Assembly
Language
Programming

. ARM Processor Coding

Stephen Smith

Raspberry Pi
Assembly Language
Programming

Stephen Smith

Apress’

Raspberry Pi Assembly Language Programming: ARM Processor Coding

Stephen Smith
Gibsons, BC, Canada

ISBN-13 (pbk): 978-1-4842-5286-4 ISBN-13 (electronic): 978-1-4842-5287-1
https://doi.org/10.1007/978-1-4842-5287-1

Copyright © 2019 by Stephen Smith

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black

Development Editor: James Markham

Coordinating Editor: Jessica Vakili

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-5286-4.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-5287-1

This book is dedicated to my beloved wife and editor
Cathalynn Labonté-Smith.

Table of Contents

About the AUthOrc.ccccmmmmmmmm e ————————— XV
About the Technical REVIEWETccccsmsssmsmsssnsssssnsssssnsssssnsssssnsssssnnss Xvii
Acknowledgmentsccccuuseemmmssssnsnnmssssssssesssssnsnesssssnnssssssnsnssssssnnnnssss Xix
INtroduction.........ccuvmmmmmnsemmsnmmsmsen s —————— Xxi
Chapter 1: Getting Started..........ccucccmmnnnnemnmmnnsennmmnssnnmmssssn——————m" 1
About the ARM PrOCESSOKcoevveererenrenesesesresesss s se s sese s ssssessessessssssnsnsesnens 2
What YOU Will LEAN ... s s s s sessssssssssssens 3
Why USE ASSEMDIYccceeiirirtr s s e 4
TOOIS YOU NEEU........oceereereeriee s 7
Computers and NUMDEIS ... 8
ARM Assembly INSTrUCLIONSccoverererernrerereser s 11

L0 T TS (] PR 12

ARM Instruction FOrmat..........cococvvenmrenrnscrnesesese e sesese s sessesessenens 13
Raspherry Pi MEMOIY ... sennes 15
About the GCC ASSEMDIEN ... s 16
HEHO WOII........ e s 17
About the Starting COMMENt...........ccccvverninnennesree s 20
Where 10 Start ... 20
Assembly INSFUCHIONSccccveerrerrrcer e 21

DALA ..o ——————————————— 22

TABLE OF CONTENTS

0 T30 0 22
Reverse Engineering Our Programcccvvvevvevievenessensesessssessessessesessessesses 23
11T 111 T o OO 26
Chapter 2: Loading and Addingcccovrsssmmnnmmssssssnsssssssssssssssssssssssnnnnes 27
Negative NUMDEIS ... e 27
About Two’s ComplemENt ..o 27
About Gnome Programmer’s Calculatorc.ccocevvvnvnienesnnenseniesssensennens 29
About One’s Complement..........ccccoevninininnsnr e 30
Big vS. Little-ndian...........ccoveeeerenerescrrcnese s 30
ADOUL Bi-ENIaN........ccereereereererese e 32
Pros of Little-endian............cooevrenerennnsennesesese s 32
Shifting and ROTatingccccveemrenrnncnresers e 33
ADOUL CarTy FIAQ....c.eeerereerreerieesessesese s sesse e e sn s s sessessnsenens 33
About the Barrel SHIfter.........ccovevnnnesresrres s 34
Basics of Shifting and Rotatingccveevvrenresnnsssnesese s 35
MOV/MVN ..ottt 36
ADOUE MOVT ...t sttt 36
Register 10 Register MOV.........cccooverirrnennesese s ssssssessnnes 37
The Dreaded Flexible Operandz2ccccvvevvvninennsnsensese e sessessessens 37
MVN e bbb d bt 40
MOV EXAMPIES....couiiriiriririenissene st se s s s se s s s s 41
ADD/ADCocvvrerreresesesesesesesesesssssssssssss s s nanas 45
Add WIth CarTY...c.ccccevrsirierersserene s sse e s ssesss e ssessesessessesaens 47
1] 04 51

TABLE OF CONTENTS

Chapter 3: Tooling UpP......cccvsssemnnmnssssnnnmsssssnsnssssssssssssssssssssssssnnssssssnnnnss 53
GNU MEKEcovrereerecereresrse e ses s se e s s sesasssssssssesessans 53
Rebuilding @ File........cocverecrcrsr e 54

A Rule for Building .S fileScccririinininsnsrse s ssssessessens 54
Defining Variables.........cccoerervrierne e 55
(€112 PR R ST 56
Preparing 10 DEDUQG.......ccceviirirr e e 56
Beginning GDB...........cocirinrnr e 58
Source Control and BUild SEIVErS.........ccccorrerrnenerenernseseseses s 63
6 RO R PR 63
JENKINS ..o 64
SUMMANY....eieerereserre s s se s e nr e e 65
Chapter 4: Controlling Program FIOWccccuseemmmnsssssnnmsssssssnsssssnnnns 67
Unconditional Branch..........ccoinnnsssss s 67
ADOUL the CPSR........ooieiriririreseseeee s snas 68
Branch on Condition..........c.cuvreenenennnnsnssesssss e sesessssssnes 70
About the CMP INSTFUCTIONcoveeeeeeeeer e 71
0T oSO RPRSSN 71
FOR LOOPS ...uviiricriesiiine st s ettt st 72
WHIIE LOOPS ...vrerierieirsire sttt s s 73
H/TREN/EISEc.veeeereer et s e 74
LOGICal OPEIAtOrS.....cccvvecerreerireesese s 75
AND. ... bbb 75
0] PP 76
0] PP 76
BIC ... s 76
DeSigN PatterNS......cveveierierere e ses e se s sre e s nne e 77

vii

TABLE OF CONTENTS

Converting INtegers t0 ASCILccocevvevernreriernnesserese s sese s sessessessessssessessens 78
Using Expressions in Immediate Constants..........ccocvccvvvvvnnensnienienessensenenns 82
Storing a Register 10 MEMOIY.......cccccvvrierennrrnese s sesse s s e ssesessesse s 82
Why Not Print in DECIMAI?.........ccocerevrreriererrrrersere e s s s e sse e sessessesaens 83

Performance of Branch INStructions ... 83

More Comparison INSTrUCLIONS.........cccvvcninininnn s 84

SUMMANY....eeeerireere e n e r e e 85

Chapter 5: Thanks for the Memoriesccciunnemmnmnssssnsnmssssssssssssssnnns 87

Defining Memory CONtents ..o 88

Loading @ REQISIENccucrverererirrerre s se e sae s s e saesnens 92
PC Relative AddreSSing.......ccovverrererennenseresnsessessessessssessessessssessessessssessessesaes 92
Loading from MEMOIYccccvrererenrensereresessessesse s sessessessesessessessesssssssesseses 95
Indexing Through MEMOIY.......cccoevererieriereres s s s s e sse s sessessesneees 96

StOriNg @ REGISIENccvvererertecerrere e re s s sr e e s se e nnens 107

Double REGISTIErS......coceiererree ettt 108

SUMMAIY....citiiiire e s s e e s e b e s b e R r e e e nne s 108

Chapter 6: Functions and the Stackccccumsemmmmmsssssnnmsssssssnmsssnnns 109

Stacks on RaSpPhian ... 110

Branch With LinK........ccucviinninenneninessssse e sessessssssessnnes 111

Nesting FUNCHON CallSc.ccovvrverierenirrere e ses e sne s 112

Function Parameters and Return Values...........ccovrnrncnnnnnsssnsssessennnnes 114

Managing the RegiSters ... s 114

Summary of the Function Call Algorithm ... 115

Uppercase ReVISIted ..o s 116

STACK FIramMES ..o s 121
Stack Frame EXAMPIE.......ccccvevvrieereerierserseesresesessee e ssesssssessessessssssessessesns 123

viii

TABLE OF CONTENTS

T (0 3TN 125
INCIUE DIreCHIVE.....cceercericirerce s 128
Macro Definitioncccovvenerinern e 128
LADEIS ... —————— 129
WRY MACIOS?.....ccceruereereesereressesessesessessessssessessesssssssessessssssssssessssassssssssessens 129

SUMMAIY e veitetrerereseeserersessesesersessesse e ssessessesessesaesaessssensessesasssssessesasssesensessens 130

Chapter 7: Linux Operating System Servicesccussesrrsssssnsssssssnns 131

S0 MaANY SIVICES ..o e 131

Calling CONVENTIONccceveerrrcrerese s 132
STTUCTUIES ... s 133

L s To] 0 T=] S SO SR PSSO 134

Converting a File 10 UPPEICASEcovvvvrervererirrenrereriesessesessessssessessessessssessessens 135
0pening @ File.......ccccorriiiiririrsse s 140
Error ChECKING......coviervererie et sse e sss s s sae e s snesessessesnens 140
[T 01 o R 142

LT 14144 S S 143

Chapter 8: Programming GPIO Pins......c..ccccmmmmssmnnnmsssssnssssssssssssssssnns 145

GPIO QVEIVIBWvoeecererree e e se s s sansans 145

In Linux, Everything IS @ Fileccoooreeeeeereerreere e 146

FIASNING LEDSccvvveeireeeresesessesersssesessesessssessssesssnsenes 148

Moving Closer t0 the Metal ..o 152

VirtUAL MEIMOIY ... cccereriesiererese st sere e s s ae s s s saesae e s saesae e s e naesnes 153
About Raspberry Pi 4 RAM ... sssssssssssesens 154

In Devices, Everything IS MEMOIY........ccccvverevennenseresssessessessesessesessessssessessenes 154

RegiSters iN BilS.......cccceririerrie et 155
GPIO0 Function Select REJISIEIScccvvererrererrereresessersersessesessessessssessessesses 156
GPIO Output Set and Clear RegiSters.........cccuourerererenensssseresnssssesesesesssssneas 158

ix

TABLE OF CONTENTS

More FIasShing LEDSccccvvininininnnn e ses s s s sesssessesaesseas 158
ROOT ACCESS ...t s 164
TabIE DIVEN......ciecerercerce e s 164
Setting Pin DIr€ClON........covcvvere et 165
Setting and Clearing PiNScccvievvrnreriensnensenesessssessessessssessessessssessessesaes 166

SUMMAIY.c.veitetrerereseesere s e sesesse e ss e e s e ssesaesessesaesaess e e ssessesassensesaesasssssensessens 167

Chapter 9: Interacting with C and Pythoncccccnnneennnnssnnnnnnssnnns 169

Calling C ROULINEScoeeeeerercrerese e 169
Printing Debug INfOrmation ... 170
Adding with Carry ReViSitedccccorrerrrenerescrersere s 173

Calling Assembly Routings from C..........ccovveerenrnnennenesese e 175

Packaging Our COe........coouurmrenerrnsmsrsessssse s s e s sessssessanes 178
STALC LIDIArY ...covveeeevccercse s s 178
Sared LIDrarycococcoevenernsenesesese s sesse e s sesssssssssessnnes 179

Embedding Assembly Code Inside C COde.........ccvvrrerererrerierienensenserensssensensenns 182

Calling Assembly from PYthONc.ccovvvvrennnninene s sessessessesessessessens 185

SUMMAIY.c.vetetrrereresessere s e sesersessess e e ssessesae e ssesaesaessesessesaesaesessesassaessssensessens 187

Chapter 10: Multiply, Divide, and Accumulate........ccueecnrersssnnnsesssnnns 189

MUHIPHICALION ... s 189
EXAMPIES ...ttt e 191

DIVISION .o sse e nr s 194
EXAMPIE...ceiirire e e e 195

Multiply and ACCUMUIALE...........ccvvrerrrereresers e 197
Vectors and MatriCes.........covvvnenerisernsesnese s s 198
Accumulate INSErUCHIONS........ccovvcerererrrr e 199
[2e: 1 110 < 0 OO 201
EXAMPIE 2.ttt e 206

SUMMANY....ceivierinerrrese e e e e e e e e 210

X

TABLE OF CONTENTS

Chapter 11: Floating-Point Operationscccussemmmnssnnnsssssssnsssssssnns 211
About Floating-Point NUMDEIS........cccovirvnininnncnrns e 212
Normalization and NaNS...........ccoevrrrnrenrnrse e 212
ROUNAING EFTOIS.....coviirccece s se s s sn e srs e e snens 213
Defining Floating-Point NUMDErS.........coocvvinrircrrrr s 214
FPU REJISTEIS.....ceeeeerieerereere e 214
Function Call ProtoCOlccoveeernnerenesrssness s s sessssessnnes 216
ADOUL BUIIAING. ... veereresirere e ss s s sae s e 217
Loading and Saving FPU REQISIErSc.ccvrerernnenserersssensessessessssessessessssessessenes 217
BasiC ArithmELiC.......cccvueererirerce s 218
Distance BEtwWeen POINTScccoeerrererenerressese e 220
Floating-Point CONVEISIONScooveerererereneressesesese s sesssseseenes 224
Floating-Point COMPAriSON.........ccvverererernrcrerese e 225
EXAMPIE...criieerer e e e 227
SUMMANY....ceiieereresesese s e e s e nss e nenssnenns 231
Chapter 12: NEON COPrOCESSOrccssssssssssssssssssnsssassssnssssnsssansssnsssns 233
The NEON REQISTEIScvvererreieriererierisseresseseesesessessessssessessessesessessessesssssssensesnes 234
StAY iN YOUF LANE ...c.veeeerererresereresesessesse s ssssessessessessssessessessssessessesasssssensessens 236
Arithmetic OPerations ..o 237
AD VECTOr DISTANCE.......cceueerercreree e 238
3x3 Matrix Multiplicationccocvevivnininsrn e 243
SUMMANY....ceivierieeresese e e s e e e nr e e 248
Chapter 13: Conditional Instructions and Optimizing Code.............. 249
Reasons Not to Use Conditional INStructions............c.cuvvenennennnsnssesenesssenes 250
No Conditional Instructions in 64 BitScccovrnnnnnsnnnnssesessees 250
IMProved PIPEIINE.......ccccevvierrerere s s sa s e s sae e s saennes 250
About Conditional CodE..........cceererrrrrieririrrrrsesssse s 251

TABLE OF CONTENTS

Optimizing the Uppercase ROULINE........cccevrevvrnienierenessensene s sessessessesessessessens 251
Simplifying the Range COMPAriSONccccvrevrerenensersersersesessessessessssessessees 252
Using a Conditional INSTrUCLioN.........cccevievererverrene s sseeees 255
Restricting the Problem Domain..........cccccvervnininnnincnse e 256
Using Parallelism With SIMDccccvvrivnrnrnerenerserese s ssesse e sesseenes 259

L1114 7O 263

Chapter 14: Reading and Understanding Code...........cccurrrsssnnnsrsssnnns 265

Raspbian and GCC...........cccuriinnrir s 265
DiviSion REVISITEMccorerereereeererce e 267

Code Created by GCCccooveererrerereerrnsesesese s s sessssessssesessssenns 271

Reverse Engineering and Ghidra............cocuevnnesnesmnnsesnsesssesesssesessesessssessenes 275

SUMMAIY.c.ueitetrerere st re e e s ss e e s s sae e e e s aesaesae e e e eaesae e e e naenaees 279

Chapter 15: Thumb Codeccvunnmmmnmmnnnmmmmmmmmmmsssssssnsemsssssssssms 281

16-Bit Instruction FOrmat............cooocviniinnnsnn s 282

Calling Thumb Codec.ccerrrerrecerrer e e 283

Thumb-2 Is More than 16 BitS ..o 285

IT BIOCKS ...oveeereeecerreeriee s e ssse e s e sss e ss e e e e s sessssensssensnnes 285

Uppercase in THUMD-2.......ccccoirinnnirrne s s s sse s 286

USE the G COMPIIETccecervererierirsere st re e s s sae s sa s sne s 293

SUMMAIY.c.veitetrerere e sere e sse s e ss e e s e ssessese s e saesaess e e saesaesae e e e saesaessesennessess 295

Chapter 16: 64 BitS........cccusmmsnmssanmssnnsssnsssanssssnsssnsssassssassssnsssassssanssns 297

UDUNTU MATE.......cceeceesssssssss e se e sssnssenenes 297

ADOUL B4 BiS......covecerecerieeriecse s ses e sennsnens 298

More and Bigger REGISLErSccoveerrrerernnerrnsesesesesese s s sessesessssessnnes 299
SP and Zero RegiSTer........ccovererrrererereresersse s s sessenenns 300

Function Call INTerfacecccverernrmrnreseneserssessss s snenes 301
Push and POP Are GONEceevveerererrenseessesessesssessessessesssessessessssssessessnnses 302

xii

TABLE OF CONTENTS

Calling LINUX SEIVICES...ccuvverrerrererserersersssesessesssssssessesssssssessessesssssssessesssssssensenes 303
Porting from 32 Bits t0 64 BiS.........cccocviririrninirc s 303
Porting Uppercase t0 64 BilS ..o 304
Conditional INSTrUCLIONSccvvivrirerr s 308
Example With CSEL........c.ccoi v ssssesesnens 309

FPU and the NEON COPIrOCESSOIS.....c.currierrererinsessessessssessessessessssessessessssessesseses 311
S0 (] £ SRS 311
INSTFUCHIONS....cueiiecic e e 312

0] 10 T RS 313
Example USiNg NEON.........ccocvvnmrnnrneserese s s sessenens 313
SUMMANY....ctivierrnerreese e r e e np e 315
Appendix A: The ARM Instruction Set........ccceinrimmmmmnnnnnsnnnnssmssssnnnnns 317
Appendix B: Linux System Callscccuummmmmmmmnmmmmmmmmssssssssnmesssssssssnnnns 327
Linux System Call NUMDEISccvvviererenrerrerersssessessessesessessessessssessessessssessessenes 327
Linux System Call Error COUES.........ccurermrenernrenirenere e sesesesse e sessesessssessens 342
Appendix C: Binary FOrmatsccccusssmnsmmssssnssssssssssssssssssnsssssssssssssss 347
11 (=0 ST 347
FIOAtiNG-POINt.........cooerrcerrccer s 348
AQArESSES ...oeveirir e s s e e r e s e e nn e ne e 349
B4 BilS....cceoerrierirerire e e 349
Appendix D: Assembler Directives......cuussseessnmnrssssssssssssssnssssssssssnnnnns 351
Appendix E: ASCII Character Setccuvmmmmmnmmnmmmmmmmssssssnnmsmmmmsnne. 353
RefereNCesS....ciccmmssanmmsssnsmssanssssannssssnsssssnsssssnnssssnnssssnnssssnnssssnnnsssnnnssnns 365
INA@X..eiiiiiinnnninsssnnnnnnssssnnnmsssssnnnessssnnnnessssnnnnessssnnnnessssnnnnessssnnnnesssnnnnnss 367

xiii

About the Author

Stephen Smith is a retired software architect,
located in Gibsons, BC, Canada. He’s been
developing software since high school, or way
too many years to record. He worked on the
Sage 300 line of accounting products for 23
years. Since retiring, he has pursued artificial
intelligence, earned his advanced ham radio
license, and enjoys mountain biking, hiking, and
nature photography. He continues to write his
popular technology blog at smist08.wordpress.

com and has written two science fiction novels
in a series, Influence, available on Amazon.com.

About the Technical Reviewer

Stewart Watkiss is a keen maker, programmer, and author of Learn
Electronics with Raspberry Pi. He studied at the University of Hull, where
he earned a master’s degree in electronic engineering, and more recently
at Georgia Institute of Technology, where he earned a master’s degree in
computer science.

Stewart also volunteers as a STEM Ambassador, helping teach
programming and physical computer to school children and at Raspberry
Pi events. He has created a number of resources using Pygame Zero, which
he makes available on his web site (www.penguintutor.com).

xvii

http://www.penguintutor.com/

Acknowledgments

No book is ever written in isolation. I want to especially thank my wife
Cathalynn Labonté-Smith for her support, encouragement, and expert
editing.

I want to thank all the good folks at Apress who made the whole
process easy and enjoyable. A special shout-out to Jessica Vakili, my
coordinating editor, who kept the whole project moving quickly and
smoothly. Thanks to Aaron Black, the senior editor, who recruited me and
got the project started. Thanks to Stewart Watkiss, my technical reviewer,
who helped make this a far better book. Thanks to James Markham, my
development editor, for all his good work keeping me to standards.

Xix

Introduction

If you really want to learn how a computer works, learning Assembly
language is a great way to get into the nitty-gritty details. The popularity
and low cost of the Raspberry Pi provide an ideal platform to learn
advanced concepts in computing.

Even though the Raspberry Pi is inexpensive and credit card sized, it is
still a sophisticated computer with a quad-core processor, a floating-point
coprocessor, and a NEON parallel processing unit. What you learn about
the Raspberry Pi is directly relevant to any device with an ARM processor,
which includes nearly every cell phone and tablet. In fact, by volume, the
ARM processor is the number one processor today.

In this book, we will cover how you program the Raspberry Pi at the
lowest level; you will be operating as close to the hardware as possible.
We will teach the format of the instructions, how to put them together
into programs as well as details on the binary data formats they operate
on. We will cover how to program the floating-point processor as well as
the NEON parallel processor. We cover how to program the GPIO ports
to interface to custom hardware, so you can experiment with electronics
connected to your Raspberry Pi.

All you need is a Raspberry Pi running Raspbian. This will provide all
the tools you need to learn Assembly programming. This is the low cost of
entry of running open source software like Raspbian Linux and the GNU
Assembler. The last chapter covers 64-bit programming, where you will
need to run Ubuntu MATE on your Pi.

This book contains many working programs that you can play with,
use as a starting point, or study. The only way to learn programming is by
doing; don’t be afraid to experiment, as it is the only way you will learn.

INTRODUCTION

Even if you don’t use Assembly programming in your day-to-day life,
knowing how the processor works at the Assembly level and knowing the
low-level binary data structures will make you a better programmer in
all other areas. Knowing how the processor works will let you write more
efficient C code, and can even help you with your Python programming.

The book is designed to be followed in sequence, but there are
chapters that can be skipped or skimmed, for instance, if you aren’t
interested in interfacing to hardware, you can pass on Chapter 8,
“Programming GPIO Pins,” or Chapter 11, “Floating-Point Operations” if
you will never do numerical computing.

I hope you enjoy your introduction to Assembly language. Learning
it for one processor family will help you with any other processor
architectures you encounter through your career.

xxii

CHAPTER 1

Getting Started

The Raspberry Pi is a credit card-sized computer that costs only US$35.

It was originally developed to provide low-cost computers to schools and
children, who couldn't afford regular PCs or Macs. Since its release, the
Raspberry Pi has been incredibly successful—as of this writing, selling
over 25 million units. The Raspberry Pi has become the basis of a whole
DIY movement with diverse applications, including home automation
control systems, acting as the brain for robots, or linked together to build a
personal supercomputer. The Piis also a great educational tool.

This book will leverage the Raspberry Pi to assist you in learning
Assembly language. Programming in Assembly language is programming
your computer at the lowest bits and bytes level. People usually program
computers in high-level programming languages, like Python, C, Java,

C#, or JavaScript. The tools that accompany these languages convert your
program to Assembly language, whether they do it all at once or as they run.

Assembly language is specific to the computer processor used. Since
we are learning for the Raspberry Pi, we will learn Assembly language for
the Advanced RISC Machine (ARM) processor. We will use the Raspbian
operating system, a 32-bit operating system based on Debian Linux, so we
will learn 32-bit Assembly on the Raspberry Pi’'s ARM processor.

The Raspberry Pi 3 has an ARM processor that can operate in 64-bit
mode, but Raspbian doesn’t do that. We will highlight some important
differences between 32-bit and 64-bit Assembly, but all our sample
programs will be in 32-bit ARM Assembler and will be compiled to run
under Raspbian.
© Stephen Smith 2019 1

S. Smith, Raspberry Pi Assembly Language Programming,
https://doi.org/10.1007/978-1-4842-5287-1_1

CHAPTER 1 GETTING STARTED

About the ARM Processor

The ARM processor was originally developed by a group in Great Britain,
who wanted to build a successor to the BBC Microcomputer used for
educational purposes. The BBC Microcomputer used the 6502 processor,
which was a simple processor with a simple instruction set. The problem
was there was no successor to the 6502. They weren’t happy with the
microprocessors that were around at the time, since they were much more
complicated than the 6502 and they didn’t want to make another IBM

PC clone. They took the bold move to design their own. They developed
the Acorn computer that used it and tried to position it as the successor
to the BBC Microcomputer. The idea was to use Reduced Instruction

Set Computer (RISC) technology as opposed to Complex Instruction Set
Computer (CISC) as championed by Intel and Motorola. We talk at length
about what these terms really mean later.

Developing silicon chips is an expensive proposition, and unless
you can get a good volume going, manufacturing is expensive. The ARM
processor probably wouldn’t have gone anywhere except that Apple
came calling looking for a processor for a new device they had under
development—the iPod. The key selling point for Apple was that, as the
ARM processor was RISC, it used less silicon than CISC processors and as
aresult used far less power. This meant it was possible to build a device
that ran for a long time on a single battery charge.

Unlike Intel, ARM doesn’t manufacture chips; it just licenses the
designs for others to optimize and manufacture. With Apple onboard,
suddenly there was a lot of interest in ARM, and several big manufacturers
started producing chips. With the advent of smartphones, the ARM chip
really took off and now is used in pretty much every phone and tablet.
ARM processors even power some Chromebooks. The ARM processor is
the number one processor in the computer market.

CHAPTER 1 GETTING STARTED

What You Will Learn

You will learn Assembly language programming for the ARM processor on
the Raspberry Pi, but everything you learn is directly applicable to all these
other devices. Learning Assembly language for one processor gives you the
tools to learn it for another processor, perhaps, the forthcoming RISC-V.

The chip that is the brains of the Raspberry Pi isn’t just a processor, it is
also a system on a chip. This means that most of the computer is all on one
chip. This chip contains an ARM quad-core processor, meaning that it can
process instructions for four programs running at once. It also contains
several coprocessors for things like floating-point calculations, a graphics
processing unit (GPU) and specialized multimedia support.

ARM does a good job at supporting coprocessors and allowing
manufacturers to build their chips in a modular manner incorporating the
elements they need. All Raspberry Pi include a floating-point coprocessor
(FPU). Newer Raspberry Pi have advanced capabilities such as NEON
parallel processors. Table 1-1 gives an overview of the units we will be
programming and which Raspberry Pi support them. In Table 1-1, SoC
is system on a chip and contains the Broadcom part number for the unit

incorporated.

CHAPTER 1 GETTING STARTED

Table 1-1. Common Raspberry Pi models and their capabilities
relevant to this book

Model SoC Memory Divide FPU NEON 64-Bit
instruction coprocessor support

PiA+ BCM2835 256 MB V2

PiB BCM2835 512 MB V2

Pi Zero BCM2835 512 MB V2

Pi 2 BCM2836 1GB Yes v3 Yes Yes

Pi 3 BCM2837 1GB Yes v4 Yes Yes
Pi3+ BCM2837B0 1GB Yes vd Yes Yes

Pi 4 BCM2711 1,2,0r4 Yes v4 Yes Yes

GB

Why Use Assembly

Most programmers today write in a high-level programming language like
Python, C#, Java, JavaScript, Go, Julia, Scratch, Ruby, Swift, or C. These
are highly productive languages that are used to write major programs
from the Linux operating system to web sites like Facebook to productivity
software like LibreOffice. If you learn to be a good programmer in a couple
of these, you can find a well-paying interesting job and write some great
programs. If you create a program in one of these languages, you can
easily get it working on multiple operating systems on multiple hardware
architectures. You never have to learn the details of all the bits and bytes,
and these can remain safely under the covers.

When you program in Assembly language, you are tightly coupled to
a given CPU, and moving your program to another requires a complete
rewrite of your program. Each Assembly language instruction does only a
fraction of the amount of work, so to do anything takes a lot of Assembly

CHAPTER 1 GETTING STARTED

statements. Therefore, to do the same work as, say, a Python program,

takes an order of magnitude larger amount of effort, for the programmer.

Writing in Assembly is harder, as you must solve problems with memory

addressing and CPU registers that is all handled transparently by high-

level languages. So why would you ever want to learn Assembly language

programming? Here are ten reasons people learn and use Assembly

language:

1.

4.

Even if you don’t write Assembly language code,
knowing how the computer works internally allows
you to write more efficient code. You can make your
data structures easier to access and write code in

a style that allows the compiler to generate more
efficient code. You can make better use of computer
resources like coprocessors and use the given
computer to its fullest potential.

To write your own operating system. The very core
of the operating system that initializes the CPU
handles hardware security and multi-threading/
multi-tasking requires Assembly code.

To create a new programming language. If itis a
compiled language, then you need to generate

the Assembly code to execute. The quality and
speed of your language is largely dependent on the
quality and speed of the Assembly language code it
generates.

You want to make the Raspberry Pi faster. The best
way to make Raspbian faster is to improve the GNU
C compiler. If you improve the ARM 32-bit Assembly
code produced by GNU C, then every Linux
program compiled for the Pi benefits.

CHAPTER 1 GETTING STARTED

5. You might be interfacing your Pi to a hardware
device, either through USB or the GPIO ports, and
the speed of data transfer is highly sensitive to how
fast your program can process the data. Perhaps
there are a lot of bit-level manipulations that are
easier to program in Assembly.

6. To do faster machine learning or 3D graphics
programming. Both applications rely on fast matrix
mathematics. If you can make this faster with
Assembly and/or using the coprocessors, then you
can make your Al-based robot or video game that
much better.

7. Most large programs have components written in
different languages. If your program is 99% C++,
the other 1% could be Assembly, perhaps giving
your program a performance boost or some other
competitive advantage.

8. Perhapsyou work for a hardware company that
makes a single board computer competitor to the
Raspberry Pi. These boards have some Assembly
language code to manage peripherals included with
the board. This code is usually called a BIOS (basic
input/output system).

9. To look for security vulnerabilities in a program or
piece of hardware. You usually need to look at the
Assembly code to do this; otherwise, you may not
know what is really going on, and hence where holes
might exist.

CHAPTER 1 GETTING STARTED

10. To look for Easter eggs in programs. These are
hidden messages, images, or inside jokes that
programmers hide in their programs. They are
usually enabled by finding a secret keyboard
combination to pop them up. Finding them requires
reverse engineering the program and reading
Assembly language.

Tools You Need

This book is designed so that all you need is a Raspberry Pi that runs
the Raspbian operating system. Raspbian is based on Debian Linux,
so anything you know about Linux is directly useful. There are other
operating systems for the Pi, but we will only cover Raspbian in this book.
A Raspberry Pi 3, either the B or B+ model, is ideal. Most of what is in
this book runs on older models as well, as the differences are largely in the
coprocessor units and the amount of memory. We will talk about how to
develop programs to run on the compact A models and the Raspberry Pi
Zero, but you wouldn’t want to develop your programs directly on these.
One of the great things about the Raspbian operating system is that it
is intended to teach programming, and as a result has many programming
tools preinstalled, including

e GNC Compiler Collection (GCC) that we will use to
build our Assembly language programs. We will use
GCC for compiling C programs in later chapters.

e GNU Make to build our programs.

e GNU Debugger (GDB) to find and solve problems in
our programs.

CHAPTER 1 GETTING STARTED

You will need a text editor to create the source program files. Any text
editor can be used. Raspbian includes several by default, both command
line and via the GUI. Usually, you learn Assembly language after you've
already mastered a high-level language like C or Java. So, chances are you
already have a favorite editor and can continue to use it.

We will mention other helpful programs throughout the book that you
can optionally use, but aren’t required, for example:

o Abetter programmer’s calculator
e Abetter code analysis tool

All of these are open source and you can install them for free.

Now we are going to switch gears to how computers represent
numbers. We always hear that computers only deal in zeros and ones, now
we’ll look at how they put them together to represent larger numbers.

Computers and Numbers

We typically represent numbers using base 10. The common theory is we
do this, because we have 10 fingers to count with. This means a number
like 387 is really a representation for

387=3%102+8% 10"+ 7 % 10°
=3%x100+8%10+7
=300+80+7

There is nothing special about using 10 as our base and a fun exercise
in math class is to do arithmetic using other bases. In fact, the Mayan
culture used base 20, perhaps because we have 20 digits: 10 fingers and
10 toes.

Computers don’t have fingers and toes, and in their world, everything
is a switch that is either on or off. As a result, it is natural for computers

CHAPTER 1 GETTING STARTED

to use base 2 arithmetic. Thus, to a computer a number like 1011 is
represented by

1011 =1%23+0 22+ 1 %21+ 1 % 2°
=1%x8+0%x4+1%x2+1
=8+0+2+1
=11 (decimal)

This is great for computers, but we are using 4 digits for the decimal
number 11 rather than 2 digits. The big disadvantage for humans is that
writing out binary numbers is tiring, because they take up so many digits.

Computers are incredibly structured, so all their numbers are the same
size. When designing computers, it doesn’t make sense to have all sorts
of different sized numbers, so a few common sizes have taken hold and
become standard.

A byte is 8 binary bits or digits. In our preceding example with 4 bits,
there are 16 possible combinations of 0s and 1s. This means 4 bits can
represent the numbers 0 to 15. This means it can be represented by one
base 16 digit. Base 16 digits are represented by the numbers 0 to 9 and then
the letters A-F for 10-15. We can then represent a byte (8 bits) as two base
16 digits. We refer to base 16 numbers as hexadecimal (Figure 1-1).

|Decimal | o0-9 | 10 [11 | 12 [13 | 14 | 15 |
[HexDigit | ©0-9 | A | B | C | D | E | F |

Figure 1-1. Representing hexadecimal digits

Since a byte holds 8 bits, it can represent 28 (256) numbers. Thus, the
byte e6 represents

e6=e* 16'+6* 16°
=14%16+6
=230 (decimal)
=1110 0110 (binary).

CHAPTER 1 GETTING STARTED

We are running the ARM processor in 32-bit mode; we call a 32-bit
quantity a word, and it is represented by 4 bytes. You might see a string
like B6 A4 44 04 as a representation of 32 bits of memory, or one word of
memory, or perhaps the contents of one register.

If this is confusing or scary, don’t worry. The tools will do all the
conversions for you. It’s just a matter of understanding what is presented to
you on screen. Also, if you need to specify an exact binary number, usually
you do so in hexadecimal, though all the tools accept all the formats.

A handy tool is the Linux Gnome calculator (Figure 1-2). The calculator
included with Raspbian can perform math in different bases in its
scientific mode, but the Gnome calculator has a nicer Programming Mode
which shows a numbers representation in multiple bases at once. To install
it, use the command line

sudo apt-get install gnome-calculator

Run it from the Accessories menu (probably the second calculator
there). If you put it in “Programming Mode,” you can do the conversions
and it shows you numbers in several formats at once.

10

CHAPTER 1 GETTING STARTED

B Programming Mode v~ 2
eb
Hexadecimal v 346s = 23010

0000 0000 0000 0000 0000 OOO0C 0000 0000

0000 0000 0000 0000 0000 0000 1110 OHG

in T™n X v () < v > v a
C D E F = mod ones twos |}
8 9 A B x AND NOT V X b
4 5 6 7 - OR a log In int

0 1 2 3 + XOR ﬁ fact xi frac

Figure 1-2. The Gnome calculator

This is how we represent computer memory. There is a bit more
complexity in how signed integers are represented and how arithmetic
works. We'll cover that a bit later when we go to do some arithmetic.

In the Assembler we represent hexadecimal numbers (hex for short)
with a 0x in front. So 0x1B is how we would specify the hex number 1B.

ARM Assembly Instructions

In this section, we introduce some basic architectural elements of the ARM
processor and start to look at the form of its machine code instructions.
The ARM is what is called a Reduced Instruction Set Computer (RISC),
which theoretically will make learning Assembly easier. There are fewer
instructions and each instruction is simpler, so the processor can execute

11

CHAPTER 1 GETTING STARTED

each instruction much quicker. While this is true, the ARM system on

a chip used in the Raspberry Pi is a highly sophisticated computer. The
core ARM processors handle multiple instruction sets, and then there are
theinstruction sets for all the coprocessors.

Our approach to this is to divide and conquer. In the first few chapters
of this book, we will cover only the 32-bit standard ARM Assembly
instructions. This means that the following topics are deferred to later
chapters where they can be covered in detail without introducing too
much confusion:

o Instructions for the floating-point processor
e Instructions for the NEON processor
o Instructions for 64 bits

e Thumb mode instructions (special 16-bit compact
mode)

In this manner, we just need to attack one topic at a time. Each set of
instructions is consistent and easy to understand.

In technical computer topics, there are often chicken and egg
problems in presenting the material. The purpose of this section is
to introduce all the terms and ideas we will use later. Hopefully, this
introduces all the terms, so they are familiar when we cover them in full
detail.

CPU Registers

In all computers, data is not operated in the computer’s memory; instead,
itis loaded into a CPU register, then the data processing or arithmetic
operation is performed in the registers. The registers are part of the

CPU circuitry allowing instant access, whereas memory is a separate
component and there is a transfer time for the CPU to access it.

12

