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Preface 
 

 

 

 

 

Discussions on electrification, air pollution control and driving bans in inner cities bring 
major challenges for powertrain development. Real Driving Emissions (RDE), World-
wide Harmonized Light-Duty Test Procedures (WLTP) and the next level of CO2 re-
duction enforce new development methods.  

At the same time, new measurement technology and better IT infrastructure mean that 
ever larger amounts of data are available. Thereby, methods of digitization, e.g. Ma-
chine Learning, may be used in automotive development.  

Another challenge arises from the ever-increasing number of vehicle variants. Many 
OEMs reduce the number of their engines to reduce costs. However, the basic engines 
are then installed with little hardware customization in numerous vehicle models. As a 
result, the application of derivatives and the systematic validation of an application play 
an important role.  

In this book, the lectures of the International Conference on Calibration – Methods and 
Automotive Data Analytics held on May 21 and 22, 2019 in Berlin are contained. 
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1 Data Analysis I 
 
1.1 Segmentation of Multivariate Time Series with  

Convolutional Neural Networks   
 

 

 Yuncong Yu, Thomas Mayer, Eva-Maria Knoch, Michael Frey,  
Frank Gauterin 

 
 
 
 
Abstract 
 
This paper addresses an important problem of time series analysis at test benches. A 
new method is presented that allows automated segmentation of measurement time 
series using a Convolutional Neural Network (CNN). The CNN is trained for this pur-
pose with specifically generated data. The results show a high quality and efficiency. 
The field of application of the algorithm is not limited to the automotive industry focused 
on here, but can be easily transferred to other areas that allow a visual segmentation 
of data. 
 
 
Kurzfassung 
 
Dieser Beitrag behandelt ein wichtiges Problem der Zeitreihenanalyse von Messreihen 
am Prüfstand. Es wird eine neue Methode vorgestellt, die mit Hilfe eines Convolutional 
Neural Networks (CNN) eine automatische Segmentierung von Messreihen ermög-
licht. Das CNN wird hierzu mit gezielt generierten Daten trainiert. Das Ergebnis zeigt 
eine hohe Güte und Geschwindigkeit. Das Einsatzgebiet des Algorithmus ist nicht auf 
die hier fokussierte Anwendung in der Automobilindustrie beschränkt, sondern kann 
leicht auf andere Bereiche, die eine visuelle Segmentierung von Daten erlauben, über-
tragen werden. 
 
 
1 Introduction 
 
With rapidly accelerating product life cycles in the automotive industry, research and 
development based on modelling and simulation gain increasing significance. Nowa-
days models of systems in automobiles have grown extensively in complexity, which 
impedes comprehension and analysis of the system. Consequently, feasibility of man-
ually evaluating the output data and optimizing the system suffers. A possible solution 
is a data analysis system that automates the evaluation process. 
 
Examining of measurement and simulation data is one of the most common tasks for 
model analysis, evaluation and optimization. Many simulation and measurement re-
sults are time series which go through several phases. Therefore, segmentation is of-
ten the first fundamental step for further data mining.   
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2 Literature Review 

2.1 Time Series Segmentation 

Time series segmentation is partitioning a time series into several internally homoge-
neous [1, p. 466] and externally different but contiguous sub-time series [2, p. 1110]. It 
is often a preprocessing step in data mining that assists with extraction of interesting 
information in later steps [3, p. 50]. Time series segmentation algorithms can be clas-
sified into three categories: top-down, bottom-up and sliding windows [4, p. 2]. Top-
down algorithms start from the coarsest segments and partition existing segments re-
cursively [3, p. 38]. Whereas bottom-up algorithms begin with the finest possible seg-
ments and merge the most similar neighbors [3, pp. 39–40]. Sliding windows are like 
filters going through the time series and pick out the positions where the data charac-
teristics change dramatically [3, p. 41]. Combinations of these algorithms are possible, 
for example, the combination of Sliding Windows and Bottom-Up (SWAB) [4]. 

These algorithms usually measure the internal homogeneity of a segment. This is 
where most of the innovations take place. One of the possible ways is to represent 
segments with simpler substitutions like lines by Piecewise Linear Representation 
(PLR) [4, p. 1] and polynomials by Piecewise Polynomial Representation (PPR) [5, 
p. 193]. A relatively advanced way to evaluate the homogeneity is Principle Compo-
nent Analysis (PCA) [6].

In this study, a new approach based on a CNN is proposed, which falls into none of 
these three categories, as all segment boundaries in a time series are detected simul-
taneously. Hence, measurement of homogeneity is not necessary here. This approach 
reaches a decent accuracy, is universally applicable and highly efficient during appli-
cation. 

2.2 Convolutional Neural Networks 

The Convolutional Neural Network (CNN) was first proposed by Yann LeCun and oth-
ers in 1998 [7, p. 121]. The recent decade has witnessed a variety of image-related 
applications of CNNs. For instance in pulmonary nodule (a sign at the early stage of 
lung cancer) detection from Computed Tomography (CT) images [8] and facial recog-
nition including even micro-expression recognition [9] [10]. The typical input data for 
CNNs are two-dimensional image data, however one-dimensional CNNs are proven to 
be a quick alternative to Recurrent Neural Networks (RNNs) for sequence data pro-
cessing [11, p. 288]. A recent application case of one-dimensional CNNs is the detec-
tion of the QRS complex (a special signal pattern) in Electrocardiogram (ECG) for car-
diovascular disease diagnosis [12]. 

The CNN used in this paper is responsible for detecting boundaries in time series. 
These boundaries partition the time series, which enables further segment-wise ex-
traction of information. 
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3 Time Series Generator 
 
Training of neural networks requires a quite large amount of training data. As there are 
not enough suitable data, usually labelled and proven, a time series generator was 
developed to provide sufficient data. 
 
The main function of the time series generator is to mass produce random time series 
according to user configurations. User configurations include mainly the number of 
time series to generate, length of the time series, the number of channels in a time 
series, allowed numbers of segments in a channel, minimum segment length and in-
tensity of different types of noise. 
 
The time series generator can generate two types of data. The first type contains 
“single” time series, where each sample includes only one time series. An example of 
a single time series with three channels is shown in Figure 1. In each channel, the data 
curve contains several segments, like horizontal line segments, line segments with a 
certain slope unequal to 0 and segments corresponding to the step responses of first-
order linear time-invariant (LTI) system (commonly known in German as “PT1”). There 
are random steps between segments. Segment boundaries in different channels are 
not completely random. The background behind this setting is that the time series can 
be regarded as the state of a system observed against time. Each channel represents 
a measured signal like temperature, pressure, voltage. A change in the observed sys-
tem may result in sudden changes (boundaries in the curves) in several channels. 
These boundaries in different channels are usually close to each other because they 
indicate the same change in the observed system.   
 
The second type contains pairs of time series, where each sample includes two similar 
time series, as shown in Figure 2. Pairs of time series are generated to represent pairs 
of measurement and simulation data to feed the CNN for an automatic time series 
comparing algorithm [13]. 
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Figure 1: A single time series with three channels 
 
 

 
 

Figure 2: A pair of time series with three channels 
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4 Time Series Segmentation Algorithm 
 
 
4.1 Requirements 
 
In general, the time series segmentation algorithm splits a given time series into seg-
ments. These segments are internally homogeneous [1, p. 466]. Adjacent segments 
exhibit different characteristics and are contiguous in time. Contiguity means no over-
lap and no gap between two neighboring segments. 
 
The time series used to develop, train and test the neural network for the time series 
segmentation algorithm are generated by the time series generator described in Chap-
ter 3.  
 
A question for segmentation is, whether to find the same boundaries for all the chan-
nels (“global” boundaries) or different boundaries for each channel (“local” boundaries). 
In this research, the time series segmentation algorithm segments a multivariate time 
series one channel after another separately, detecting “local” boundaries in each chan-
nel. Finding the “local” boundaries enables the calculation of time shifts between chan-
nels. If only global boundaries are needed, it is also completely feasible to train the 
CNN to read several channels simultaneously and segment them with the same set of 
boundaries. The detailed algorithm can be looked up in [14]. 
 
 
4.2 CNN for Segmentation 
 
The structure of the developed CNN used for time series segmentation is shown in 
Figure 3. Closely related steps for processing input and output data are also presented.  
 
The input data for the CNN is a single channel or visually a curve. The output data of 
the CNN also constitute a time series, which has the same length as the original input 
channel. Each value in the output time series indicates the probability of the time point 
being a boundary. Inside the CNN, the data go through three one-dimensional convo-
lutional layers in the CNN. The deeper the layer, the more filters are applied and the 
longer these filters become, which is typical for a CNN. Untypical for this CNN is that 
there are no max-pooling layers because experiments without them show better 
results. An intuitive explanation could be that max-pooling leads to loss of location 
information due to its massive downsampling effect, during which the length of output 
data shortens. In a typical application of CNNs, an object in an image is detected re-
gardless of its position. Whereas, boundary detection in a time series requires to know 
not only the existence of these boundaries, but also their time dependent positions. 
Out of the same reason, zero padding is used in each convolutional layer to ensure 
that the length of the interim output data always stays the same. 
 
Detailed configurations of the applied CNN are shown in Table 1. 
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Figure 3: CNN for time series segmentation 
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Table 1: Configurations of the CNN for time series segmentation 

 
Layer Layer Type Size Activation Function 
1 (input) - 100 - 
2 Convolutional Number of filters: 8 

Kernel Size: 5 
ReLu 

3 Convolutional Number of filters: 16 
Kernel Size: 5 

ReLu 

4 Convolutional Number of filters: 32 
Kernel Size: 7 

ReLu 

5 Flatten - - 
6 (output) Fully connected 100 sigmoid 

 
 
This CNN is trained with 800’000 time series as training data and 200’000 time series 
as validation data. The optimiser Adam is used with the loss function binary cross-
entropy, which is typical for multi-class, multi-label classification like this case. The 
training and validation data are generated with the time series generator described in 
Chapter 3.  
 
The performance of the CNN is further evaluated and verified with 1’000 time series. 
They are generated separately with the time series generator and have no association 
with the training and validation data mentioned above. The results are shown in Table 
2. 
 
 

Table 2: Evaluation of the CNN for time series segmentation 
 
 Number rate 
Time series samples 1’000 100% 
Correctly segmented time series 808 80.8% 
Boundaries 4’976 100% 
Correctly detected boundaries (excluding multi-
detected ones) 

4’842 97.3% 

Undetected boundaries 134 2.7% 
Multi-detected boundaries 0 0% 
Falsely detected boundaries 125 2.5% 

 
 
A boundary is defined as correctly detected, when there is exactly one detected bound-
ary within 2 seconds around it (the length of all the original time series is 100 time 
steps). Table 2 shows a satisfactory evaluation outcome. More than 97% of the bound-
aries are correctly detected; less than 3% of the boundaries are ignored or falsely de-
tected.  
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5 Results 
 
To illustrate the results of the segmentation algorithm, a sample from the automatically 
segmented time series is plotted in Figure 4. There are three channels in this time 
series, labeled from Channel 1 to Channel 3. The data curve in each channel is seg-
mented with the time series segmentation algorithm. The dashed lines are detected 
boundaries. The plot shows satisfactory results intuitively. 
 

 
 

Figure 4: Examples of time series segmentation 
 

 
6 Conclusion 
 
In this study, a new method for segmentation of multivariate time series is presented. 
It is based on the techniques of convolutional neural networks (CNN). A time series 
generator is developed to support training of the CNN and testing of the method. Per-
formance evaluation shows satisfactory results. 97% of the boundaries in the time se-
ries can be correctly detected. 
 
The presented method favors two new approaches. On the one hand, it has proposed 
a way to use machine learning even when not enough training data is available. In this 
case, synthetic data adapted to the application can be generated to support training 
process. One the other hand, a new way to segment multivariate time series is put 
forward. Various segment types can be segmented, not only linear ones as with many 
conventional approaches. Besides, there are quite less parameters to tune during ap-
plication and the algorithm runs very efficiently during application. Nevertheless, there 
is still much room for improvement of the presented method. 
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Abstract 
 
This paper introduces a novel method for comparison of similar time series, especially 
measurement and simulation data to identify problems in the observed system. It em-
ploys the technique for time series segmentation proposed in [1] together with Dynamic 
Time Warping (DTW) to jointly segment pairs of measurement and simulation time 
series. Further, a Convolutional Neural Network (CNN) is used to identify the charac-
teristics of segments. It is trained with synthetic data generated by the time series gen-
erator presented in [1]. Finally, the essential parameters are estimated with regression. 
Performance evaluation of each step is conducted and shows a high accuracy. The 
usage of this method is not restricted to evaluation of measurement and simulation 
time series, but can be extended to serve the general purpose of sequence data com-
parison.  
 
 

Kurzfassung 
 
In diesem Beitrag wird eine neuartige Methode zum Vergleich ähnlicher Zeitreihen, 
insbesondere Zeitreihen von Mess- und Simulationsdaten, vorgestellt. Ziel ist es, Un-
terschiede in den beiden Zeitreihen zu bestimmen, um eventuelle Probleme im beo-
bachteten System zu erkennen. Die in [1] präsentierte Methode zur Segmentierung 
von Zeitreihen zusammen mit der Methode der dynamischen Zeitnormierung (DTW, 
engl. Dynamic Time Warping) wird hierbei angewendet, um eine synchronisierte Seg-
mentierung von Mess- und Simulationsreihen zu ermöglichen. Außerdem wird ein 
Convolutional Neural Network (CNN) eingesetzt, um den funktionalen Zusammenhang 
der Zeitreihen innerhalb der Segmente zu klassifizieren. Das CNN wird hierzu mit syn-
thetischen Daten trainiert, die von einem Zeitreihengenerator (siehe [1]) erzeugt wer-
den. Die wesentlichen Parameter werden mit Hilfe von Regression geschätzt. Das vor-
gestellte Vorgehen zeigt eine hohe Prognosegüte. Der Einsatzbereich dieser Methode 
ist jedoch nicht nur auf die Auswertung von Mess- und Simulationszeitreihen be-
schränkt, sondern lässt sich auf den allgemeinen Vergleich von Datensequenzen er-
weitern. 
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1 Introduction 
 
Model-based development plays an increasingly important role in automotive engi-
neering. With rapidly growing complexity of models, their data analysis becomes much 
more difficult and often far too demanding for manual evaluation.  
 
Many simulation results are in the form of time series showing the temporal response 
of a system under specific configuration. Comparison of simulation results with meas-
urement is one of the essential ways to find error causes in the model. Therefore, 
techniques to compare time series play a key role in describing the dynamics behind 
the curves in automotive data analysis. 
 
However, a direct comparison of two arbitrary curves is barely feasible. Because there 
are so many different characteristics that a curve can assume. Hence, a method is 
needed to handle the problem of time series comparison.    
 
 
2 Literature Review 
 
 
2.1 Time Series Comparison 
 
Comparing two time series, especially a pair of measurement and simulation time se-
ries is one of the most common tasks in modelling and simulation. An intuitive way to 
compare two time series is to calculate the L1 norms (sum of absolute values) or L2 
norm (Euclidean length) of their differences. 
 
Two advanced techniques based on the methods mentioned above are Dynamic Time 
Warping (DTW) and Edit Distance with Real Penalty (ERP) [2, p. 569], which take into 
consideration the time shifts between two time series [3, p. 792]. ERP is first introduced 
and thoroughly described in [3]. DTW is used in this study and will be explained in the 
following section. 
 
Other methods include Longest Common Subsequence (LCSS) and Edit Distance with 
Real Sequence (EDR), which are based on a notion called matching threshold. They 
are proven to be more robust against noise compared to the methods mentioned above 
[4, p. 673] [5, p. 491]. 
 
These traditional methods measure the distance or similarity of two time series. In this 
paper, a novel method for comparing two time series based on segmentation, CNN 
and regression is put forward. It is fully automated and can provide a detailed assess-
ment digging deep into various aspects of the two compared time series. 
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2.2 Dynamic Time Warping 
 
Dynamic Time Warping (DTW) is an algorithm to measure similarity of two time series 
[6, p. 38], as it can match points of two similar time series, for example, measurement 
and simulation data with time shifts between them. Consequently, a point at time 𝑡ଵ in 
one time series may correspond to one point at time 𝑡ଶ (𝑡ଶ ് 𝑡ଵ) in the other times se-
ries. DTW can handle this problem of time distortion [6, p. 38]. However, there is the 
restriction that the start points and end points of two time series should match respec-
tively. Figure 1 shows two time series denoted blue and orange respectively. 
 

 

Figure 1: Matching of corresponding points on two time series with similar character-
istics using Dynamic Time Warping (DTW) 

 
 
Corresponding points are matched with black dashed lines as a result of DTW. 
 
Details about implementation of DTW is not handled in this paper because the algo-
rithm is extensive and can be looked up in [7, p. 193]. 
 
DTW is utilized in this paper to match measurement and simulation time series. To-
gether with the time series segmentation algorithm described in [8], it enables simulta-
neous segmentation of both time series. 
 
 
2.3 Convolutional Neural Network 
 
The Convolutional Neural Network (CNN) is a member of Artificial Neural Networks 
(ANNs), or Deep Neural Networks (DNNs) to be precise. 
 
Generally, a CNN begins with several blocks, each of which is made up of one or more 
convolutional layers [9, p. 121] followed by a max-pooling layer. The output of the last 
block is then flattened out by a flatten layer and fed to a small conventional network 
with two or more fully connected layers. The last fully connected layer is also the output 
layer of the whole CNN [10, p. 439] [9, p. 126].  
 
Configuration of CNNs means setting suitable hyperparameters. Parameters such as 
weights and bias are internal variables in a CNN. They are initialized and updated 
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automatically during training and not directly set by the user. On the contrary, 
hyperparameters are user configured. They influence the values of parameters, for 
example the number of layers, number and size of filters in the convolutional layers, 
activation functions and loss functions. 
 
 
3 Comparison Method 
 

 

3.1 Overview of the Algorithm 
 
The proposed method compares segmented measurement and simulation data. It 
evaluates their similarity quantitatively from many aspects. In the first step, the meas-
urement and simulation data are segmented jointly with the segmentation algorithm 
proposed in [1] together with the sequence matching algorithm DTW. Next, the seg-
ment characteristics of the measurement and simulation segments are identified with 
a CNN and compared. There are three segment types within the scope of this paper, 
namely “constant”, “linear” and “PT1”. “PT1” refers to the step response of a first-order 
linear time-invariant (LTI) system. Then the essential parameters (for instance the time 
constants for “PT1” segments) for the segment will be estimated according to the seg-
ment types using regression. Finally, error convergence and time shifts at both ends 
of each segment will be checked. 
 

 

3.2 Joint Segmentation of Time Series Pairs with Dynamic Time Warping  
 
With the method for time series segmentation proposed in [1], it is only possible to 
segment a single time series, not a pair of measurement and simulation data. If meas-
urement and simulation data are segmented separately, they are likely to have different 
sets of boundaries, and it is intractable to find the relationship between the two sets of 
boundaries. 
 
In the proposed algorithm, the CNN based segmentation method in [1] is applied to 
segment measurement and simulation time series separately in the first step. The re-
sults are probabilities of each time point being a boundary [1]. Then, DTW is used to 
match points on the simulation curve with those on the measurement curve. The mean 
value of the possibilities of corresponding points are calculated, and if this value for a 
pair of corresponding points is over 0.5, both points are recognized as boundaries, one 
for measurement curve, the other for simulation curve. Note that a pair of correspond-
ing points may not be at the same time, which means that time shifts are taken into 
consideration during averaging.  
 
Figure 2 shows an example of joint segmentation of measurement and simulation data. 
The blue curve refers to measurement data and the red one to simulation data. Both 
have three channels numbered from Channel 1 to Channel 3. They can be arbitrary 
variables, like temperature, pressure or current. The blue dots denote the real bound-
aries of the measurement data and the red ones the real boundaries of the simulation 
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data. The detected boundaries are delineated with dashed lines in corresponding col-
ours.  
 

 
 

Figure 2: An example of joint segmentation of measurement and simulation data  
 
The overall performance of the method based on the CNN proposed in [1] and DTW is 
evaluated with 1’000 pairs of measurement and simulation time series generated by 
the time series generator presented in [1]. Each of them comprises three channels. 
Each channel includes 1 to 4 segments, or rather 0 to 3 boundaries. The evaluation 
results with these test data are shown in Table 1. 
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Table 1: Evaluation of the joint segmentation of time series pairs 
 

 Overall Measurement Simulation 
Number Rate Number Rate Number Rate 

correctly segmented chan-
nels 

2’055 69% 2’209 74% 2’076 69% 

correctly detected bounda-
ries 

11’453 88% 5’842 90% 5’611 87% 

undetected boundaries 1’417 11% 629 10% 788 12% 
multi-detected boundaries 72 1% 0 0% 72 1% 
falsely detected bounda-
ries 

876 7% 390 7% 486 8% 

 
 
The results for segmentation of pairs of measurement and simulation data are slightly 
worse than the evaluation results for segmentation of only single time series in [1]. 
Correctly detected boundaries are slightly less than 90% and undetected a little more 
than 10% compared with 97.3% and 2.7% for single time series [1]. The accuracy de-
creases, because a much more complex problem is dealt with, where the measure-
ment and simulation data are processed in conjunction. Nonetheless, the results are 
still well acceptable. 
 
 
3.3 Identification of Segment Characteristics with a Convolutional Neural 

Network 
 
Knowing the segment type is the prerequisite to apply regression and determine pa-
rameters of the segment. Comparing essential parameters is much easier as direct 
comparison of two curves and makes it possible to discover problems in simulation or 
measurement.  
 
The presented approach is classification based on a convolutional neural network 
(CNN) to identify the segment characteristics. Traditional ways involve trying different 
models and comparing their errors. These methods are computationally expensive, 
especially when dealing with many possible segment types. On the contrary, CNNs 
usually work efficiently during application, regardless of the number of possible seg-
ment types. More efforts are needed only during training process. In this study, a 
trained CNN takes the segment as its input and gives one of the segment types, “con-
stant”, “linear” or “PT1” as output. 
 
The configuration of this CNN is listed in Table 2. 

 
The CNN is trained with around 32’000 segments as training data and around 8’000 
segments as validation data using optimizer Adam with loss function categorical cross-
entropy, which is typical for multi-class classification like this case. These data are 
generated by the time series generator in [1].  
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Table 2: Configurations of the CNN for segment type identification 
 
Layer Layer Type Size Activation Function 
1 (input) - 20 - 
2 Convolutional Number of filters: 8 

Kernel size: 3 
ReLU 

3 Max-pooling 2 - 
4 Convolutional Number of filters: 16 

Kernel size: 5 
ReLU 

5 Flatten - - 
6 Fully connected 32 ReLU 
7 (output) Fully connected 3 softmax 

 
 
3.4 Regression of Segment Parameters 
 
After the segment types of both measurement data and simulation data are identified, 
parameters according to the segment types can be determined using regression. As 
mentioned, there are three types of segments dealt with in this study: “constant”, “lin-
ear” and “PT1” 
 
The constant value of a horizontal line and the slope of a line segment can be found 
using linear regression. Calculating the time constant 𝜏 of a “PT1” segment, namely 
the step response of a first-order LTI system, is based on the differential formula [11, 
p. 194] 
 

𝜏 ⋅ 𝑦ሶ ሺ𝑡ሻ ൅ 𝑦ሺ𝑡ሻ ൌ 𝐾 ⋅ 𝑢ሺ𝑡ሻ (1) 

 
where  𝑦 represents the values of the segment, 𝑡 is time, 𝐾 is the unknown constant 
gain of the “PT1” segment and 𝑢ሺ𝑡ሻ is a Heaviside step function defined as 
 

𝑢ሺ𝑡ሻ ൌ ቄ0          𝑡 ൏ 0
1          𝑡 ൒ 0

 (2) 

 
In order to carry out regression, the term 𝑦ሶ௧ is substituted with its finite difference with 
sampling period Δ𝑡, in this case 1 time step: 
 

𝑦ሺ𝑡ሻ  ൎ 𝐾 ⋅ 𝑢ሺ𝑡ሻ െ 𝜏 ⋅
𝑦ሺ𝑡 ൅ Δ𝑡ሻ െ 𝑦ሺ𝑡 െ Δ𝑡ሻ

2Δ𝑡
 (3) 

 
Now only the two constant coefficients 𝜏 and 𝐾 are unknown and can be calculated 
using linear regression. 
 

 

4 Results 
 
By way of illustration, a time series sample with measurement and simulation data is 
processed using the presented method. In the first step, the pair of time series is seg-
mented by the time series segmentation algorithm. The result is shown in Figure 3. 
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The blue dots denote the real boundaries of the measurement data and the orange 
ones the real boundaries of the simulation data. The detected boundaries are deline-
ated with dashed lines in corresponding colours. The black dotted lines match bound-
aries of the measurement data to corresponding boundaries of the simulation data. 
 

 
 

Figure 3: An example of a jointly segmented time series pair 
 
Then, these two curves are evaluated one segment after another. For a better illustra-
tion, the chosen pair of time series contains only one channel (channel 1). For multi-
variate time series with more than one channels, the algorithm will go through each 
channel separately.  
 
The comparison results are shown in Table 3. It shows detailed assessment of the 
measurement and simulation data that outstrips the conventional methods mentioned 
in Section 2.1 for comparing two time series.  
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5 Conclusion 
 

In this paper, a novel method for comparing pairs of measurement and simulation data 
is presented. Firstly, dynamic time warping combined with the time series segmenta-
tion algorithm proposed in [1] is used to segment the pair of time series. Then, a con-
volutional neural network is applied to identify the characteristics of the segments. Fi-
nally, regression is carried out to estimate the essential parameters of each segment 
according to the identified segment type.  
 
With this method, it is possible to compare pairs of time series with the objective of 
detecting possible problems in the data set and better characterising their functional 
behaviour.  
 
In a practical example, a reasonable accuracy is reached, with 87% boundaries in time 
series pairs detected, 98% segment characteristics identified and decent precision of 
parameter estimation even for complex segments like “PT1”. 
 
Future work includes the extension of the method to more segment types, especially 
non-monotonic segments like polynomials and “PT2” (the step response of a second-
order LTI system) and further validation of the method with real data.  
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