriately in order to gain the knowledge concerning investigated process or object. Creating new modern information and computer technologies for data analysis and processing in various fields of data mining and machine learning create the conditions for increasing effectiveness of the information processing by both the decrease of time and the increase of accuracy of the data processing.

The international scientific conference “Intellectual Decision-Making Systems and Problems of Computational Intelligence” is a series of conferences performed in East Europe. They are very important for this geographic region since the topics of the conference cover the modern directions in the field of artificial and computational intelligence, data mining, machine learning, and decision making.

The conference is dedicated to the memory of Professor, Academician of the National Academy of Sciences of Ukraine Yuriy Kryvonos (April 12, 1939–February 12, 2017). Professor Y. Kryvonos was a well-known specialist in informatics, mathematical modeling, and artificial intelligence. Under his leadership, the fundamentals of the perturbation theory of pseudo-inverse and projection operators, the theory of analysis, and synthesis of high-quality clustering systems, recognition, and prediction of information were developed. In his studies, tools were identified for the optimal synthesis of linear and nonlinear recursive data classification systems (pattern recognition) and methods for analyzing and synthesizing voice speech information were proposed. He has developed a unified approach to solving problems of modeling wave and fast physical and technological processes and a new approach to the synthesis of active artificial media with desired properties. The distributed information technologies based on the concept of an electronic document have been created under his leadership too. Yuriy Kryvonos was one of the founders of this conference, the chairman of the program, and international committees.
The aim of the conference is the reflection of the most recent developments in the fields of artificial and computational intelligence used for solving problems in variety areas of scientific researches related to data mining, machine learning, and decision making.

The 15th International ISDMCI Scientific Conference (ISDMCI’2019) held in Zaliznyi Port, Kherson region, Ukraine, from May 21 to 25, 2019, was a continuation of the highly successful ISDMCI conference series started in 2004. For many years, ISDMCI has been attracting hundreds or even thousands of researchers and professionals working in the field of artificial intelligence and decision making. This volume consists of 49 carefully selected papers that are assigned to three thematic sections:

Section 1. **Analysis and Modeling of Complex Systems and Processes:**
- Methods and means of system modeling in the conditions of uncertainty
- Problems of identification of complex system models and processes
- Modeling of operated complex systems
- Modeling of various nature dynamic objects
- Time series forecasting and modeling
- Information technology in education

Section 2. **Theoretical and Applied Aspects of Decision-Making Systems:**
- Decision-making methods
- Multicriteria models of decision making in the conditions of uncertainty
- Expert systems of decision making
- Methods of artificial intelligence in decision-making systems
- Software and instrumental means for synthesis of decision-making systems
- Applied systems of decision-making support

Section 3. **Computational Intelligence and Inductive Modeling:**
- Inductive methods of model synthesis
- Computational linguistics
- Data mining
- Multiagent systems
- Neural networks and fuzzy systems
- Evolutionary algorithm and artificial immune systems
- Bayesian networks
- Hybrid systems and models
- Fractals and problems of synergetics
- Images’ recognition and cluster analysis
We hope that the broad scope of topics related to the fields of artificial intelligence and decision making covered in this proceedings volume will help the reader to understand that the methods of data mining and machine learning have become an important element of modern computer science.

June 2019

Oleh Mashkov
Volodymyr Stepashko
Yuri Krak
Yuriy Bardachov
Volodymyr Lytvynenko
Organization

ISDMCI’2019 is organized by the Department of Informatics and Computer Science, Kherson National Technical University, Ukraine, in cooperation with:

Black Sea Scientific Research Society, Ukraine
IT Step University, Ukraine
Jan Evangelista Purkyne University in Usti nad Labem, Czech Republic
Lublin University of Technology, Poland
Taras Shevchenko National University of Kyiv, Ukraine
Glushkov Institute of Cybernetic of NAS of Ukraine, Ukraine
International Centre for Information Technologies and Systems of the National Academy of Sciences of Ukraine, Ukraine

Program Committee

Chairman
Oleh Mashkov
State Ecological Academy of Postgraduate Education and Natural Resources Management of Ukraine, Kyiv, Ukraine

Vice-chairmen
Volodymyr Stepashko
International Centre for Information Technologies and Systems of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

Yuri Krak
Taras Shevchenko National University of Kyiv, Ukraine
Members

Igor Aizenberg Manhattan College, New York, USA
Tetiana Aksenova Grenoble University, France
Mikhail Alexandrov Autonomous University of Barcelona, Spain
Svitlana Antoshchuk Odessa National Polytechnic University, Ukraine
Sergii Babichev Jan Evangelista Purkyne University in Usti nad Labem, Czech Republic
Peter Bidyuk National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Ukraine
Yevgeniy Bodyanskiy Kharkiv National University of Radio Electronics, Ukraine
Vitaliy Boyun Glushkov Institute of Cybernetic of NAS of Ukraine, Ukraine
Yevhen Boyun Lviv Polytechnic National University, Ukraine
Mykola Dyvak Ternopil National Economic University, Ukraine
Aleksandr Gozhyj Petro Mohyla Black Sea National University, Ukraine
Larysa Globa National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Ukraine
Volodymyr Hnatushenko Oles Honchar Dnipro National University, Ukraine
Ivan Izonin Lviv Polytechnic National University, Ukraine
Maksat Kalimoldayev Institute of Information and Computational Technologies, Kazakhstan
Bekir Karlik Neurosurgical Simulation Research and Training Center, Canada
Alexandr Khimich Glushkov Institute of Cybernetic of NAS of Ukraine, Ukraine
Pavel Kordik Czech Technical University in Prague, Czech Republic
Andrzej Kotyra Lublin University of Technology, Poland
Yuri Krak Taras Shevchenko National University of Kyiv, Ukraine
Victor Krylov Odessa National Polytechnic University, Ukraine
Roman Kuc Yale University, USA
Frank Lemke KnowledgeMiner Software, Germany
Vitaly Levashenko Zilinska univerzita v Ziline, Slovakia
Volodymyr Lytvynenko Kherson National Technical University, Ukraine
Vasyl Lytvyn Lviv Polytechnic National University, Ukraine
Leonid Lyubchyk National Technical University “Kharkiv Polytechnic Institute”, Ukraine
Igor Malets Lviv State University of Life Safety, Ukraine
Viktor Mashkov Jan Evangelista Purkyne University in Usti nad Labem, Czech Republic
Olena Vynokurova IT Step University, Ukraine
Waldemar Wojcik Lublin University of Technology, Poland
Mykhaylo Yatsymirskyy Institute of Information Technology, Lodz University of Technology, Poland
Elena Zaitseva Zilinska univerzita v Ziline, Slovakia
Jan Zizka Mendel University in Brno, Czech Republic
Taras Rak IT Step University, Ukraine
Olexandr Barmak Khmelnytsky National University, Ukraine
Volodymyr Burachok Borys Grinchenko Kyiv University, Ukraine
Oleksandr Khimich Glushkov Institute of Cybernetic of NAS of Ukraine, Ukraine
Arkadij Chikrii Glushkov Institute of Cybernetic of NAS of Ukraine, Ukraine
Sergiy Gnatyuk National Aviation University, Ukraine
Volodymyr Hrytsyk Lviv Polytechnic National University, Ukraine
Leonid Hulianytskyi Glushkov Institute of Cybernetic of NAS of Ukraine, Ukraine
Volodymyr Khandetskyi Oles Honchar Dnipro National University, Ukraine
Mykola Korablyov Kharkiv National University of Radio Electronics, Ukraine
Viktor Morozov Taras Shevchenko National University of Kyiv, Ukraine
Sergiy Pavlov Vinnitsia National Technical University, Ukraine
Petro Stetsyuk Glushkov Institute of Cybernetic of NAS of Ukraine, Ukraine
Vasyl Trysnyuk Institute of Telecommunications and Global Information Space, Ukraine
Valeriy Zadiraka Glushkov Institute of Cybernetic of NAS of Ukraine, Ukraine
Yuriy Yaremchuk Vinnitsia National Technical University, Ukraine
Fedir Geche Uzhhorod National University, Ukraine

Organization Committee

Chairman

Yuriy Bardachov Kherson National Technical University, Ukraine

Vice-chairmen

Volodymyr Lytvynenko Kherson National Technical University, Ukraine
Yuriy Rozov Kherson National Technical University, Ukraine

Members

Igor Baklan
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Ukraine
Anatoliy Batyuk
Lviv Polytechnic National University, Ukraine
Oleg Boskin
Kherson National Technical University, Ukraine
Liliya Chyrun
Lviv Polytechnic National University, Ukraine
Oleksiy Didyk
Kherson National Technical University, Ukraine
Nataliya Korniilovska
Kherson National Technical University, Ukraine
Yuri Lebedenko
Kherson National Technical University, Ukraine
Olena Liashenko
Kherson National Technical University, Ukraine
Irina Lurje
Kherson National Technical University, Ukraine
Anton Omelchuk
Kherson National Technical University, Ukraine
Oksana Ohnieva
Kherson National Technical University, Ukraine
Viktor Peredery
Kherson National Technical University, Ukraine
Svetlana Radetskaya
Kherson National Technical University, Ukraine
Victoria Vysotska
Lviv Polytechnic National University, Ukraine
Svetlana Vyshemyrskaya
Kherson National Technical University, Ukraine
Maryna Zharkova
Kherson National Technical University, Ukraine
Andriy Kogut
IT Step University, Ukraine
Natalia Axak
Kharkiv National University of Radio Electronics, Ukraine
Oleksandr Melnychenko
Kherson National Technical University, Ukraine
Iryna Mukha
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Ukraine
Pavlo Mulesa
Uzhhorod National University, Ukraine

Additional Reviewers

Fabio Bracci
Scientific Researcher at the Institute for Robotics and Mechatronics, German Aerospace Center (DLR), Germany
Shruti Jain
Jaypee University of Information Technology, India
Aigul Kaskina
University of Fribourg, Switzerland
Swietlana Kasuba
University of Economics, Bydgoszcz, Poland
Anoop Kumar Sahu
Madanapalle Institute of Technology and Science, India
Hakan Kutucu
Karabuk University, Turkey
Kevin Li
University of Windsor, Canada
Stan Lipovetsky
GfK Custom Research North America, USA
Zbigniew Omiotek
Lublin University of Technology, Poland
Scott Overmyer
Baker College, Flint Township, USA
Marek Pawelczyk
Silesian University of Technology, Poland
Ali Rekik
Higher Institute of Computer Sciences, Tunisia
<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdel-Badeh Salem</td>
<td>Ain Shams University, Egypt</td>
</tr>
<tr>
<td>Oleksandr Slipchenko</td>
<td>Booking.com BV, Netherlands</td>
</tr>
<tr>
<td>Saule Smailova</td>
<td>East Kazakhstan State Technical University, Kazakhstan</td>
</tr>
<tr>
<td>Kamil Stokfiszewski</td>
<td>Institute of Information Technology, Lodz</td>
</tr>
<tr>
<td></td>
<td>University of Technology, Poland</td>
</tr>
<tr>
<td>Victoria Vysotska</td>
<td>Lviv Polytechnic National University, Ukraine</td>
</tr>
<tr>
<td>Alexander Wolff</td>
<td>Wuerzburg University, Germany</td>
</tr>
<tr>
<td>Elena Yegorova</td>
<td>LMX, UK</td>
</tr>
<tr>
<td>(Chief Technical Officer, Co-founder)</td>
<td></td>
</tr>
</tbody>
</table>
Contents

Analysis and Modeling of Complex Systems and Processes

Soft Filtering of Acoustic Emission Signals Based on the Complex Use of Huang Transform and Wavelet Analysis .. 3
Sergii Babichev, Oleksandr Sharko, Artem Sharko, and Oleksandr Mikhalyov

Some Features of the Numerical Deconvolution of Mixed Molecular Spectra ... 20
Serge Olszewski, Pawel Komada, Andrzej Smolarz, Volodymyr Lytvynenko, Nataliia Savina, Mariia Voronenko, Svitlana Vyshemyrska, Anton Omelchuk, and Iryna Lurie

Approach to Piecewise-Linear Classification in a Multi-dimensional Space of Features Based on Plane Visualization 35
Iurii Krak, Olexander Barmak, Eduard Manziuk, and Hrygorii Kudin

Volodymyr Marasanov, Artem Sharko, and Dmitry Stepanchikov

Euclidean Combinatorial Configurations: Continuous Representations and Convex Extensions .. 65
Oksana Pichugina and Sergiy Yakovlev

Unconventional Approach to Unit Self-diagnosis 81
Viktor Mashkov, Josef Bicanek, Yuriy Bardachov, and Maria Voronenko

Digital Acoustic Signal Processing Methods for Diagnosing Electromechanical Systems ... 97
Oksana Polyvoda, Hanna Rudakova, Inna Kondratieva, Yuriy Rozov, and Yurii Lebedenko
Construction of the Job Duration Distribution in Network Models for a Set of Fuzzy Expert Estimates .. 110
Yuri Samokhvalov

Configuration Spaces of Geometric Objects with Their Applications in Packing, Layout and Covering Problems 122
Sergiy Yakovlev

Model of the Internet Traffic Filtering System to Ensure Safe Web Surfing ... 133
Vitaliy Serdechnyi, Olesia Barkovska, Dmytro Rosinskiy, Natalia Axak, and Mykola Korablyov

Analysis of Objects Classification Approaches Using Vectors of Inflection Points .. 148
Diana Zahorodnia, Pavlo Bykovyy, Anatoliy Sachenko, Viktor Krylov, Galina Shcherbakova, Ivan Kit, Andriy Kaniovskyi, and Mykola Dacko

Regression Spline-Model in Machine Learning for Signal Prediction and Parameterization ... 158
Ihor Shelevytsky, Victoriya Shelevytska, Kseniia Semenova, and Ievgen Bykov

Intelligent Agent-Based Simulation of HIV Epidemic Process 175
Dmytro Chumachenko and Tetyana Chumachenko

On the Computational Complexity of Learning Bithreshold Neural Units and Networks .. 189
Vladyslav Kotsovsky, Fedir Geche, and Anatoliy Batyuk

Implementation of FPGA-Based Barker’s-Like Codes 203
Ivan Tsmots, Oleg Riznyk, Vasyl Rabyk, Yuriu Kynash, Natalya Kustra, and Mykola Logoida

Controlled Spline of Third Degree: Approximation Properties and Practical Application ... 215
Oleg Stelia, Iurii Krak, and Leonid Potapenko

Automatic Search Method of Efficiency Extremum for a Multi-stage Processing of Raw Materials 225
Igor Konokh, Iryna Oksanych, and Nataliia Istimina

Intellectual Information Technology of Analysis of Weakly-Structured Multi-Dimensional Data of Sociological Research 242
Olena Arsirii, Svitlana Antoshchuk, Oksana Babilunha, Olha Manikaeva, and Anatolii Nikolenko
Theoretical and Applied Aspects of Decision-Making Systems

Investigation of Forecasting Methods of the State of Complex IT-Projects with the Use of Deep Learning Neural Networks 261
Viktor Morozov, Olena Kalnichenko, Maksym Proskurin, and Olga Mezentseva

Comparative Analysis of the Methods for Assessing the Probability of Bankruptcy for Ukrainian Enterprises ... 281
Oksana Tymoshchuk, Olena Kirik, and Kseniia Dorundiak

Monitoring Subsystem Design Method in the Information Control System ... 294
Oksana Polyvoda, Dmytro Lytvynchuk, and Vladyslav Polyvoda

Information-Entropy Model of Making Management Decisions in the Economic Development of the Enterprises 304
Marharyta Sharko, Nataliya Gusarina, and Nataliya Petrushenko

System Development for Video Stream Data Analyzing ... 315
Vasyl Lytvyn, Victoria Vysotska, Vladyslav Mykhailyshyn, Antonii Rzheuskyi, and Sofiia Semianchuk

Methods and Means of Web Content Personalization for Commercial Information Products Distribution .. 332
Andriy Demchuk, Vasyl Lytvyn, Victoria Vysotska, and Marianna Dilai

Automated Monitoring of Changes in Web Resources ... 348
Victoria Vysotska, Yevhen Burov, Vasyl Lytvyn, and Oleg Oleshek

Recognition of Human Primitive Motions for the Fitness Trackers ... 364
Iryna Perova, Polina Zhernova, Oleh Datsok, Yevgeniy Bodyanskiy, and Olha Velychko

Development of Information Technology for Virtualization of Geotourism Objects on the Example of Tarkhany Geological Section ... 377
Ainur Ualkhanova, Natalya Denissova, and Iurii Krak

Information System for Connection to the Access Point with Encryption WPA2 Enterprise ... 389
Lyubomyr Chyrun, Liliya Chyrun, Yaroslav Kis, and Lev Rybak

Development of System for Managers Relationship Management with Customers .. 405
Yaroslav Kis, Liliya Chyrun, Tanya Tsymbaliak, and Lyubomyr Chyrun

Probabilistic Inference Based on LS-Method Modifications in Decision Making Problems .. 422
Peter Bidyuk, Aleksandr Gozhyj, and Irina Kalinina
Information Technologies for Environmental Monitoring of Plankton Algae Distribution Based on Satellite Image Data 434
Oleg Mashkov, Victoria Kosenko, Nataliia Savina, Yurii Rozov, Svitlana Radetska, and Mariia Voronenko

Ontology-Based Intelligent Agent for Determination of Sufficiency of Metric Information in the Software Requirements 447
Tetiana Hovorushchenko, Olga Pavlova, and Dmytro Medzatyi

Information Technology of Control and Support for Functional Sustainability of Distributed Man-Machine Systems of Critical Application .. 461
Viktor Perederyi, Eugene Borchik, and Oksana Ohnieva

Football Predictions Based on Time Series with Granular Event Segmentation ... 478
Hanna Rakytyanska and Mykola Demchuk

Computational Intelligence and Inductive Modeling

Recognition of Visual Objects Based on Statistical Distributions for Blocks of Structural Description of Image 501
Volodymyr Gorokhovatskyi, Svitlana Gadetska, and Roman Ponomarenko

Hybrid Methods of GMDH-Neural Networks Synthesis and Training for Solving Problems of Time Series Forecasting 513
Volodymyr Lytvynenko, Waldemar Wojcik, Andrey Fefelov, Iryna Lurie, Nataliia Savina, Mariia Voronenko, Oleg Boskin, and Saule Smailova

An Evaluation of the Objective Clustering Inductive Technology Effectiveness Implemented Using Density-Based and Agglomerative Hierarchical Clustering Algorithms .. 532
Sergii Babichev, Bohdan Durnyak, Iryna Pikh, and Vsevolod Senkivskyy

Research of Efficiency of Information Technology for Creation of Semantic Structure of Educational Materials 554
Olexander Barmak, Iurii Krak, Olexander Mazurets, Sergey Pavlov, Andrzej Smolarz, and Waldemar Wojcik

Simulation of a Combined Robust System with a P-Fuzzy Controller ... 570
Bohdan Durnyak, Mikola Lutskiv, Petro Shepita, and Vitalii Nechepurenko

Investigation of Random Neighborhood Features for Interpretation of MLP Classification Results 581
Oleksii Gorokhovatskyi, Olena Peredrii, Volodymyr Zatkhei, and Oleh Teslenko
Optimizing the Computational Modeling of Modern Electronic Optical Systems ... 597
Lesia Mochurad and Albota Solomii

A Model of Logical Inference and Membership Functions of Factors for the Printing Process Quality Formation 609
Vsevolod Senkivskyy, Iryna Pikh, Svitlana Havenko, and Sergii Babichev

Calculation the Measure of Expert Opinions Consistency Based on Social Profile Using Inductive Algorithms 622
Viacheslav Zosimov and Oleksandra Bulgakova

Online Robust Fuzzy Clustering of Data with Omissions Using Similarity Measure of Special Type 637
Yevgeniy Bodyanskiy, Alina Shafronenko, and Sergii Mashtalir

Neural Network Approach for Semantic Coding of Words 647
Vladimir Golovko, Alexander Kroshchanka, Myroslav Komar, and Anatoliy Sachenko

Complex Approach of High-Resolution Multispectral Data Engineering for Deep Neural Network Processing 659
Volodymyr Hnatushenko and Vadym Zhernovyi

Protein Tertiary Structure Prediction with Hybrid Clonal Selection and Differential Evolution Algorithms 673
Iryna Fefelova, Andrey Fefelov, Volodymyr Lytvynenko, Róža Dzieržak, Iryna Lurie, Nataliia Savina, Mariia Voronenko, and Svitlana Vyshemyrska

Low-Contrast Image Segmentation by Using of the Type-2 Fuzzy Clustering Based on the Membership Function Statistical Characteristics .. 689
Lyudmila Akhmetshina and Artyom Yegorov

Binary Classification of Fractal Time Series by Machine Learning Methods .. 701
Lyudmyla Kirichenko, Tamara Radivilova, and Vitalii Bulakh

Author Index .. 713
Analysis and Modeling of Complex Systems and Processes
Soft Filtering of Acoustic Emission Signals Based on the Complex Use of Huang Transform and Wavelet Analysis

Sergii Babichev¹,²(✉), Oleksandr Shanko³, Artem Shanko⁴, and Oleksandr Mikhaliov⁵

¹ Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem, Czech Republic
 sergii.babichev@ujep.cz
² Ukrainian Academy of Printing, Lviv, Ukraine
³ Kherson State Maritime Academy, Kherson, Ukraine
⁴ Kherson National Technical University, Kherson, Ukraine
⁵ National Metallurgical Academy of Ukraine, Dnipro, Ukraine

Abstract. The paper presents the results of the research concerning development of acoustic emission signals soft filtering model based on the complex use of Huang transform and wavelet analysis. The acoustic emission signals which were generated during crack progression from initiation to final failure with several distinct phases have been used as the experimental signals during the simulation process. The families of biorthogonal wavelets were used during the filtering process. The Shannon entropy criterion which was calculated with the use of James-Stein estimator was used as the main criterion to estimate the filtering process quality. The optimal parameters of the wavelet filter (type of wavelet, level of wavelet decomposition, value of the thresholding coefficient) were determined based on the minimum value of the Shannon entropies ratio which were calculated for filtered signal and for allocated noise component.

Keywords: Acoustic emission signal · Filtering · Wavelet analysis · Huang transform · Shannon entropy

1 Introduction

Acoustic emission (AE) technique is one of the current directions of structural state monitoring methods which are developed as an alternative of non-destructive testing methods. Implementation of this technique allows us to perform both the continuous or on-demand diagnostics and discovering defects using permanently installed sensors [1–4]. The main advantages of the AE technique are high level of availability and low maintenance costs. Identification of a defect location is performed by evaluation of the time difference of AE signals arrival to the sensors which are allocated at the different places of the object [5,6]. High
level of noise component which appears at the stages of signal generation, propagation and detection is one of the main reasons which complicates the successful application of this technique. Thus, the filtering of initial AE signal in order to remove the noise component is the one of the necessary conditions of the AE signals processing technique successful implementation.

A lot of techniques for different types of signals filtering exist nowadays. So, in [7–9] the authors presented the signal processing methods based on smoothing the signal by the use of both the extrapolation technique and minimizing the mean square error between the estimated random and the desired processes. The main disadvantage of these techniques is their low effectiveness in the case of processing of non-stationary and non-linear signals with local particularities. Implementation of these techniques in these cases promotes to the loss of the large amount of useful information. The current methods of non-stationary and non-linear signals processing are based on decomposition of the signal with allocation of its components and the following processing of these components in order to remove the noise. The paper [10] presents the results of the research concerning the use of fast Fourier transform for evaluation of the anisotropic relaxation of composites and nonwovens. Implementation of the fast Fourier transforms technique for time-frequency analysis of pressure pulsation signal is presented in [11]. The frequency spectrum including frequency-domain structure and approximate frequency-scope was obtained during the simulation process. However, it should be noted, that fast Fourier transform technique is effective in the case of stationary signals processing. In the case of non-stationary and non-linear signal processing the effectiveness of this technique decreases.

An alternative and logical continuation of the fast Fourier transforms technique is wavelet analysis [12–15]. Implementation of this technique involves wavelet-decomposition on levels from 1 to N with calculation of both the approximation coefficients on N-th level and the detail coefficients on levels from 1 to N. In the most cases the detail coefficients contain the noise component, thus these coefficients should be processed during the filtering process. Reconstruction of the signal is performed with the use of both the approximation coefficients and the processed detail coefficients. The effectiveness of this technique implementation depends on the choice of the type of the used wavelet, level of the wavelet decomposition and the thresholding coefficient value to process of the detail coefficients. It should be noted that effective techniques for these parameters objective determining are absent nowadays. Moreover, the direct implementation of this technique for signals processing increases the requirements to the wavelet filter parameters determination. In this case more effective can be techniques which are based on decomposition of the signal into components with the further allocation and wavelet-processing of the noised components.

In [16,17] the authors proposed the use of the empirical mode decomposition (EMD) method based on complex use of both the Huang transform and Hilbert spectrum for non-stationary and non-linear signals analysis and processing. The main concept of this method consists in decomposition of the initial signal into mutually independent intrinsic mode functions (IMFs) based on
Huang transform. Then, the Hilbert spectrum is formed by applying the Hilbert transform to the obtained modes (IMFs). The analysis of the Hilbert spectrum for the allocated modes allows us to receive the detail information concerning particularities of the investigated signal. Nowadays the Hilbert-Huang technique has been implemented in various fields of scientific research. So, the paper [18] presents the technique to decompose the multicomponent micro–Doppler signals based on the complex use of Hilbert-Huang transform and analytical mode decomposition (HHT-AMD). The approach concerning the implementation of the Hilbert-Huang transform (HHT) for detection, diagnostic and prediction of the degradation in the ball bearing is proposed in [19]. The papers [20–22] present the results of the research concerning implementation of the HHT for analysis of the vibration signals from different objects. In the paper [23] the authors present the results of the research concerning the use of HHT for the processing and analysing of ECG signal in order to diagnose the brain functionality abnormalities. The results of the research concerning the implementation of the HHT for the analysis of the non-stationary financial time series and the acoustic wave frequency spectrum characteristics of rock mass under blasting damage are presented in the papers [24,25]. However, it should be noted that in spite of the achievements in this subject area the problem of denoising of the non-stationary and non-linear signals has no effective solution nowadays. This problem can be solved based on the complex use of modern techniques of both the data mining and machine learning which are applied successfully in different areas of the scientific research nowadays [26–29]. In this paper we propose the technique of acoustic emission signals filtering based on the complex use of both the Huang empirical mode decomposition method and wavelet analysis. The optimal parameters of the wavelet filter for each of the intrinsic modes are determined on the basis of the quantitative criterion minimum value which is calculated as the ratio of Shannon entropies for the filtered data and for the allocated noise component.

The aim of the research is the development of technique of acoustic emission signals filtering based on the complex use of Huang transform and wavelet analysis.

2 Materials and Methods

The Huang transform technique involves that initial signal is a complex one and it can be decomposed into intrinsic mode functions (IMFs) [16]:

\[
y(x) = \sum_{i=1}^{n} f_i(x) + r_n(x)
\]

where \(n\) is the number of the IMFs functions, \(f_i(x)\) is the IMFs function on \(i\)-th level of the signal decomposition, \(r_n(x)\) is the residual function, which represent the average trend of the investigated signal. Implementation of the Huang empirical mode decomposition technique (EMD) intendes the following conditions:
the number of each of the IMF's functions extrema and the number of zero crossing should be equal or not differ by more than one;
- in any point of the IMF's function the mean value of the envelope defined by local maximums and local minimums should be zero.

The signal decomposition process is stopped if one of the following conditions is performed:
- the residual function $r_n(x)$ does not contain more than 2-3 extrema points;
- the residual function $r_n(x)$ in whole interval of x change is insignificant in comparison with appropriate values of the IMF's functions.

A structural block-chart of the step-by-step process of the signal filtering based on the complex use of Huang empirical mode decomposition technique and wavelet analysis is presented in Fig. 1. As it can be seen, the result of the Huang transform is selection of the IMF's functions which contain the noise component for purpose of their further filtering using discrete wavelet transform. Figure 2 presents the main idea of the discrete wavelet decomposition process. Implementation of this process involves calculation of both the approximation coefficients at N-th level and the detail coefficients at levels from 1 to N using the low frequency (LF) and high frequency (HF) filters:

$$y(x) \rightarrow \{CA(N), CD(N), ..., CD(2), CD(1)\}$$

(2)

The noise component in the most cases is contained in detail coefficients therefore these coefficients should be processed during the signal processing. To process the detail coefficients we propose to use the soft thresholding in accordance with the following conditions:

$$
\begin{align*}
 d &= 0, & \text{if } d \leq \tau \\
 d &= d - \tau, & \text{if } d > \tau
\end{align*}
$$

(3)
where d is the detail coefficient and τ is the thresholding coefficient value. It is obvious, that quality of wavelet filtering process depends on type of the used wavelet, level of the wavelet decomposition and thresholding coefficient value to process the detail coefficients. In [15] the authors proposed the technology to determine the optimal parameters of the wavelet filter based on the use of the Shannon entropy criterion which is calculated on the basis of James-Stein estimator [30]. This method is based on the complex use of two different models: a high-dimensional model with low bias and high variance, and a lower dimensional model with larger bias but smaller variance. Evaluation of the values distribution probability in a cell in accordance with the James-Stein shrinkage method is calculated in the following way:

$$p_{i}^{Shrink} = \lambda p_i + (1 - \lambda)p_{i}^{ML}$$

(4)

where p_{i}^{ML} is the probability of the values distribution in the i-th cell, which is calculated by the maximum likelihood method; $p_i = \frac{1}{n_i}$ is the maximum entropy target in the i-th cell; n_i is the number of the features in this cell. It is obvious, that p_{i}^{ML} corresponds to the high-dimensional model with low bias and high variance and p_i is the estimation with higher bias and lower variance of the features distribution. Intensity parameter λ in the proposed model is calculated as follows:

$$\lambda = \frac{1 - \sum_{i=1}^{k}(p_{i}^{ML})^2}{(n - 1)\sum_{i=1}^{k}(p_{i} - p_{i}^{ML})^2}$$

(5)

where n is the number of the features in the vector. The value of Shannon entropy is calculated with the use of standard formula taking into account the method of the probability estimation:

$$H^{Shrink} = -\sum_{i=1}^{k} p_{i}^{Shrink} \log_2 p_{i}^{Shrink}$$

(6)
In this paper we propose the technique of the wavelet filter optimal parameters determination based on the use of the ratio of Shannon entropies which are calculated for both the filtered signal and the allocated noise component:

$$RH = \frac{H(\text{filtered signal})}{H(\text{noise component})}$$

(7)

It is obvious that the optimal parameters of the wavelet filter corresponds to the minimum value of the Shannon entropy for filtered signal and the maximum value of this criterion for the allocated noise component. In this case the value of the relative criterion (7) should be achieved the minimum one. The structural block chart of the process of this criterion calculation within the framework of the proposed technique is presented in Fig. 3. Figure 4 shows the structural block chart of the algorithm to determine the wavelet filter optimal parameters. The stages of this algorithm implementation are the following:

Stage I. Signal loading and Huang transform performing.
2. Visualization and analysis of the obtained modes. Allocation of the noised modes for their following processing.

Stage II. Wavelet filtering of the selected modes.
3. Setup the ranges and the steps of the wavelet filter parameters change.
 3.1 Formation of the vector of different types of wavelets for the appropriate mother wavelet.
 3.2 Calculation of the thresholding coefficients initial value to process the detail coefficients:

$$\tau_0 = \sigma \sqrt{2 \ln k}$$

where \(k \) is the length of the investigated signal; \(\sigma \) is the median absolute deviation for the allocated detail coefficients:

$$\sigma = \delta \cdot (|CD(i) - \text{median}(CD(i))|)$$

where \(i = 1, ..., n \) is the wavelet decomposition level, coefficient \(\delta \) is determined empirically during the simulation process.
Fig. 4. A structural block chart of the algorithm to determine the wavelet filter optimal parameters
3.3 Formation of the range and the step of the thresholding parameter value change:

\[\tau_{\min} = 0.1\tau; \quad \tau_{\max} = 5\tau \quad d\tau = 0.02 \cdot (\tau_{\max} - \tau_{\min}) \]

3.4 Evaluation of the wavelet decomposition maximum level.

4. Determination of the optimal type of the wavelet.
 4.1 Initialization of the counter, which corresponds to the first wavelet in the appropriate sequence \((j = 1)\). Setup of the initial values of both the wavelet decomposition level \((N = 3)\) and the thresholding coefficient value \((\tau = \tau_0)\).
 4.2 Discrete wavelet decomposition of the signal with calculation of both the approximation coefficients at the \(N\)-th decomposition level and the detail coefficients at the levels from 1 to \(N\).
 4.3 Soft thresholding of the detail coefficients using the conditions (3).
 4.4 Reconstruction of the signal based on both the approximation coefficients and the processed detail coefficients.

5. Calculation of the data processing quality criteria.
 5.1 Extraction of the noise component as the difference of both the initial and filtered signals.
 5.2 Calculation of the Shannon entropies for the filtered signal and for the allocated noise component by the formula (6). Calculation of their ratio by the formula (7).
 5.3 If the counter value is maximal, the results analysis and fixation of the optimal type of wavelet which corresponds to the minimum value of the criterion (7). Otherwise, increment of the counter value and go to the step 4.2 of this procedure.

6. Determination of the optimal wavelet decomposition level.
 6.1 Initialization of the counter, which corresponds to the first level of wavelet decomposition \((z = 1)\).
 6.2 Repetition of the steps from 4.2 to 5.3 of this procedure.
 6.3 If the counter value is maximal, the results analysis and fixation of the optimal wavelet decomposition level. Otherwise, increment of the counter value and go to the step 6.2 of this procedure.

7. Determination of the thresholding coefficient optimal value.
 7.1 Initialization of the counter \((v = 1)\), which corresponds to the minimum value of the thresholding coefficient: \((\tau = \tau_{\min})\).
 7.2 Repetition of the steps from 4.2 to 5.3 of this procedure.
 7.3 If the counter value is maximal, the results analysis and fixation of the thresholding coefficient optimal value. Otherwise, increment of the counter value and go to the step 7.2 of this procedure.

8. Filtering of the current IMFs function with the use of the wavelet filter optimal parameters.

9. Repetition of the stage 2 for other of the allocated IMFs functions.

Stage III. Reconstruction of the signal.

10. Reconstruction of the signal with the use of both the processed and non-processed components of the signal.
3 Experiment

The experimental device which were used to fixation of the acoustic emission signals for the different levels of mechanical loading of the tested material is shown in Fig. 5. The experimental device contains three main mechanisms: the deformation, the force-fixation and the AE signal fixation mechanisms. The samples for four-point bend test were cutted out from steel flat in the size $300 \times 20 \times 4$ mm. The simulation process involved the fixation of both the AE signals and the level of the sample deformation for different levels of the tested sample loading. The broadband sensors for acoustic emission instrument AF15 with a bandwidthes of 0.2–2.0 was used as the measurement device. The artificial load was step-by-step increased from 150 N to 400 N with fixation of the AE signals for different values of the sample deformation. The examples of the AE signals which were obtained during the simulation process are shown in Fig. 6. As it can be seen, the shape of the signals is changed during the load increase. However, the existence the noise component complicates the obtained results interpretation. Thus, at the first step it is necessary to decrease the level of the noise component with saving useful information concerning state of the investigated sample. The familiy of biorthogonal wavelets were used during the simulation process within the framework of the hereinbefore technique.

![Image](image_url)

Fig. 5. Four-point bend test device: (1) test sample; (2) support; (3) deformation indicator; (4) AE signal indicator

4 Results and Discussion

Figure 7 presents the result of the Huang empirical modes decomposition implementation for the signal which is shown in Fig. 6g. The same results were obtained for other signals. The analysis of the IMF's functions allows us to conclude that the first and the second modes contain the noise component, thus these modes should be processed for the signal denoise. Figure 8 presents the results of the simulation
Fig. 6. AE signals for different levels of the sample deformation concerning determination of the optimal wavelet from the family of the biorthogonal ones in terms of the minimum value of the criterion (7). The results of the simulation has shown that the biorthogonal wavelet $\text{bior}1.1$ is the optimal one for processing both the IMFs 1 and IMFs 2 functions since the criterion values of Shannon entropies ratio which have been calculated by the formula (7) achieved the minima values in these cases. Figure 9 shows the results of the simulation concerning determination of the optimal wavelet decomposition level in the cases of the use of both the IMFs 1 and IMFs 2 functions. The analysis of the obtained charts allows us to conclude that the wavelet decomposition levels 7 and 8 are the optimal in terms of the criterion (7) minima for the functions IMFs 1 and IMFs 2 respectively. Figure 10 presents the same results in the case of the thresholding coefficient optimal values determination. The range and the step of the thresholding coefficient value change was determined in accordance with the steps 3.2 and 3.3 of the hereinbefore described algorithm. The value of multiplier δ was taken as 0.5. The optimal value of the thresholding coefficient was determined as the first achieved of