Predictive Control
Predictive Control

Fundamentals and Developments

Yugeng Xi
Shanghai Jiao Tong University
Shanghai, China

Dewei Li
Shanghai Jiao Tong University
Shanghai, China
Contents

Preface xi

1 **Brief History and Basic Principles of Predictive Control** 1
 1.1 Generation and Development of Predictive Control 1
 1.2 Basic Methodological Principles of Predictive Control 6
 1.2.1 Prediction Model 6
 1.2.2 Rolling Optimization 6
 1.2.3 Feedback Correction 7
 1.3 Contents of this Book 10
 References 11

2 **Some Basic Predictive Control Algorithms** 15
 2.1 Dynamic Matrix Control (DMC) Based on the Step Response Model 15
 2.1.1 DMC Algorithm and Implementation 15
 2.1.2 Description of DMC in the State Space Framework 21
 2.2 Generalized Predictive Control (GPC) Based on the Linear Difference
 Equation Model 25
 2.3 Predictive Control Based on the State Space Model 32
 2.4 Summary 37
 References 39

3 **Trend Analysis and Tuning of SISO Unconstrained DMC Systems** 41
 3.1 The Internal Model Control Structure of the DMC Algorithm 41
 3.2 Controller of DMC in the IMC Structure 48
 3.2.1 Stability of the Controller 48
 3.2.2 Controller with the One-Step Optimization Strategy 53
 3.2.3 Controller for Systems with Time Delay 54
 3.3 Filter of DMC in the IMC Structure 56
 3.3.1 Three Feedback Correction Strategies and Corresponding Filters 56
 3.3.2 Influence of the Filter to Robust Stability of the System 60
 3.4 DMC Parameter Tuning Based on Trend Analysis 62
 3.5 Summary 72
 References 73
4 Quantitative Analysis of SISO Unconstrained Predictive Control Systems 75
4.1 Time Domain Analysis Based on the Kleinman Controller 76
4.2 Coefficient Mapping of Predictive Control Systems 81
4.2.1 Controller of GPC in the IMC Structure 81
4.2.2 Minimal Form of the DMC Controller and Uniform Coefficient Mapping 86
4.3 Z Domain Analysis Based on Coefficient Mapping 90
4.3.1 Zero Coefficient Condition and the Deadbeat Property of Predictive Control Systems 90
4.3.2 Reduced Order Property and Stability of Predictive Control Systems 94
4.4 Quantitative Analysis of Predictive Control for Some Typical Systems 98
4.4.1 Quantitative Analysis for First-Order Systems 98
4.4.2 Quantitative Analysis for Second-Order Systems 104
4.5 Summary 112
References 113

5 Predictive Control for MIMO Constrained Systems 115
5.1 Unconstrained DMC for Multivariable Systems 115
5.2 Constrained DMC for Multivariable Systems 123
5.2.1 Formulation of the Constrained Optimization Problem in Multivariable DMC 123
5.2.2 Constrained Optimization Algorithm Based on the Matrix Tearing Technique 125
5.2.3 Constrained Optimization Algorithm Based on QP 128
5.3 Decomposition of Online Optimization for Multivariable Predictive Control 132
5.3.1 Hierarchical Predictive Control Based on Decomposition–Coordination 133
5.3.2 Distributed Predictive Control 137
5.3.3 Decentralized Predictive Control 140
5.3.4 Comparison of Three Decomposition Algorithms 143
5.4 Summary 146
References 147

6 Synthesis of Stable Predictive Controllers 149
6.1 Fundamental Philosophy of the Qualitative Synthesis Theory of Predictive Control 150
6.1.1 Relationships between MPC and Optimal Control 150
6.1.2 Infinite Horizon Approximation of Online Open-Loop Finite Horizon Optimization 152
6.1.3 Recursive Feasibility in Rolling Optimization 155
6.1.4 Preliminary Knowledge 157
6.2 Synthesis of Stable Predictive Controllers 163
6.2.1 Predictive Control with Zero Terminal Constraints 163
6.2.2 Predictive Control with Terminal Cost Functions 165
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.3</td>
<td>Predictive Control with Terminal Set Constraints</td>
<td>170</td>
</tr>
<tr>
<td>6.3</td>
<td>General Stability Conditions of Predictive Control and Suboptimality Analysis</td>
<td>174</td>
</tr>
<tr>
<td>6.3.1</td>
<td>General Stability Conditions of Predictive Control</td>
<td>174</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Suboptimality Analysis of Predictive Control</td>
<td>177</td>
</tr>
<tr>
<td>6.4</td>
<td>Summary</td>
<td>179</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>179</td>
</tr>
<tr>
<td>7</td>
<td>Synthesis of Robust Model Predictive Control</td>
<td>181</td>
</tr>
<tr>
<td>7.1</td>
<td>Robust Predictive Control for Systems with Polytopic Uncertainties</td>
<td>181</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Synthesis of RMPC Based on Ellipsoidal Invariant Sets</td>
<td>181</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Improved RMPC with Parameter-Dependent Lyapunov Functions</td>
<td>187</td>
</tr>
<tr>
<td>7.1.3</td>
<td>Synthesis of RMPC with Dual-Mode Control</td>
<td>191</td>
</tr>
<tr>
<td>7.1.4</td>
<td>Synthesis of RMPC with Multistep Control Sets</td>
<td>199</td>
</tr>
<tr>
<td>7.2</td>
<td>Robust Predictive Control for Systems with Disturbances</td>
<td>205</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Synthesis with Disturbance Invariant Sets</td>
<td>205</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Synthesis with Mixed H_2/H_∞ Performances</td>
<td>209</td>
</tr>
<tr>
<td>7.3</td>
<td>Strategies for Improving Robust Predictive Controller Design</td>
<td>214</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Difficulties for Robust Predictive Controller Synthesis</td>
<td>214</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Efficient Robust Predictive Controller</td>
<td>216</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Off-Line Design and Online Synthesis</td>
<td>220</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Synthesis of the Robust Predictive Controller by QP</td>
<td>223</td>
</tr>
<tr>
<td>7.4</td>
<td>Summary</td>
<td>227</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>228</td>
</tr>
<tr>
<td>8</td>
<td>Predictive Control for Nonlinear Systems</td>
<td>231</td>
</tr>
<tr>
<td>8.1</td>
<td>General Description of Predictive Control for Nonlinear Systems</td>
<td>231</td>
</tr>
<tr>
<td>8.2</td>
<td>Predictive Control for Nonlinear Systems Based on Input–Output Linearization</td>
<td>235</td>
</tr>
<tr>
<td>8.3</td>
<td>Multiple Model Predictive Control Based on Fuzzy Clustering</td>
<td>241</td>
</tr>
<tr>
<td>8.4</td>
<td>Neural Network Predictive Control</td>
<td>248</td>
</tr>
<tr>
<td>8.5</td>
<td>Predictive Control for Hammerstein Systems</td>
<td>253</td>
</tr>
<tr>
<td>8.6</td>
<td>Summary</td>
<td>256</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>257</td>
</tr>
<tr>
<td>9</td>
<td>Comprehensive Development of Predictive Control Algorithms and Strategies</td>
<td>259</td>
</tr>
<tr>
<td>9.1</td>
<td>Predictive Control Combined with Advanced Structures</td>
<td>259</td>
</tr>
<tr>
<td>9.1.1</td>
<td>Predictive Control with a Feedforward–Feedback Structure</td>
<td>259</td>
</tr>
<tr>
<td>9.1.2</td>
<td>Cascade Predictive Control</td>
<td>262</td>
</tr>
<tr>
<td>9.2</td>
<td>Alternative Optimization Formulation in Predictive Control</td>
<td>267</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Predictive Control with Infinite Norm Optimization</td>
<td>267</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Constrained Multiobjective Multidegree of Freedom Optimization and Satisfactory Control</td>
<td>270</td>
</tr>
<tr>
<td>9.3</td>
<td>Input Parametrization of Predictive Control</td>
<td>277</td>
</tr>
</tbody>
</table>
9.3.1 Blocking Strategy of Optimization Variables 277
9.3.2 Predictive Functional Control 279
9.4 Aggregation of the Online Optimization Variables in Predictive Control 281
9.4.1 General Framework of Optimization Variable Aggregation in Predictive Control 282
9.4.2 Online Optimization Variable Aggregation with Guaranteed Performances 284
9.5 Summary 294
References 294

10 Applications of Predictive Control 297
10.1 Applications of Predictive Control in Industrial Processes 297
10.1.1 Industrial Application and Software Development of Predictive Control 297
10.1.2 The Role of Predictive Control in Industrial Process Optimization 300
10.1.3 Key Technologies of Predictive Control Implementation 302
10.1.4 QDMC for a Refinery Hydrocracking Unit 308
10.1.4.1 Process Description and Control System Configuration 309
10.1.4.2 Problem Formulation and Variable Selection 310
10.1.4.3 Plant Testing and Model Identification 310
10.1.4.4 Off-Line Simulation and Design 311
10.1.4.5 Online Implementation and Results 312
10.2 Applications of Predictive Control in Other Fields 313
10.2.1 Brief Description of Extension of Predictive Control Applications 313
10.2.2 Online Optimization of a Gas Transportation Network 318
10.2.2.1 Problem Description for Gas Transportation Network Optimization 318
10.2.2.2 Black Box Technique and Online Optimization 320
10.2.2.3 Application Example 321
10.2.2.4 Hierarchical Decomposition for a Large-Scale Network 323
10.2.3 Application of Predictive Control in an Automatic Train Operation System 323
10.2.4 Hierarchical Predictive Control of Urban Traffic Networks 328
10.2.4.1 Two-Level Hierarchical Control Framework 328
10.2.4.2 Upper Level Design 329
10.2.4.3 Lower Level Design 331
10.2.4.4 Example and Scenarios Setting 331
10.2.4.5 Results and Analysis 332
10.3 Embedded Implementation of Predictive Controller with Applications 335
10.3.1 QP Implementation in FPGA with Applications 337
10.3.2 Neural Network QP Implementation in DSP with Applications 343
10.4 Summary 347
References 351
11 Generalization of Predictive Control Principles 353
11.1 Interpretation of Methodological Principles of Predictive Control 353
11.2 Generalization of Predictive Control Principles to General Control Problems 355
11.2.1 Description of Predictive Control Principles in Generalized Form 355
11.2.2 Rolling Job Shop Scheduling in Flexible Manufacturing Systems 358
11.2.3 Robot Rolling Path Planning in an Unknown Environment 363
11.3 Summary 367
References 367

Index 369
Preface

Predictive control was developed in the middle of the 1970s. It originally referred to a kind of advanced computer control algorithm that appeared in complex industrial processes. Because of the ability of real-time solving the optimal control under constraints, it has received great attention from the industrial community and been successfully applied to chemical, oil refining, power, and other industries. Since the 1980s, the algorithms and applications of predictive control have been rapidly expanded. The commercial software of predictive control has undergone several generations of version updating and function expansion. Not only has it been applied in thousands of industrial processes around the world and achieved remarkable economic benefits but also the application fields have expanded rapidly from industrial processes to manufacturing, aerospace, transportation, environment, energy, and so on. Compared with applications, the development of predictive control theory lagged behind. However, since the 1990s, it has rapidly become a hotspot in the control field through adopting novel ideas and powerful tools from a new perspective. Especially the systematic progress in the synthesis theory of stable and robust predictive controllers has deepened the understanding of the essential mechanism of predictive control and constructed a rich theoretical system on qualitative synthesis of predictive control. Nowadays, predictive control is not only favored by industrial communities and regarded as the most representative advanced process control algorithm but it has also become a systematic theory of synthesizing stable and robust controllers characteristic of rolling optimization for uncertain systems.

After entering the twenty-first century, with the scientific and technological development and the social progress, the requirement for control is becoming higher and higher. Rather than traditionally satisfying the stabilizing design, optimization is much more incorporated in control design in order to achieve a better control performance. In the meantime, optimization is restricted by more and more factors. In addition to traditional physical constraints such as actuator saturation, various constraints brought by technology, safety, economics, and sociality indices should be incorporated. The contradiction between the higher requirements and the more complicated constraints has become a new challenge in many application fields. Because of remarkable achievements in the field of industrial process control, predictive control naturally becomes the first choice to solve this kind of problem. In recent years, many application reports on adopting predictive control for solving various constrained optimization control problems appeared in the fields of advanced manufacturing, energy, environment, aerospace, and medicine, etc., which reflects the expectations of people for this advanced control technology and also motivates more people to become familiar with or master predictive control.
In order to meet the different needs for research and application of predictive control in a wide range of fields, this book tries to give a brief overview on research and application in the field of predictive control through introducing the basic problems and solutions of predictive control, and unscrambling its representative research progress, so as to provide readers with different needs with basic knowledge and background. Reviewing the development of predictive control during the past 40 years, it can be concluded that predictive control has become a diversified disciplinary branch, including various development tracks from theory and methods to applications, with different purposes and characteristics. Each contains rich contents with its own concerns and the fundamental knowledge that needs to become familiar. For example, the research on predictive control applications focuses on how to apply the predictive control principles and algorithms to implementing optimization-based control for a specific plant. There is a need to become acquainted with predictive control algorithm and its implementation technology, particularly on how to select or formulate a predictive control algorithm for a specific problem, how to solve the optimization problem, and how to tune the parameters, etc. The research on predictive control methods focuses on how to develop effective implementation modes in terms of specific system properties, structural characteristics, or implementation environments, so that predictive control can be practically applicable or applied with a better performance and higher efficiency. It is necessary to understand the existing methods and strategies commonly used in predictive control, as well as the specified structures and research branches deriving from them. It is important that the ideas behind these methods need to be caught from the perspective of information and control, and taken as a reference for extension. The research of predictive control theory focuses on solving difficult or new problems brought on by deep research and background expansion. As a prerequisite, it is necessary to get acquainted with the basic ideas, solving methods, and required tools of mature theory on stable and robust predictive control synthesis. The implied novel ideas for successfully solving various difficulties in the existing literature need to be carefully explored and taken for reference, and the existing difficulties and problems need to be clarified.

In view of the above requirements and characteristics, this book attempts to make a comprehensive introduction to predictive control on the aspects of basic principles and algorithms, system analysis and design, algorithm development and applications according to its historical development process. The purpose is to help readers understand the basic principles and algorithms of predictive control, as well as to get acquainted with the most fundamental contents of predictive control theories, methods, and application techniques, in order to provide the basis and reference for researchers and engineers in the field of predictive control to go deep into theoretical research, to develop high-level industrial applications, and to extend predictive control to more application fields.

The book consists of five parts. The first part (Chapters 1 and 2 and Sections 5.1 and 5.2) gives a brief overview of the development trajectory of predictive control and introduces its methodological principles and basic algorithms. The second part (Chapters 3 and 4) introduces system analysis and design of classical predictive control algorithms. On the one hand, for the dynamic matrix control (DMC) algorithm, which is based on a nonparametric model and is commonly used in industry, its control mechanism and system performance are analyzed and its parameter tuning is discussed. On the other hand, the relationship between DMC and the generalized predictive control (GPC) algorithm is clarified, and then the quantitative relationships between design parameters and the
closed-loop system performance are uniformly derived. The third part (Chapters 6 and 7) introduces the qualitative synthesis theory of predictive control, including stable predictive controller synthesis and robust predictive controller synthesis. Emphasis is put on unscrambling basic problems as well as solutions, and introducing some representative works. The fourth part (Chapters 8, 9, and Section 5.3) introduces the development of methods and strategies oriented to the characteristics and requirements of predictive control applications. Control structures, optimization concepts and strategies useful in industrial applications, as well as various decomposition algorithms commonly used in networked large-scale systems, are presented. According to the characteristics of nonlinear systems, some practical and effective algorithms and strategies are also introduced. The fifth part (Chapters 10 and 11) concerns implementation technology and application examples of predictive control, with a detailed introduction of industrial predictive control technology and an overview on predictive control applications in other fields. The universality of predictive control principles is illustrated and potentially extended to general control problems in a dynamic uncertain environment. All of the above parts make a full view of predictive control from general concepts and basic algorithms, quantitative analysis, qualitative synthesis, method and strategy developments to application techniques. They are interdependent and combined organically. The book not only introduces the relevant knowledge on theory and applications but also runs through the methodological principles of predictive control, which will help readers to get rid of the limitations of specific algorithms and problems, deepen their understanding of the essential characteristics of predictive control, and broaden their thinking in predictive control research and application from a higher stand.

This book is based on the book Prediction Control (second edition) (Chinese version), published by the National Defense Industry Press in 2013. The major contents come from the research results of our group in the direction of predictive control during the past 30 years. In order to comprehensively reflect the field of predictive control, some pioneering and representative research work in this field has also been included and unscrambled. At the time of publication of this book, the authors would like to thank the National Natural Science Foundation of China for its long-standing support for our predictive control research. We would also like to thank our colleagues in academia and industry. It is the helpful discussions and cooperation with them that have enabled us to deepen our understanding and receive new inspiration. Over the past 30 years, colleagues and students in our group have worked together with us in the field of predictive control, and we do appreciate their contributions. Special thanks is given to those whose work directly contributed to this book, including Professor Xiaoming Xu, Professor Shaoyuan Li, doctoral students Hao Sun, Jian Yang, Jian Fang, Jun Zhang, Xiaoning Du, Ning Li, Chuncang Zhang, Baocang Ding, Bing Wang, Shu Lin, and Zhao Zhou, and master students Junyi Li, Hanyu Gu, Hui Qin, Shui Jiang, Nan Yang, Yang Lu, Yunwen Xu, and Yan Luo. It is their efforts and contributions that enrich the content of this book. The Chinese Defense Science and Technology Publishing Fund has provided financial support for the first and second editions of the Chinese version, and the authors would also like to express their deep gratitude.

Yugeng Xi and Dewei Li
Shanghai Jiao Tong University
November, 2018, Shanghai
1

Brief History and Basic Principles of Predictive Control

1.1 Generation and Development of Predictive Control

Predictive control, later also called Model Predictive Control (MPC), is a kind of control algorithm originally rising from industrial processes in the 1970s. Unlike many other control methods driven by theoretical research, the generation of predictive control was mainly driven by the requirements of industrial practice. For quite a long time the industrial process control mainly focused on regulation using the feedback control principle. The well-known PID (Proportional–Integral–Differential) controller can be used for linear or nonlinear processes, even without model information, and has few tuning parameters and is easy to use. These features are particularly suitable for the control environment in industrial processes and make it a “universal” controller that is widely used. However, the advantage of the PID controller is mainly embodied in the loop control. When the control turns from a loop to the whole system, it is difficult to achieve good control performance by using such a single-loop controller without considering the couplings between the loops. Furthermore, a PID controller can handle input constraints but is incapable of handling various real constraints on outputs and intermediate variables. Particularly, when the control goal is promoted from regulation to optimization, this kind of feedback-based controller seems powerless because it lacks understanding of the process dynamics. With the development of industrial production from a single machine or a single loop to mass production, the optimization control for constrained multivariable complex industrial processes became a new challenging problem.

During this period, modern control theory was rapidly developed and went to mature with brilliant achievements in the aerospace, aviation, and many other fields. At the same time the progress of computer technology provided a powerful tool for real-time computing. Both were undoubtedly attractive for the industrial process control engineers when pursuing higher control quality and economic benefits. They began to explore the applications of the mature modern control theory, such as optimal control, pole placement, etc., in optimization control of the complex industrial processes. However, through practice they found that a big gap existed between the perfect theory and the real industrial processes, mainly manifested in the following:

1) Modern control theory is based on an accurate mathematical model of the plant, while for a high-dimensional multivariable complex industrial process, it is hard to get its accurate mathematical model. Even if such a model could be established, it
should be simplified according to practical applicability and a strictly accurate mathematical model is not available.

2) The structure, parameters, and environment of an industrial plant are often uncertain. Due to the existence of uncertainty, the optimal control designed based on an ideal model would never remain optimal in real applications, and would even result in serious degeneration of the control performance. In an industrial environment, the control system is more focused on robustness, i.e. the ability of keeping better performance under uncertainty, rather than pursing ideal optimality.

3) The industrial control must take the economics of the control tools into account. The control algorithm should satisfy the real-time requirement. But most of the algorithms in modern control theory seem complex and are difficult to implement by economic computers.

Due to the above issues coming from practice, it is hard to directly use modern control theory for complex industrial processes. To overcome the gap between theory and practice, in addition to investigating system identification, robust control, adaptive control, etc., people began to break the constraints of traditional control methods and tried to seek new optimization control algorithms in accordance with the characteristics of the industrial processes, i.e. with a low requirement for the process model, capable of dealing with multivariables and constraints, and an acceptable computational burden for real-time control. The appearance of predictive control just fitted these needs.

The earliest predictive control algorithms arising from industrial processes include Model Predictive Heuristic Control (MPHC) [1], or similarly Model Algorithmic Control (MAC) [2], and Dynamic Matrix Control (DMC) [3]. They use the process impulse or step response as a nonparametric model, which is easy to obtain from the process data, and the controller can be designed directly based on these responses without further identification. Such predictive control algorithms absorb the idea of optimization in modern control theory, but instead of solving an infinite horizon optimization problem off-line, they introduce a rolling horizon mechanism with solving a finite horizon optimization problem on-line, meanwhile at each step making feedback according to real-time information. These features make them avoid the difficulty of identifying a minimal parametric model, reduce the real-time optimization burden, and strengthen the robustness of the control systems against uncertainty, which are particularly suitable to practical requirements of industrial process control. Therefore, after their appearance, they were successfully applied to process control systems in oil refining, chemical industry, electric power, and other industries in the USA and Europe, and attracted wide interest from the industrial control community. Thereafter, various predictive control algorithms based on impulse or step response were proposed in succession, and a number of predictive control software packages for process control of different installations were soon launched and quickly generalized and applied to process control of various industries. For more than 30 years, predictive control has been successfully run in thousands of process control systems globally, and achieved great economic benefits. It has been recognized as the most efficient advanced process control (APC) method with great application potential [4].

Besides the predictive control algorithms based on nonparametric models directly from industrial process control, another kind of predictive control algorithm also appeared in the adaptive control field, motivated by improving the robustness of adaptive
control systems. In the 1980s, in adaptive control research it was found that in order to overcome the disadvantages of minimum variance control, it is necessary to absorb the multistep prediction and optimization strategy of industrial predictive control algorithms so as to improve the robustness of control systems against time delay and model parameter uncertainty. Then a number of predictive control algorithms based on identified minimum parametric models and self-adaption also appeared, such as Extended Prediction Self-Adaptive Control (EPSAC) [5], Generalized Predictive Control (GPC) [6], etc. Among those, the GPC algorithm has particularly attracted wide attentions and got applications. The identified minimum parametric model adopted in these predictive control algorithms provides a more rigorous theoretical basis for control system analysis and design, which greatly promoted the theoretical research of predictive control.

With the appearance of the above predictive control algorithms, various methods and strategies were also developed for predictive control applications to suit specific system dynamics and different application scenarios. These studies could be roughly divided into several categories:

- appropriate strategies and algorithms for specific kinds of systems, such as the Hammerstein model [7], hybrid systems [8], etc.;
- reasonable control structures for efficiently utilizing process information or reducing control complexity, such as cascade [9], hierarchical [10], decentralized [11], distributed control schemes [12, 13], etc.;
- heuristic strategies for improving the usability of predictive control algorithms, such as the blocking technique [14], multirate control [15], etc.;
- effective predictive control algorithms and strategies particularly for nonlinear systems, such as fuzzy [16], neural network [17], multimodel [18], etc.

These studies not only strongly supported the applications of predictive control but also facilitated some new sub-branches of predictive control, such as hybrid predictive control [19], hierarchical and distributed predictive control [20, 21], economic predictive control [22], and so on.

While predictive control has found successful applications in industry, its theoretical research naturally became the hotspot of control academia. To meet the application requirements, the first theoretical issue to be considered is how the design parameters in predictive control algorithms are related to control system performance, which can guide the parameter tuning to guarantee stability and tracking performance of predictive control systems and is of great significance to practical applications. This problem was explored in the Z domain and the time domain, respectively, using different tools. In the Z domain, Garcia and Morari [23] proposed Internal Model Control (IMC) in 1982 as a general framework for analyzing predictive control systems. Through transforming the predictive control algorithms into the IMC framework, some quantitative relationships between the main design parameters and the closed-loop performances were established for nonparametric model-based predictive control algorithms such as DMC [24]. Later on more theoretical results uniformly applicable to both DMC and GPC algorithms were obtained by using coefficient mapping of the characteristic polynomials of open-loop and closed-loop systems in IMC structures [25]. In the time domain, Clarke and Mohtadi [26] transformed the GPC algorithm into an optimal control problem described in state space and analyzed the system performance as well as the deadbeat property with the
help of existing results in Linear Quadratic (LQ) optimal control. Some later studies on GPC borrowed more ideas from optimal control theory and adopted the monotonically decreasing property of the receding horizon cost and the endpoint equality constraints on the tracking error to guarantee the stability of GPC [27]. All of the above theoretical researches achieved some progress, but the results were quite limited due to the essential difficulties of quantitative analysis for predictive control systems. Firstly, quantitative analysis should be based on analytical expressions of system and control law, but in most cases, predictive control should handle various constraints and the control action can only be obtained through solving a constrained optimization problem. Without analytical expression of the control law it is impossible to make a quantitative analysis. Secondly, even if analytical forms for a predictive controller and the closed-loop system could be derived in an unconstrained case, there are no direct relationships between the design parameters and the closed-loop performances, which prevents more accurate and useful quantitative results to be obtained. Therefore, most obtained analytical results in this period are only available for single-input single-output (SISO) unconstrained predictive control systems, which is far from the need of real applications.

In view of this situation, the theoretical research for predictive control turned from quantitative analysis to qualitative synthesis in the 1990s. This study was no longer limited to existing algorithms but focused on synthesizing new algorithms to guarantee system performance. A key idea of this study is to regard predictive control as traditional optimal control with the only difference being in implementation. After formulating the system model and the rolling optimization procedure in state space, a predictive controller with guaranteed stability can be investigated with the help of mature ideas and tools in optimal control theory, particularly the ideas and methods used in Receding Horizon Control (RHC) [28] proposed in the 1970s. During this period, a great number of new predictive control algorithms with guaranteed stability were proposed by introducing novel techniques, such as terminal equality constraints [29], terminal cost function [30], terminal constraint set [31], terminal cost and constraint set [32], etc. A highlighted feature of such an investigation is to artificially impose some constraints to theoretically guarantee stability of the predictive control system. An excellent survey was comprehensively given by Mayne et al. [33] on the stability and optimality of constrained model predictive control. Promoted by stable predictive control theory and robust control theory, robust predictive control for uncertain systems was also investigated. In fact, it appeared very early [34], but has become a hotspot only since the middle of the 1990s, mainly due to introducing novel ideas and new mathematical tools. A representative work by Kothare et al. [35] in 1996 studied the robust stability of model predictive control for a large class of plant uncertainties using linear matrix inequalities (LMIs), which stimulated a lot of follow-up researches in later years.

Different from the early quantitative analysis theory, these new works concerned quite general systems and problems, including nonlinear systems and systems with constraints and various uncertainties. Taking optimal control theory as a reference, Lyapunov stability analysis as a basic method to guarantee system performance, invariant set, linear matrix inequality (LMI) as fundamental tools, and the performance analysis for rolling horizon optimization as the core of the study, they constituted rich contents and achieved fruitful results, showing academic profundity and methodological innovations. In the last two decades, hundreds of papers have appeared in main control journals and formed the mainstream of current theoretical research on predictive control [33, 36]. However, the conclusions achieved from these studies often lack clear physical
meanings and the developed algorithms still have a big gap with the requirements of industrial applications.

Throughout historical development of predictive control, roughly three climax stages appeared: the first stage is characterized by the industrial predictive control algorithms based on step or impulse response models developed in the 1970s. These algorithms are very suitable for the requirements of industrial applications, both in model selection and in control ideas, and therefore became the main algorithms used in industrial predictive control software packages. However, without theoretical guidance, application of these algorithms greatly depends on the specific knowledge and user experiences. The second stage is characterized by the adaptive predictive control algorithms developed from the adaptive control field in the 1980s. The models and control ideas of these algorithms are more familiar to the control community and thus more suitable for investigating the predictive control theory. Indeed, some quantitative analytical results for predictive control systems have been achieved. However, the essential difficulty of quantitative analysis always exists because of the lack of the analytical expression of the optimal solution for constrained optimization. The third stage is characterized by the predictive control qualitative synthesis theory developed since the 1990s. Because of the change in research ideas, this has given the predictive control theory a great leap forward and become the mainstream of current predictive control theoretical research. However, these results still have a big gap with practical applications of predictive control. Although the studies of the above three stages have had their own problems, after development of these stages, predictive control has become a diversified control branch, containing many development paths with different purposes and different characteristics. It is not only regarded as the most representative APC algorithm and favored by the majority of the industrial community, but also forms a theoretical system of stable and robust design for uncertain systems with rolling optimization characteristics. Figure 1.1 roughly gives

![Figure 1.1 The development trajectory of predictive control.](image)
an overall historical trajectory of predictive control where different aspects and interests are shown in parallel.

1.2 Basic Methodological Principles of Predictive Control

Although there exists a wide variety of predictive control algorithms with different forms, they have common characteristics in methodological principles, i.e. to predict future system dynamic behavior according to given control actions by using the system model, to control the plant in rolling style through online solving an optimization problem with required performance subject to given constraints but only implementing current control, and to correct the prediction of future system behavior by using real-time measured information at each rolling step, which can be summarized as three principles, i.e. prediction model, rolling optimization, and feedback correction [37].

1.2.1 Prediction Model

Predictive control is a model-based control, where the model is called a prediction model. A prediction model serves as the basis of optimization control. Its main function is to predict the future dynamic variations of system states or outputs according to historical information and assumed future system inputs. The model is particularly emphasized by its function rather than its structural form. Therefore, traditional models such as a transfer function, state space equation, etc., can be used as a prediction model. For stable linear systems, even nonparametric models such as step or impulse responses can be directly used as a prediction model without further identification. Furthermore, models for nonlinear systems, distributed parameter systems, etc., can also be used as prediction models as long as they have the above function.

A prediction model is capable of exhibiting the future dynamic behavior of the system. Given future control policy arbitrarily, the future system states or outputs can be predicted according to the prediction model (see Figure 1.2) and, furthermore, the satisfaction of constraints can be judged and the performance index can be calculated. A prediction model thus provides the basis to compare the qualities of different control policies and is the prerequisite of optimization control.

1.2.2 Rolling Optimization

Predictive control is an optimization-based control. It determines future control actions through optimization with a certain performance index. This performance index involves future system dynamic behavior, for example, to minimize the output tracking errors at future sampling times or, more generally, to minimize the control energy while keeping the system output in a given range, etc. The future system dynamic behavior involved in the performance index is determined by future control actions and is based on the prediction model.

It should be pointed out that the optimization in predictive control is quite different from that in traditional discrete-time optimal control. In the predictive control
algorithms used in industrial processes, the optimization is commonly over a finite horizon and implemented in a rolling style. At each sampling time, an open-loop optimization problem with a performance index over a future finite time horizon is solved where a certain number of future control actions are taken as optimization variables. However, the solved optimal control actions do not need to be implemented one by one; instead only the current control action is implemented. At the next sampling time, the optimization horizon is moved one step forward (see Figure 1.3). Therefore, in predictive control, the optimization performance index is time dependent. The relative formulation of the performance index at each time is the same, but the concrete time interval is moved forward and is different. This indicates that the predictive control uses on-line repeatedly performed finite horizon optimization to replace the infinite horizon off-line optimization once solved in traditional optimal control, which characterizes the meaning of rolling optimization and is the specific feature of the optimization in predictive control.

1.2.3 Feedback Correction

Predictive control is also a feedback-based control. The above-mentioned rolling optimization might be an open-loop optimization if it is only based on the prediction model. In practice, there unavoidably exist uncertainties such as model mismatch, unknown disturbance, etc., and the real system behavior may deviate from the ideal optimal one. For compensating the influence of various uncertainties to system behavior to a certain extent, a closed-loop mechanism is introduced into predictive control. At each sampling time, the measured real-time information for system states or outputs should be utilized to update or correct the future system behavior before solving the optimization problem. In this way, prediction and optimization at that time could be put on a basis that is closer to the real status. We call this procedure feedback correction.

The ways of feedback correction are diverse. In industrial predictive control algorithms, each time after the current control action has been calculated and implemented,
future outputs under this control action can be predicted by using the prediction model. Next time, the prediction error constructed by measured real output and predicted output can then be utilized to heuristically correct the prediction of future outputs (see Figure 1.4). By using predictive control algorithms developed from adaptive control, feedback correction can be implied in the adaptation mechanism of adaptive control, i.e. by identifying the model using real-time input/output information and online updating the prediction model and the control law. For predictive control algorithms based on the state space model, feedback correction may be taken as different forms according to the available information. If the system states are real-time measurable, they can be directly used as a new basis for prediction and optimization each time. However, if the states are unmeasurable, it is necessary to correct the predicted states through constructing an observer according to the real-time measured system outputs. No matter which form of feedback correction is adopted, each time predictive control always tries to put the optimization on a basis that is closer to the real status by feedback of measured real-time information. Therefore, although each time predictive control performs an

![Figure 1.3](image_url)
Figure 1.3 Rolling optimization. 1 – reference trajectory; 2 – predicted optimal output; 3 – optimal control action.
open-loop optimization, the rolling implementation combined with feedback correction makes the whole process become a closed-loop optimization.

According to this brief introduction of the general principles of predictive control, it is not difficult to understand why predictive control is so favored in complex industrial environments. Firstly, for a complex industrial plant, the big cost of identifying its minimum parametric model always brings difficulty for control algorithms based on transfer function or state space models. However, the model used in predictive control is more convenient to obtain because it emphasizes its prediction function rather than its structural form. In many cases, the prediction model can be directly obtained by measuring the system step or impulse response without further identifying its transfer function or state space model, which is undoubtedly attractive for industrial users. More important is the fact that predictive control absorbs the idea of optimization control, but performs rolling horizon optimization combined with feedback correction instead of solving global optimization. In this way, not only is the big computational burden for solving global optimization avoided but also the uncertainty caused by the inevitable model mismatch or disturbance in industrial environment can be constantly taken into account and their influence can be timely corrected. Thus predictive control can achieve stronger robustness as compared with the traditional optimal control only based on the model. In this sense, predictive control may be regarded as a type of new control algorithm that can amend the shortcomings of traditional optimal control applying to industrial processes.

The basic principles of predictive control actually reflect the general thinking of humans when handling problems where optimization is sought but with uncertainty. For example, when a person goes across a road, there is no need to see whether there are vehicles far away; only the vehicle status a few tens of meters away and the estimation of their velocities (model) are important. However, it is wise to look into the distance while walking in order to avoid accidents caused by new vehicles entering (disturbance) or unpredicted acceleration of vehicles (model mismatch). This repeated decision process indeed includes optimization based on the model and feedback based on real-time information. Actually, this kind of rolling optimization method in an uncertain environment has already appeared in economics and management fields. Both predictive
economics and rolling planning in business management adopt the same thinking. In predictive control the methodological principle within was absorbed and combined with control algorithms, so it can be effectively applied to controlling complex industrial processes.

1.3 Contents of this Book

For over 30 years, predictive control has been developed into a diversified research field, including algorithms, strategies, theories, and applications. The contents of predictive control are extremely rich and relevant results and literatures are numerous. This book will comprehensively introduce the fundamentals and new developments of predictive control from a broader perspective, including basic principles and algorithms, system analysis and design, algorithm development, and practical applications, aiming to reflect the development trajectory and core contents of predictive control. The detailed contents of each chapter in the book are as follows.

Chapter 1 gives a brief introduction of the development trajectory of predictive control and its methodological principles.

In Chapter 2, three typical predictive control algorithms, based on the step response model, stochastic linear difference equation model, and state space model, respectively, are introduced for unconstrained SISO systems, focusing on illustrating how the basic principles are embodied in the algorithms when different models are adopted.

Chapter 3 adopts the IMC structure to deduce the analytical expression of the unconstrained SISO DMC algorithm in the Z domain. After analyzing the controller and the filter in the IMC structure, some trending relationships of stability/robustness with respect to design parameters are provided, based on which the parameter tuning method is suggested with illustration examples.

Chapter 4 presents the main results of quantitative analysis theory of predictive control. The quantitative relationships between the design parameters and the closed-loop performances are achieved with the help of the Kleinman controller in the time domain and by establishing the coefficient mapping of the open-loop and the closed-loop characteristic polynomials in the Z domain, respectively.

In Chapter 5, multivariable constrained predictive control algorithms are presented with DMC as an illustration example, focusing on the description of online optimization and the solving algorithms. The decomposition concept to reduce the computational complexity is introduced and implemented by hierarchical, decentralized, and distributed predictive control algorithms.

Chapter 6 illustrates the basic ideas of the qualitative synthesis theory of predictive control. Fundamental approaches of synthesizing stable predictive control systems are presented. General conditions for a stable predictive controller are given and suboptimality is analyzed.

Fundamental materials of synthesizing robust model predictive control (RMPC) are given in Chapter 7, including basic philosophy and main developments of RMPC for polytopic uncertain systems, and typical RMPC algorithms for systems with disturbances. The main difficulties of RMPC synthesis are pointed out, for which some efficient strategies and improved algorithms are introduced.
Chapter 8 focuses on predictive control for nonlinear systems. The general description of predictive control for nonlinear systems is given. Some commonly used strategies or algorithms are introduced, including multilayer, multimodel, neural network methods, and a specific strategy for Hammerstein models.

Chapter 9 briefly introduces the diversified development of algorithms and strategies for predictive control applications, including some effective control structures, different optimization concepts and goals, high efficiency control strategies, etc.

Chapter 10 describes the general status of industrial applications of predictive control with illustration examples. The applications of predictive control for large-scale networked systems, embedded systems, and its extension to other fields are also introduced with examples.

In Chapter 11, the basic principles of predictive control are interpreted from the viewpoints of cybernetics and information theory. These principles are then generalized to other optimization-based dynamic decision problems with illustration examples of production scheduling and robot path planning.

The relationships between the above chapters with the predictive control principles, algorithms, strategies, theories, and applications are roughly shown in Figure 1.5.

References

