Window Functions

The Hidden Secret to Fast Analytic and
Reporting Queries

Second Edition

Kathi Kellenberger
Clayton Groom
Ed Pollack

APress:

Expert T-SQL Window
Functions In
SQL Server 2019

The Hidden Secret to Fast Analytic
and Reporting Queries

Second Edition

Kathi Kellenberger
Clayton Groom
Ed Pollack

Apress’

Expert T-SQL Window Functions in SQL Server 2019

Kathi Kellenberger Clayton Groom
Edwardsville, IL, USA Smithton, IL, USA
Ed Pollack

Albany, NY, USA

ISBN-13 (pbk): 978-1-4842-5196-6 ISBN-13 (electronic): 978-1-4842-5197-3
https://doi.org/10.1007/978-1-4842-5197-3

Copyright © 2019 by Kathi Kellenberger, Clayton Groom, and Ed Pollack

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick

Development Editor: Laura Berendson

Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484251966. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-5197-3

This book is dedicated to the memory of Larry Toothman.

Table of Contents

About the AUtROIS......ccccuiemmsssnnmmsssnmsssssmssssnsssssnssssansessansesssnsessansesssnnesssnnssssnnssssnnssssns ix
About the Technical REVIEWETccussmsrsssssssssansssssnssssansssssnsssssnsssssnsssssnssssssnssssnnssssns Xi
FOrEWOIdcoioeniisanmmssannmsssnnmsssnnmsssnnssssnnssssnnsnssnnnessannsssannesssnnessansesssnnssssnnnsssnnssssnns Xiii
Acknowledgments.......cccccuuisssnmmmnmmmmmmssssssssssnnnmmmsssssssssssnnnseesssssssssnnnnnnsesssssssnnnnnnnnnnss XV
INtroducCtioncucisemmisnnmsssnnmsssnnmsssnnmsssnnssssansessannessannessannessannessannnsssnnesssnnnsssnnssssnns xvii
Chapter 1: Looking Through the Window...........ccciummsemmmmmssssnssmmssssssssssssssssssssssssssnsss 1
Discovering WindoW FUNCHIONScccceviriiriiriee s res e se s s s s e s s s s e s snesnesae s 2
Thinking ADout the WINQOW ..o s sn s s s sne s 4
Understanding the OVER CIAUSEccoveeerenmrencrrsesenese s s sessesesssnens 6
Dividing Windows With Partitions..........c.cucecrernninninssnsss s sessesessssessssesenns 15
Uncovering Special Case WiNAOWSc.cuucerirernenmnenesssessssesesssessssessssessssssesssssssssessssssesssssssnns 16
1] 4= RS 19
Chapter 2: Discovering Ranking FUNCtioNS........ccccussemnmmssssnnnsnssssnnsssssssssnssssssnnnsnsss 21
USING ROW_NUMBER ..o se s se s e s s sesssss s 21
Understanding RANK and DENSE_RANK.........cco oo rirrerercrrerree e res e sesessae s ssesesssesnesaennens 26
Dividing Data With NTILE...........ccoeorrerreereseresese s se e s s sessenenns 27
Solving Queries with Ranking FUNCHIONSccccveernennesersse e 30
Deduplicating DAta........c.ouoevrrerrrenerrnsesesesesese s s s nse e nennis 31
Finding the First N ROWS Of EVEIY GrOUDcocvrrererenerresesessesessesessssesessesessssessssesesssssssssessnns 33
Creating a Tally TADIE........ccvceerererene s s r e 37
Solving the Bonus ProbDIBMccoveierererescreree e 38
SUMIMAIY ...ttt r e e e e e e e e e e R e e e R e nenRe e e Re e Ra e nr e e e nrnnn s 41

TABLE OF CONTENTS

Chapter 3: Summarizing with Window Aggregates.......cccusemmmmmsssnnnsmssssnssssssssnnnsasss 43
USiNg WIiNAOW AQQregatesccucverenrininienese s sss e s s se e s sssssssessessesssssssessesrsssssesnesnes 43
Adding Window Aggregates to Aggregate QUENIES.........ccuvrreriennnnsenennsessese s sss s e ssssessessens 48
Using Window Aggregates to Solve Common QUENIESc.covrrnmnsemmnsssssssssssssese s 52

The Percent of Sales ProbIBM ..o 52
The Partitioned Table Problem...........corrnrenrescrrese s 53
Creating Custom Window Aggregate FUNCHONS........c.ccccovenrnsnnnennnese s 57
E 1] 04 RS 60

Chapter 4: Calculating Running and Moving Aggregatesccuseemmmsssnnnsssssssnssnns 61
Adding ORDER BY 10 WindOW AQQregates.......ccuvrerrerereeremserseressssessessessssessessessessssessessesssssssessens 61
Calculating Moving Totals and AVEIrages.........cuuvrrreriniererenesssesissesesesessssesessessssesessssessssesessenens 63
Solving Queries Using Accumulating Aggregates ..o sessessenns 67

The Last Good Value ProDIEM ..o e e 67
The Subscription ProDIEM ... s 70
SUIMIMAIY....eveereecrere s e e e s e s Re e e e e e e e e Re e e e sen e e nRe e ra e nensn e nrnnnes 74

Chapter 5: Adding Frames to the Windowccccuseemmmnnsssnnnmmssssssnmmssssssnmsssssssnnnns 75
Understanding Framingc.cccccvennninnnnnss s ssssssessssssssssssssssessssessns 75
Applying Frames to Running and Moving AQQregatesccccvvvrrrierevensensessesesessessesessssessessens 79
Understanding the Logical Difference Between ROWS and RANGE............c.ccocvvververerenensersennes 82
11T 1117 OSSR 85

Chapter 6: Taking a Peek at Another ROWccccuseemnnissssnsnnmssssssnsssssssssssssssssnsnnss 87
Understanding LAG @nd LEAD ... se s s ssssesessesenns 87
Understanding FIRST_VALUE and LAST_VALUEcovninnnnrners s 92
Using the Offset Functions 10 SOIVE QUETIES.........cccverrrrirernsesenese s sens 94

The Year-Over-Year Growth CalCulation..........c.ccccvveernrenenesesnsesssesess s sessesessenens 94
The Timecard ProbIEM..........cccovienrerneses s 96
E 1] 04 RS 98

TABLE OF CONTENTS

Chapter 7: Understanding Statistical Functions.........cccccussemnmnnssnsnnnssssssnnssssssnnsnns 99
Using PERCENT_RANK and CUME_DISTcccoovmurerermmereresesesesesesessssssssssssssssssssssssssssssssssssnsnenes 99
Using PERCENTILE_CONT and PERCENTILE_DISCc.cccererererenemssssssssssssssssssssssssssssenenenes 103
Comparing Statistical Functions to Older Methods..........c.coovrrenerenrnsenereser e 107
B30T 1117 o TSSOSO 111

Chapter 8: Tuning for Better Performance..........ccccuussemmmmnsssssnnmssssssnssssssssnsssssssnnnss 113
USING EXECULION PIANS........ccoeviiirerere s serer s s e st se s s sae e s saesaesas e snennens 113
USING STATISTICS 10.......ccceeieeeeessressss s se e e e sssssa e e es 119
Indexing to Improve the Performance of Window FUNCtionscccovvnvninennsnicniesnsnnsennens 121
Framing for PErfOrMAaNCE.........ccocvirinirncn s 125
Taking Advantage of Batch Mode on ROWSIOre...........ccovererenernscneneser s 129
Measuring Time COMPAIISONS.......ccovrererrserersesesressrrssesessesesesessssssesssssssssssssssssssssssssssssessssssssnns 134
Cleaning Up the Dat@base........c.ccvvervrininieniennsiniene s e s sss e s e s s e e saesnes 139
£ 1134 R 139

Chapter 9: Hitting a Home Run with Gaps, Islands, and Streaks......cc.cocurrmsssnnnnns 141
The Classic Gaps/ISIands Problemccoverrrrrninnesncse s sessesessenens 142

FINAING ISIANSocveereeccr e e e 143
FINGING GAPS..c.ccerireiriirisne st se s e e s st et et 145
Limitations and NOTES.......c.ccverirircrcere s 146
(D7 8 11T -] 147
TracKing SIFEAKSccovrueeerreerererere s ne e nne e 153
Winning and LOSING STrEAKSccurererinninere st s s ss s s sns s s snes 154
Streaks Across Partitioned Data Sets........c.cccorerrrrrnnesresc s 158
DAta QUAIITY....cceeerereeereerese s e 168
NULL .ttt se e se et bbbt et e 169
Unexpected or INValid VAIUES..........cccvereniininer e sss s s sss e sse s 170
DUplicate Data.........ccccvirinrr e s 170
Lo (0] 11 [SRS 171
L1134 R 172

vii

TABLE OF CONTENTS

Chapter 10: Time Range Calculations........ccccuseemrmmsssnnnmsssssnnnsssssssnsssssssssssssssnnnnss 175
Percent 0f PAreNt ..o 176
Period-to-Date CalCUIAtiONS...........coceueeerercrerereree e 181
Averages and MOVING AVEIAGESc..ccceerererrererersesersesessesesessesessesessessssssessssssessssssssssssssssssssnsssenes 184

Handling Gaps in Date RANGEScccvreerernenmreneresesesese s sese s sennis 184
Same Period Prior YE@r........c.ccovvererenernsesesese e s s se s e s sessssenns 188
Growth and Percent GroWthccoveeresrnssnese e 190
B30T 1117 o OSSR 193

Chapter 11: Time Trend Calculations.........ccccuseemmmnsssssnnmmsssssnnmnsssssnssssssssssesssssnnns 195

Moving Totals and MOVING AVEFAQESccvverrerrrrerrerersesessessessessssessessesssssssessessessssessessesssssssessens 195
Ensuring Sets Are COMPIETEcocevevrreriererrrerrere e se e s s se e s e e s nnes 196

3T (eI 8 1P T 202
a1 C Y (0 o 11T R 204

£ 11134 7R 208
1T - 209

viil

About the Authors

Kathi Kellenberger is a data platform MVP and the editor
of Simple Talk at Redgate Software. She has worked with
SQL Server for over 20 years. She is also coleader of the PASS
Women in Technology Virtual Group and an instructor at
LaunchCode. In her spare time, Kathi enjoys spending time
with family and friends, singing, and cycling.

Clayton Groom is a data warehouse and analytics
consultant at Clayton Groom, LLC. He has worked with
SQL Server for 25 years. His expertise lies in designing and
building data warehouse and analytic solutions on the
Microsoft technology stack, including Power BI, SQL Server,
Analysis Services, Reporting Services, and Excel.

Ed Pollack has over 20 years of experience in database

and systems administration and architecture, developing a
passion for performance optimization and making things go
faster. He has spoken at many SQL Saturdays, 24 Hours of
PASS, and PASS Summits and has coordinated SQL Saturday
Albany since its inception in 2014.

ix

About the Technical Reviewer

Rodney Landrum went to school to be a poet and a writer.
And then he graduated, so that dream was crushed. He
followed another path, which was to become a professional
in the fun-filled world of information technology. He has
worked as a systems engineer, UNIX and network admin,
data analyst, client services director, and finally as a
database administrator. The old hankering to put words on

paper, while paper still existed, got the best of him, and in
2000 he began writing technical articles, some creative and
humorous, some quite the opposite. In 2010, he wrote SQL Server Tacklebox, a title
his editor disdained, but a book closest to the true creative potential he sought; he still
yearned to do a full book without a single screenshot, which he accomplished in 2019
with his first novel, Chronicles of Shameus. He currently works from his castle office in
Pensacola, FL, as a senior DBA consultant for Ntirety, a division of Hostway/HOSTING.

https://urldefense.proofpoint.com/v2/url?u=https-3A__www.simple-2Dtalk.com_books_sql-2Dbooks_sql-2Dserver-2Dtacklebox_&d=DwMGaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=xcIyEHOBDrqBsDpfs-jtsZsroIrOItY9CEdM2IbX3oc&m=ATp2mIUhDlDGDaJJR-DBWwdevflUGjlkn7itQ4W8LDE&s=RDec6_ulY0b0VJaB54ErbbkfblQMQb3XDKyMRcf5MGk&e=

Foreword

SQL was developed in the 1970s and became standardized through ANSI-approved
committees as a formal standard starting in 1986.' Today in 2019, SQL has become the
most widely used declarative language. Along the way, window functions have come
to be an important part of that standard. ANSI does not make standards but plays an
important role in documenting and preserving them. The individual software vendors
voluntarily decide to comply, and it’s the work of the authors of books like this one to
explain SQL use in practical terms.

In my own career in data science and advanced analytics, window functions have
been an important part of several key projects in the past few years. Several years ago, I
made a YouTube video for a user group based on the earlier edition of this book. Since
then, as a career architect at Microsoft, I have advised the application for data science.
In one project, the input of about 20 features was not yielding adequate results: using
window functions, a team under my leadership (and yes, direct coding) quickly grew
that number to over 1,000. More than numeric growth, the accuracy rates improved, and
on the business story, the organization is saving millions of dollars annually for their
question. In the past month, [have encountered an unrelated new project, and a similar
story is there: a time-series type of data set and an opportunity to grow from under 20
features to a number much larger.

One wonders whether automated machine learning technologies would make
such combinations on their own, and I'm skeptical. Making a robust set of features
from window functions requires not just time-series considerations but also clustering
knowledge based on knowing the data domain. Even if automated technologies make
great progress in this topic, I anticipate the need for any data scientist to have simple
knowledge of these functions for the more typical data science investigation which has
only a few features and low number of observations.

SQL is central to on-premise and cloud database technologies - and in the data
science world, many use Apache Spark (part of SQL Server 2019 and so many other data
technologies). This reach into advanced analytics is yet another reason why this topic is

See https://blog.ansi.org/2018/10/sql-standard-iso-iec-9075-2016-ansi-x3-135/

xiii

https://blog.ansi.org/2018/10/sql-standard-iso-iec-9075-2016-ansi-x3-135/

FOREWORD

an expert-level subject in the SQL language. The mainstream applications extend from
any business analytics SQL query and even into supporting advanced analytics and
machine learning algorithms.

Over the years, it’s been an honor to individually know Kathi Kellenberger and
Clayton Groom as respected peers and professionals and to see how they have each
become important leaders to the technical user community through many presentations
(for which they typically volunteer their own time) and through the creation and now
revision of this book. In this revision, Ed Pollack has applied material on baseball
statistics, illustrating that not every time series is about money. It’s not enough to have a
standard written, but one needs to have expert coaches to explain how these functions
describe an approach for business analytics. This book has rich examples and altogether
provides a clear path into one of the most mathematically complex and yet practically
useful aspects of the SQL language.

Mark Tabladillo, Ph.D.
Cloud Solution Architect, Microsoft

Xiv

Acknowledgments

The first edition of this book would not have been written except for the suggestion

of one of my friends in the data platform community, Larry Toothman. Sadly, Larry
passed away shortly after the book was published and before I could get a copy to him.
Larry was just getting started with presenting at events and being more involved in the
community during the last couple of years of his life. Who knows what he might have
accomplished if things had turned out differently. Thanks to Larry’s inspiration, people
around the world will learn about windowing functions.

They say it takes a village to raise a child, and the same might be true for a book. I
would like to thank Jonathan Gennick and Jill Balzano for their help and guidance. There
are probably many people at Apress who had a hand in this project that I'll never meet,
and I would like to thank them as well.

Clayton Groom and Ed Pollack each wrote about their real-world experience using
windowing functions. In each case, the idea for their chapter came from my running
into each of them at user group meetings and just talking about my project. Their
contributions definitely make this a better and more enjoyable book for you.

Thanks to Rodney Landrum for doing a great job on the technical review and to Mark
Tabladillo for the wonderful foreword.

Thank you to my family, especially my husband, Dennis, who takes care of just
about everything around the house. He makes my life so much easier when I take on big
projects like this.

Finally, thank you dear reader for learning about windowing functions from this
book. I hope that you enjoy it and can apply the things you learn right away. I would love
to hear from you at events, so don’t be shy!

Introduction

Several years ago, I would create a user group presentation for each new version of SQL
Server about the new T-SQL features. There was so much to say in 2012 that I decided to
build a presentation on just the windowing functions introduced that year. Eventually,

I had so much material that it turned into two sessions. Over the years, I have probably
presented this information at least 50 times at events around the United States and the
United Kingdom. Despite that, most people still are not using windowing functions
because they haven’t heard about them or do not realize the benefits.

What’s in This Book?

This book covers each type of windowing function beginning with the ranking functions
introduced with SQL Server 2005 through the statistical functions introduced in 2012.
Each chapter explains how to use the functions along with any options and provides

a few simple examples of how to use them. Unfortunately, the last time that Microsoft
added any new windowing functions was 2012, but there have been some performance
improvements more recently. One chapter is dedicated to the performance of
windowing functions.

Finally, the last two chapters in the book cover some real-world examples. In
Chapter 9, you'll learn how to analyze a large data set, over 100 years of baseball
statistics. Chapters 10 and 11 show how windowing functions can be used in data
warehouse calculations instead of building a cube.

Intended Audience

This book is meant for people who already have good T-SQL skills. They know how to
join tables, use subqueries and CTEs, and write aggregate queries. Despite these skills,
they occasionally run into problems that are not easy to solve in a set-based manner.
Without windowing functions, some of these problems can only be solved by using

xvii

INTRODUCTION

cursors or expensive triangular joins. By using the concepts taught in this book, your
T-SQL skills will improve to the next level. Once you start using windowing functions,
you'll find even more reasons to learn them.

Contacting the Author

Great care was taken to ensure that the information presented is correct, but sometimes
readers come up with a better way to write a query or find an error. You can contact me
atkathi.kellenberger@outlook.comwith any comments or questions.

xviii

CHAPTER 1

Looking Through
the Window

SQL Server is a powerful database platform with a versatile query language called
T-SQL. The most exciting T-SQL enhancement over the years, in my opinion, is the
window functions. Window functions enable you to solve query problems in new, easier
ways and with better performance most of the time over traditional techniques. They
are a great tool for analytics. You may hear these called “windowing” or “windowed”
functions as well. The three terms are synonymous when talking about this feature.

After the release of SQL Server 2000, SQL Server enthusiasts waited 5 long years for
the next version of SQL Server to arrive. Microsoft delivered an entirely new product
with SQL Server 2005. This version brought SQL Server Management Studio, SQL
Server Integration Services, snapshot isolation, and database mirroring. Microsoft also
enhanced T-SQL with many great features, such as common table expressions (CTEs).
The most exciting T-SQL enhancement of all with 2005 was the introduction of window
functions.

That was just the beginning. Window functions are part of the standard ANSI
SQL specification beginning with ANSI SQL2003. More functionality according to the
standard was released with version 2012 of SQL Server. In 2019, Microsoft gave some of
the window functions a performance boost with batch mode processing, a feature once
reserved for column store indexes. You'll see how this performance feature works in
Chapter 8. Even now, the functionality falls short of the entire specification, so there is
more to look forward to in the future.

This chapter provides a first look at two T-SQL window functions, LAG and
ROW_NUMBER. You will learn just what the window is and how to define it with the OVER
clause. You will also learn how to divide the windows into smaller sections called
partitions.

© Kathi Kellenberger, Clayton Groom, and Ed Pollack 2019
K. Kellenberger et al., Expert T-SQL Window Functions in SQL Server 2019,
https://doi.org/10.1007/978-1-4842-5197-3_1

CHAPTER 1 LOOKING THROUGH THE WINDOW

Discovering Window Functions

Window functions do not let you do anything that was impossible to do with earlier
functionality, and they have nothing to do with the Microsoft Windows API. Using
previously available methods, such as self-joins, correlated subqueries, and cursors, you
can solve just about any T-SQL problem if you work at it long and hard enough. The main
benefit of window functions is the ease with which you can solve these tricky queries.
Most of the time, you also realize a big boost in performance over the older methods.
You can often use a window function to change a solution involving many statements or
subqueries to one easier statement.

Ilike to divide window functions into several categories that do not exactly match
up with the way Microsoft defines them: ranking functions, window aggregates,
accumulating window aggregates, offset functions, and statistical functions. (Microsoft
refers to the four offset and four statistical functions as “analytic” functions.) You can
use these functions to assign a rank to each row, calculate summary values without
grouping, calculate running totals, include columns from different rows in your results,
and calculate percentages over a group. You'll learn about these functions as you read
this book.

My favorite T-SQL function which also happens to be a window function is called
LAG. It is one of the offset functions, which you will learn about in Chapter 6. LAG allows
you to include columns from different rows in your results. Using LAG is easier and
performs better than older methods that do the same thing.

Within the same year (just a few months apart), two different people approached
me for help with essentially the same problem: using data from the stock market, how
can one compare the closing price of a stock from one day to the next? The traditional
solution requires that each row of the data be joined to the prior row to get the closing
price from the previous day. By using the LAG function, the solution is not only simpler to
write, it also performs much better.

Note If you would like to follow along with this example, a sample script to
create the StockAnalysisDemo database and generated stock market data can be
found along with the code for this chapter on the Apress site.

For a quick look at how to solve this problem first by using one of the traditional
methods and then by using LAG, review and run Listing 1-1.

2

CHAPTER 1 LOOKING THROUGH THE WINDOW

Listing 1-1. Two Approaches to Solving the Stock Market Problem

USE StockAnalysisDemo;

GO

--1-1.1 Using a subquery

SELECT TickerSymbol, TradeDate, ClosePrice,
(SELECT TOP(1) ClosePrice
FROM StockHistory AS SQ
WHERE SQ.TickerSymbol = 0Q.TickerSymbol

AND SQ.TradeDate < 0Q.TradeDate

ORDER BY TradeDate DESC) AS PrevClosePrice

FROM StockHistory AS 0Q

ORDER BY TickerSymbol, TradeDate;

--1-1.2 Using LAG
SELECT TickerSymbol, TradeDate, ClosePrice,
LAG(ClosePrice) OVER(PARTITION BY TickerSymbol
ORDER BY TradeDate) AS PrevClosePrice
FROM StockHistory
ORDER BY TickerSymbol, TradeDate;

The partial results are shown in Figure 1-1. Since the data is randomly generated, the
values of ClosePrice and PrevClosePrice in the image will not match your values. Query
1 uses a correlated subquery, the old method, to select one ClosePrice for every outer
row. By joining the TickerSymbol from the inner query to the outer query you ensure
that you are not comparing two different stocks. The inner and outer queries are also
joined by the TradeDate, but the TradeDate for the inner query must be less than the
outer query to make sure you get the prior day. The inner query must also be sorted to
get the row that has the latest data but still less than the current date. This query took
over a minute to run on my laptop, which has 16GB of RAM and is using SSD storage.
Almost 700,000 rows were returned.

Query 2 uses the window function LAG to solve the same problem and produces the
same results. Don’t worry about the syntax at this point; you will be an expert by the end
of this book. The query using LAG took just 13 seconds to run on my laptop.

CHAPTER 1 LOOKING THROUGH THE WINDOW

TickerSymbol TradeDate ClosePrice PrevClosePrice

1 Z1 2017-01-03 26.98 NULL
2 Z1 2017-01-04 27.94 26.98
3 Z1 2017-01-05 27.89 27.94
4 Z1 2017-01-06 28.44 27.89
5 Z1 2017-01-09 28.87 28.44
TickerSymbol TradeDate ClosePrice PrevClosePrice
1 Z1 2017-01-03 26.98 NULL
2 Z1 2017-01-04 27.94 26.98
3 Z1 2017-01-05 27.89 27.94
4 Z1 2017-01-06 28.44 27.89
5 Z1 2017-01-09 28.87 28.44

Figure 1-1. Partial results of the stock market problem

By just looking at the code in Listing 1-1, you can see that Query 2 using LAG is much
simpler to write, even though you may not understand the syntax just yet. It also runs
much faster because it is just reading the table once instead of once per row like Query 1.
As you continue reading this book and running the examples, you will learn how window
functions like LAG will make your life easier and your customers happier!

Thinking About the Window

Window functions are different than regular functions because they operate over a
set of rows, also called a window. This may sound similar to how aggregate functions
work. Aggregate functions, such as SUM and AVG, operate on groups of rows and provide
summary values. When you write an aggregate query, you lose the detail columns except
for those in the GROUP BY clause.

When adding a GROUP BY clause, instead of returning a summary along with all the
rows, you will see a summary row, one row for each unique set of GROUP BY columns.
For example, to get a count of the all the rows using an aggregate query, you must leave
out the other columns. Once you add columns into the SELECT and GROUP BY, you get a
count for each unique grouping, not the entire set of results.

CHAPTER 1 LOOKING THROUGH THE WINDOW

Queries with window functions are much different than traditional aggregate
queries. There are no restrictions to the columns that appear in the SELECT list, and no
GROUP BY clause is required. You can also add window functions to aggregate queries,
and that will be discussed in Chapter 3. Instead of summary rows being returned, all
the details are returned and the result of the expression with the window function is
included as just another column. In fact, by using a window function to get the overall
count of the rows, you could still include all of the columns in the table.

Imagine looking through a window to see a specific set of rows while your query is
running. You have one last chance to perform an operation, such as grabbing one of the
columns from another row. The result of the operation is added as an additional column.
You will learn how window functions really work as you read this book, but the idea of
looking through the window has helped me understand and explain window functions
to audiences at many SQL Server events. Figure 1-2 illustrates this concept.

TickerSymbol TradeDate ClosePrice PrevClosePrice

1z 2017-01-03 26.98 NULL The Window

2 Z1 2017-01-04 27.94 26.98 TickerSymbol TradeDate ClosePrice OpenPrice
3 Al |2017-01-05 27.89 27.94 —— 20170104 1 27.84 28.44

4 Z1 2017-01-06 2844 27.89 Z1 2017-01-05 27.89 28.39

5 Z1 2017-01-09 28.87 28.44

Figure 1-2. Looking through the window to perform an operation on a set of rows

The window is not limited to the columns found in the SELECT list of the query. For
example, if you take a look at the StockHistory table, you will see that there is also an
OpenPrice column. The OpenPrice from one day is not the same as the ClosePrice from
the previous day. If you wanted to, you could use LAG to include the previous OpenPrice
in the results even though it is not included in the SELECT list originally.

In the stock history example using LAG, each row has its own window where it finds
the previous close price. When the calculation is performed on the third row of the data,
the window consists of the second and third rows. When the calculation is performed on
the fourth row, the window consists of the third and fourth rows.

What would happen if the rows for 2017-12-02 were removed from the query by a
WHERE clause? Does the window contain filtered-out rows? The answer is “No,” which
brings up two very important concepts to understand when using window functions:
where window functions may be used in the query and the logical order of operations.

Window functions may only be used in the SELECT list and ORDER BY clause. You
cannot filter or group on window functions. In situations where you must filter or group

CHAPTER 1 LOOKING THROUGH THE WINDOW

on the results of a window function, the solution is to separate the logic. You could use a
temp table, derived table subquery, or a CTE and then filter or group in the outer query.

Window functions operate after the FROM, WHERE, GROUP BY, and HAVING clauses. They
operate before the TOP and DISTINCT clauses are evaluated. You will learn more about
how DISTINCT and TOP affect queries with window functions in the “Uncovering Special
Case Windows” section later in this chapter.

The window is defined by the OVER clause. Notice in Query 2 of Listing 1-1 that the
LAG function is followed by an OVER clause. Each type of window function has specific
requirements for the OVER clause. The LAG function must have an ORDER BY expression
and may have a PARTITION BY expression.

Understanding the OVER Clause

One thing that sets window functions apart is the OVER clause, which defines the window
or set. With one exception I'll explain in Chapter 7, window functions will have an OVER
clause, and learning how to use the OVER clause is required to understand window
functions. In some cases, the OVER clause will be empty. You will see empty OVER clauses
in Chapter 3 when working with window aggregate functions.

Note There is one situation in which you will see the OVER keyword in a
query not following a window function, and that is with the sequence object.
The sequence object, introduced with SQL Server 2008, is a bucket containing
incrementing numbers often used in place of an identity column.

For any type of expression in the SELECT list of a query, a calculation is performed for
each row in the results. For example, if you had a query with the expression Col1 + Col2,
those two columns would be added together once for every row returned. A calculation
is performed for row 1, row 2, row 3, and so on. Expressions with window functions must
also be calculated once per row. In this case, however, the expressions operate over a set
of rows that can be different for each row where the calculation is performed.

The OVER clause determines which rows make up the window. The OVER clause has
three possible components: PARTITION BY, ORDER BY, and the frame. The PARTITION BY
expression divides up the rows, and it’s optional depending on what you are trying to
accomplish. The ORDER BY expression is required for some types of window functions.

6

CHAPTER 1 LOOKING THROUGH THE WINDOW

Where it is used, it determines the order in which the window function is applied.
Finally, the frame is used for some specific types of window functions to provide even
more granularity. You'll learn about framing in Chapter 5.

Many T-SQL developers and database professionals have used the ROW_NUMBER
function. They may not have even realized that this is one of the window functions.
There are many situations where adding a row number to the query is a step along the
way to solving a complex query problem.

ROW_NUMBER supplies an incrementing number, starting with one, for each row. The
order in which the numbers are applied is determined by the columns specified in the
ORDER BY expression, which is independent of an ORDER BY clause found in the query
itself. Run the queries in Listing 1-2 to see how this works.

Listing 1-2. Applying the Row Numbers to Different Columns

USE AdventureWorks;
GO
--1-2.1 Row numbers applied by CustomerID
SELECT CustomerID, SalesOrderID,
ROW_NUMBER() OVER(ORDER BY CustomerID) AS RowNumber
FROM Sales.SalesOrderHeader;

--1-2.2 Row numbers applied by SalesOrderID
SELECT CustomerID, SalesOrderID,

ROW_NUMBER() OVER(ORDER BY SalesOrderID) AS RowNumber
FROM Sales.SalesOrderHeader;

Note The AdventureWorks and AdventureWorksDW databases are used in many
of the examples throughout this book. You can use any version starting with 2014
or later to follow along, and the 2017 version was the latest available at the time of
this writing. Just be sure to adjust the USE statement when it’s included to fit your
version of the databases.

The OVER clause follows the ROW_NUMBER function. Inside the OVER clause, you will see
ORDER BY followed by one or more columns. The difference between Queries 1 and 2 is
just the ORDER BY expression within the OVER clause. Notice in the partial results shown
in Figure 1-3 that the row numbers end up applied in the order of the column found

CHAPTER 1 LOOKING THROUGH THE WINDOW

in the ORDER BY expression of the OVER clause, which is also the order that the data is
returned. Since the data must be sorted to apply the row numbers, it is easy for the data
to stay in that order, but it is not guaranteed. The only way to ever actually guarantee the
order of the results is to add an ORDER BY to the query.

CustomerlD | SalesOrderlD | RowNumber

1 11000 43793 1

2 11000 51522 2

3 11000 57418 3

4 11001 43767 4

5 11001 51493 5

6 11001 72773 6
CustomerlD |/ SalesOrderlD | RowNumber

1 29825 43659 1

2 29672 43660 2

3 29734 43661 3

4 29994 43662 4

5 29565 43663 5

6 29893 43664 6

Figure 1-3. Partial results of using ROW_NUMBER with different OVER clauses

If the query itself has an ORDER BY clause, it can be different than the ORDER BY within
OVER. Listing 1-3 demonstrates this.

Listing 1-3. Using ROW_NUMBER with a Different ORDER BY in the OVER
Clause

--1-3.1 Row number with a different ORDER BY
SELECT CustomerID, SalesOrderID,
ROW_NUMBER() OVER(ORDER BY CustomerID) AS RowNumber
FROM Sales.SalesOrderHeader
ORDER BY SalesOrderID;

