Correlative Imaging
Current and future titles in the Royal Microscopical Society – John Wiley Series

Published
Principles and Practice of Variable Pressure/Environmental Scanning Electron Microscopy (VP-ESEM)
Debbie Stokes

Aberration-Corrected Analytical Electron Microscopy
Edited by Rik Brydson

Diagnostic Electron Microscopy – A Practical Guide to Interpretation and Technique
Edited by John W. Stirling, Alan Curry, and Brian Eyden

Low Voltage Electron Microscopy – Principles and Applications
Edited by David C. Bell and Natasha Erdman

Standard and Super-Resolution Bioimaging Data Analysis: A Primer
Edited by Ann Wheeler and Ricardo Henriques

Electron Beam-Specimen Interactions and Applications in Microscopy
Budhika Mendis

Biological Field Emission Scanning Electron Microscopy 2V Set
Edited by Roland Fleck and Bruno Humbel

Understanding Light Microscopy
Jeremy Sanderson

Correlative Microscopy in the Biomedical Sciences
Edited by Paul Verkade and Lucy Collinson

Forthcoming
The Preparation of Geomaterials for Microscopical Study: A Laboratory Manual
Owen Green and Jonathan Wells

Electron Energy Loss Spectroscopy
Edited by Rik Brydson and Ian MacLaren
Correlative Imaging

Focusing on the Future

Edited by

Paul Verkade
University of Bristol
Bristol
United Kingdom

Lucy Collinson
The Francis Crick Institute
London
United Kingdom
Contents

List of Contributors xi
Preface xiii

1 It’s a Small, Small World: A Brief History of Biological Correlative Microscopy 1
Christopher J. Guérin, Nalan Liv, and Judith Klumperman
1.1 It All Began with Photons 1
1.2 The Electron Takes Its Place 2
1.3 Putting It Together, 1960s to 1980s 3
1.4 CLEM Matures as a Scientific Tool 1990 to 2017 4
Acknowledgments 13
References 13

2 Challenges for CLEM from a Light Microscopy Perspective 23
Kurt Anderson, Tommy Nilsson, and Julia Fernandez-Rodriguez
2.1 Introduction 23
2.1.1 Electron and Light Microscopy 23
2.1.2 Correlative Microscopy: Two Cultures Collide 25
2.2 Microscopy Multiculturalism 26
2.2.1 When Fluorescence Light Microscopy Resolution Is Not Enough 26
2.2.2 The Fluorescence Microscopy (FM), Needle/Haystack Localization 27
2.2.3 Electron Microscopy, Visualizing the Ultrastructure 27
2.2.4 Finding Coordinates 28
2.3 Bridging the Gap between Light and Electron Microscopy 29
2.3.1 Finding the Same Cell Structure in Light and Electron Microscopes 29
2.3.2 Making the Fluorescence Labels Visible in the Electron Microscope 29
2.3.3 Visualizing Membrane Trafficking Using CLEM 30
2.4 Future CLEM Applications and Modifications 31
2.4.1 Correlative Reflection Contrast Microscopy and Electron Microscopy in Tissue Sections 31
2.4.2 Dynamic and Functional Probes for CLEM 32
References 34
3 The Importance of Sample Processing for Correlative Imaging (or, Rubbish In, Rubbish Out) 37
Christopher J. Peddie and Nicole L. Schieber
3.1 Introduction 37
3.2 Searching for Correlative Electron Microscopy Utopia 40
3.3 Sample Processing for Correlative Imaging: A Primer for the First Steps 40
3.4 Making It Go Faster (We Want More Speed, More Speed…) 42
3.5 Embedding Resins 44
3.6 Keeping the Region of Interest in Sight 45
3.7 Correlation and Relocation with Dual Modality Probes 48
3.8 Integration of Imaging Modalities, and In-Resin Fluorescence 49
3.9 Streamlining the Correlative Approaches of the Future: SmartCLEM 51
3.10 How Deep Does the Rabbit Hole Go? 52
3.11 Hold That Thought, Though – Is This All Completely Necessary? 53
3.12 Improving Accessibility to Correlative Workflows 54
3.13 Coming to the End 55
References 55

4 3D CLEM: Correlating Volume Light and Electron Microscopy 67
Saskia Lippens and Eija Jokitalo
4.1 Introduction 67
4.2 Imaging in 3D 68
4.3 Comparative and Correlative LM and EM Imaging 69
4.4 CLEM Is More than LM + EM 69
4.5 3D CLEM 70
4.6 Two Workflows for 3D CLEM 71
4.7 Where Is CLEM Going in the Future? 74
Acknowledgments 76
References 77

5 Can Correlative Microscopy Ever Be Easy? An Array Tomography Viewpoint 81
Irina Kolotuev and Kristina D. Micheva
5.1 Introduction 81
5.2 Why Array Tomography? 81
5.3 Array Tomography of Abundant Subcellular Structures: Synapses 82
5.4 Array Tomography of Sparsely Distributed Structures: Cisternal Organelle 84
5.5 Array Tomography of Small Model Organisms: C. elegans 87
5.6 To Summarize: Finding the Right AT Approach 90
5.7 Areas of Improvement 91
5.7.1 Resin 91
5.7.2 Serial Ultrathin Sectioning 91
5.7.3 Antibodies 92
5.7.4 EM Compatible Fluorophores 92
5.7.5 Detectors and EM Resolution 92
5.7.6 Image Registration and Alignment Tools 93
5.7.7 Data Sharing 93
5.7.8 “Dream” Resource 93
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Cryo-Correlative Light and Electron Microscopy: Toward in situ Structural Biology</td>
<td>137</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>137</td>
</tr>
<tr>
<td>8.2</td>
<td>Cryo-CLEM to Support Single Particle Analysis of Purified Macromolecules</td>
<td>138</td>
</tr>
<tr>
<td>8.3</td>
<td>Capturing Structural Dynamics of in vitro Reconstituted Systems</td>
<td>141</td>
</tr>
<tr>
<td>8.4</td>
<td>Identifying Macromolecules in Plunge-Frozen Whole Cells</td>
<td>142</td>
</tr>
<tr>
<td>8.5</td>
<td>Macromolecular Structures in Thinned Samples from Thick Cell Areas</td>
<td>144</td>
</tr>
<tr>
<td>8.6</td>
<td>Enabling Structural Biology in Multicellular Organisms and Tissues by Cryo-CLEM</td>
<td>145</td>
</tr>
<tr>
<td>8.7</td>
<td>Conclusions</td>
<td>147</td>
</tr>
<tr>
<td>8.8</td>
<td>Acknowledgments</td>
<td>147</td>
</tr>
<tr>
<td>8.9</td>
<td>References</td>
<td>147</td>
</tr>
<tr>
<td>9</td>
<td>Correlative Cryo Soft X-ray Imaging</td>
<td>155</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction to Cryo Soft X-ray Microscopy</td>
<td>155</td>
</tr>
<tr>
<td>9.2</td>
<td>Cryo-SXT Correlation with Visible Light Microscopy</td>
<td>159</td>
</tr>
<tr>
<td>9.3</td>
<td>Cryo-SXT Correlation with Cryo X-ray Fluorescence</td>
<td>160</td>
</tr>
<tr>
<td>9.4</td>
<td>Cryo-SXT Correlation with TEM</td>
<td>163</td>
</tr>
<tr>
<td>9.5</td>
<td>Multiple Correlation and Integration of Methods</td>
<td>165</td>
</tr>
<tr>
<td>9.6</td>
<td>Acknowledgments</td>
<td>165</td>
</tr>
<tr>
<td>9.7</td>
<td>References</td>
<td>166</td>
</tr>
<tr>
<td>10</td>
<td>Correlative Light- and Liquid-Phase Scanning Transmission Electron Microscopy for Studies of Protein Function in Whole Cells</td>
<td>171</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>171</td>
</tr>
<tr>
<td>10.2</td>
<td>Limitations of State-of-the-Art Methods</td>
<td>172</td>
</tr>
<tr>
<td>10.3</td>
<td>Principle of Liquid STEM</td>
<td>173</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Example 1: Determination of ORAI Channel Subunit Stoichiometry by Visualizing Single Molecules Using STEM</td>
<td>175</td>
</tr>
<tr>
<td>10.3.1.1</td>
<td>Conclusions</td>
<td>179</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Example 2: New Insights into the Role of HER2</td>
<td>179</td>
</tr>
<tr>
<td>10.3.2.1</td>
<td>Conclusions</td>
<td>182</td>
</tr>
<tr>
<td>10.4</td>
<td>Advantages of Liquid STEM</td>
<td>182</td>
</tr>
<tr>
<td>10.5</td>
<td>Future Prospects</td>
<td>184</td>
</tr>
<tr>
<td>10.6</td>
<td>Acknowledgments</td>
<td>185</td>
</tr>
<tr>
<td>10.7</td>
<td>References</td>
<td>185</td>
</tr>
<tr>
<td>11</td>
<td>Correlating Data from Imaging Modalities</td>
<td>191</td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>191</td>
</tr>
<tr>
<td>11.2</td>
<td>Registration during CLEM Stages</td>
<td>194</td>
</tr>
<tr>
<td>11.2.1</td>
<td>Registration to Guide Sample Preparation</td>
<td>194</td>
</tr>
<tr>
<td>11.2.2</td>
<td>Registration to Guide the Acquisition</td>
<td>195</td>
</tr>
</tbody>
</table>
11.2.2.1 Software Packages 195
11.2.2.2 Typical Features and Fields of View 195
11.2.3 Post-Acquisition Registration (Accurate Relocation) 196
11.2.3.1 Software and Approaches for Post-Acquisition Registration 196
11.2.4 Trust in Alignment: Accuracy in Practice 198
11.3 Registration Paradigm 198
11.3.1 Image Features to Guide the Registration 198
11.3.2 Distance Function 199
11.3.3 Transformation Basis 199
11.3.4 Optimization Strategy 200
11.4 Envisioned Future Developments 201
11.4.1 Integrative Microscopy versus Correlative Microscopy 201
11.4.2 Incorporate a Priori Knowledge of the Specimen 202
11.4.3 Toward the Use of Machine Learning 202
11.5 Visualization of Correlation 204
11.6 Conclusion 204
Acknowledgments 205
References 205

12 Big Data in Correlative Imaging 211
Ardan Patwardhan and Jason R. Swedlow
12.1 Introduction 211
12.2 The Protein Data Bank 212
12.3 Resources for Cryo-EM 212
12.4 Light Microscopy Data Resources 214
12.5 EMPIAR 215
12.6 IDR: A Prototype Image Data Resource 216
12.7 Public Resources for Correlative Imaging 217
12.7.1 CLEM Data Formats 217
12.8 Future Directions 218
12.8.1 A BioImage Archive 218
12.8.2 CLEM Data Submission Pipelines 219
12.8.3 Scaling Data Volumes and Usage 219
12.8.4 Community Adoption and International Engagement 220
Acknowledgments 220
References 221

13 The Future of CLEM: Summary 223
Lucy Collinson and Paul Verkade
Index 227
List of Contributors

Kurt Anderson
The Francis Crick Institute, London, United Kingdom

Tanmay A.M. Bharat
Sir William Dunn School of Pathology, University of Oxford, United Kingdom

Jose L. Carrascosa
Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain

Francisco Javier Chichón
Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain

Georg Fantner
Laboratory for Bio- and Nano-instrumentation, School of Engineering, Interfaculty Institute of Bioengineering, Lausanne, Switzerland

Julia Fernandez-Rodriguez
Centre for Cellular Imaging at Sahlgrenska Academy, University of Gothenburg, Sweden

Christopher J. Guérin
VIB Bioimaging Core, Ghent, VIB Inflammation Research Center, Ghent and Department of Molecular Biomedical Research, University of Ghent, Belgium

J. P. Hoogenboom
Imaging Physics, Delft University of Technology, The Netherlands

Eija Jokitalo
Helsinki Institute of Life Science, Institute of Biotechnology, University of Helsinki, Finland

Niels de Jonge
INM – Leibniz Institute for New Materials and Department of Physics, Saarland University, Saarbrücken, Germany

Judith Klumperman
Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, The Netherlands

Irina Kolotuev
University of Lausanne, EM Facility, Switzerland

R. I. Koning
Cell and Chemical Biology, Leiden University Medical Center, The Netherlands

A. J. Koster
Cell and Chemical Biology, Leiden University Medical Center, The Netherlands
Wanda Kukulski
Cell Biology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom

Frank Lafont
Cellular Microbiology and Physics of Infection Group
Center for Infection and Immunity of Lille, CNRS UMR8204 – Inserm U1019 – Lille Regional University Hospital
Center – Institut Pasteur de Lille – Univ. Lille, France

R. I. Lane
Imaging Physics, Delft University of Technology, The Netherlands

Saskia Lippens
BioImaging Core, VIB, Ghent, Belgium

Nalan Liv
Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, The Netherlands

Kristina D. Micheva
Stanford University School of Medicine, California, United States

Tommy Nilsson
The Research Institute of the McGill University Health Centre and McGill University, Montreal, Canada

Ardan Patwardhan
European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, United Kingdom

Perrine Paul-Gilloteaux
Structure Fédérative de Recherche François Bonamy, CNRS, INSERM, Université de Nantes, France

Christopher J. Peddie
Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, United Kingdom

Eva Pereiro
Mistral beamline, ALBA Light Source, Cerdanyola del Vallès, Barcelona, Spain

A. Srinivasa Raja
Imaging Physics, Delft University of Technology, The Netherlands

Nicole L. Schieber
Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany

Martin Schorb
European Molecular Biology Lab (EMBL), Heidelberg, Germany

Jason R. Swedlow
Centre for Gene Regulation and Expression, University of Dundee, United Kingdom
Correlative microscopy (CM), or more broadly correlative imaging (CI), aims to analyze a single sample by two or more distinct imaging modalities. By doing so, one should be able to extract more scientific insight than would have otherwise been possible using each imaging modality as a standalone technique. We have thus coined the expression $1 + 1 = 3$ to explain the principle of CI. It should be noted that CI is NOT the process of imaging biological replicates with a variety of imaging techniques, which would be more properly referred to as comparative imaging.

Over the last two decades, the field of correlative imaging has seen a massive expansion in development and application, primarily driven by the need to link structure and function in a biological context. This expansion was facilitated by a number of factors, including the development of superresolution light microscopy, the resolution revolution in cryo-electron microscopy (EM), and the volume revolution in scanning electron microscopy (SEM).

The correlative revolution began with the development of correlative light electron microscopy (CLEM), with an initial swell at the end of the 1980s that then exploded in terms of developments and publications in the early 2000s (see also Chapter 2). CLEM specifically combines a light and an electron microscopy modality to image the same sample, and is the best-established CI methodology. In the early days, separate CLEM sessions in microscopy conferences would highlight technical advances in the field, and those, expanded into CI sessions, are now a mainstay at most microscopy conferences. As CI has matured, the most established workflows have shifted into the applications domain, and are often incorporated into mainstream scientific sessions at biological and, increasingly, physical sciences meetings. This important transformation shows that CI technology is now considered an established technique that can be applied to a wide variety of research questions.

Not all research questions will need a CI approach, but where the region of interest within the sample to be imaged is rare in space and/or time, CI can deliver “the needle in the haystack,” alongside significant savings in both time and resources. In addition, many scientific questions will require adaptation or optimization of an existing correlative workflow, or even development of a new CI approach. To this end, we have already collected a large number of CLEM approaches and published them in dedicated volumes of the *Methods in Cell Biology* book series (Volumes 111, 124, and 140). Here, we asked the authors of the chapters to describe their technical approach, highlight tips and tricks, and, importantly, to explain why they had chosen their approach to answer their biological research question. With continuing fast-paced developments in the...
field, we have already received a number of queries for a fourth edition, for which we are compiling a list of chapters, with no shortage of new material available.

The feedback we have received on those books has been very positive. They are a resource that captures a snapshot of the state of the art in the field at the point of publication, and technology developers have used them as inspiration for the next iterations of new CI approaches. Having compiled the current state of the art, we were interested to look at where we are heading next. We asked leaders in different areas of CI to write down their thoughts on current limitations and how these could be solved, and what the next transformative technologies might be. Thus, this book is a snapshot of the current state of the art, but with additional musings and best-guesses of leaders in the field as to what future generations of CI technology may look like.

We asked these experts an additional question, “What CI technology would you ideally use to answer our scientific questions?” This “blue-skies daydreaming” exercise was not to be limited by the practicalities of current hardware and software solutions, and turned out to be fruitful in generating a call from the community for concerted efforts in specific areas, as well as delivering fascinating ideas that will undoubtedly drive new breakthroughs.

We fully realize that the chapters in this book are a personalized choice of topics and we may well have missed some of the next transformative CI technologies. We also recognize that some of the chapters will have a more general impact and will be valid for other research fields as well. We look forward to reading the book in 5 years’ and 10 years’ time, to see how the future of CI matches up to the expert predictions of 2017–19, when the book was written.

We hope you enjoy the read and that this book may be an inspiration for your own research.

February 2019

Paul Verkade
Lucy Collinson
1

It’s a Small, Small World: A Brief History of Biological Correlative Microscopy

Christopher J. Guérin1, Nalan Liv2, and Judith Klumperman2

1 VIB Bioimaging Core, Ghent, VIB Inflammation Research Center, Ghent and Department of Molecular Biomedical Research, University of Ghent, Belgium
2 Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, The Netherlands

1.1 It All Began with Photons

Light microscopy (LM) is arguably the oldest technology still used in scientific research today. Until the mid-1600s, the world of structures smaller than about 400 microns was unseen and unknown. While the principles of using lenses to magnify were known as far back as Euclid (c. 300 BCE) [1], microscopy had to await technical developments in the manufacture of lenses and the casings to hold and position them, before they could be used to extend the power of human visual resolution. The earliest published description of a biological sample viewed using a simple one lens microscope was probably in 1658’s Scrutinium pestis physico-medicum [2] written by a German friar Athanasius Kircher. In this manuscript he describes the presence of “little worms” in blood that he associates with disease; thus anticipating the germ theory by almost 100 years.

Around the same period, Dutchman Antonie van Leeuwenhoek used his single-lens microscope to examine samples of mold, bees, and lice, and reported these and other observations to the Royal Society in a series of letters beginning in 1673. It was when he went on to look at samples of blood, tooth plaque, and sperm that he observed that individual small structures that moved of their own volition! When he reported his observations in a letter to the Royal Society in London in 1676, they were met with great skepticism. In 1677, a delegation was sent to determine if he was brilliant or demented. Having vindicated his observations, he was elected to the Royal Society in 1680. However, while the best of van Leeuwenhoek’s microscopes had an impressive maximum magnification of 260 times, their resolving power was limited to about 1.4 μm [3].

Although simple one-lens microscopes like Van Leeuwenhoek’s were impressive, a Dutch inventor by the name of Cornelius Jacobszoon Drebbel brought a new device to London [4] even earlier (1619), a two-lens microscope that possessed higher magnification capacity than the Van Leeuwenhoek instrument since it was based on the principle that in a two-lens microscope the total magnification of the lenses was multiplicative [5]; although the resolution was limited by optical aberrations.
Using a microscope very much like Drebbel’s, but with an improved source of illumination, the Englishman Robert Hooke was able to see details in pieces of plants, animals, and insects that had previously been unknown. For example, he observed that a piece of cork bark was composed of many small rectangular compartments. They reminded him of the small rooms that monks slept in. He called them cells, a name we still use today; had he called them chambers we might be studying chamber biology instead. He published these observations as well as the first recorded attempt to make measurements using a microscope in his 1665 book Micrographia [6]. These early studies of the invisible world of cells represent the birth of modern microscopy.

In the eighteenth and nineteenth centuries, microscopes became progressively more powerful, lens design was improved to remove aberrations, and innovations such as the use of polarized illumination were introduced. In the 1880s the German scientists Ernst Abbe and August Valentin Köhler working with Carl Zeiss brought together a sophisticated lens design [7] and improved illumination methods [8, 9] to create microscopes that could resolve subcellular structures. Abbe was the first to mathematically calculate the limits of microscope resolution using photons [10]. His calculations showed that the wavelength of visible light and the angle from which the diffracted light is collected defined the limits for microscopic resolution. Thus, the Abbe diffraction barrier of 188 nm was elucidated, and this would remain the limit of light microscopy until the advent of super-resolution techniques some 125 years later.

1.2 The Electron Takes Its Place

In the 1920s, while light microscopy still had to fully exploit its resolution possibilities, a young French physics student was pondering the theories of Einstein, in particular the nature of electrons, and wondering if they had a wavelength. His name was Louis de Broglie and the equation describing the wave nature of electrons was at the heart of his PhD thesis [11]. In a triumph of early career achievement his thesis secured him the 1929 Nobel prize in physics! Being a theoretician, he had no practical use for his work and went on to the next equation. Fortunately, there were more practically minded physicists who did see the use of the wave nature of electrons. Ladislaus Marton in Brussels, and Ernst Ruska, Max Knoll, and Ernst Brüche in Berlin developed simultaneous prototype transmission electron microscopes, which proved that not only did electrons have a wavelength but also that they could be focused by electromagnetic lenses and used in the same manner as light was used in optical microscopy [12]. Ruska theorized that under the right conditions these microscopes could achieve a resolution of 2Å, which was proved correct almost 40 years later [13].

Biologists rejoiced at the news that smaller subcellular structures could finally be resolved; however, it came at a price. Specimens had to be imaged in high vacuum and radiation damage from the strong electron beam was intense. Despite that, Marton published the first biological electron micrograph of a sample of Drosera intermedia, sundew, in the journal Nature in 1934 [14]. While this was a breakthrough, the actual resolution of electron micrographs would be insufficient to produce useful scientific data for another 20 years. So until almost the 1960s, electron microscopes were like the optical microscopes of the seventeenth century, largely curiosities.
1.3 Putting It Together, 1960s to 1980s

Although both light and electron microscopy continued to improve, it wasn’t until the 1960s that researchers tried to combine the two imaging techniques. When searching the early literature for correlative microscopy publications, it becomes obvious that the term as we now use it, to indicate light and electron microscopic studies on the same area of the same sample, has evolved over time. The earliest references are frequently studies of the same tissue or sample type but not necessarily on the same specimen; thus, they are more comparative than truly correlative. The earliest paper that we have found that imaged a sample in a light microscope with a similarly prepared sample in an electron microscope is from the pioneering work of Keith Porter, where chick embryonic fibroblasts were cultured on a formvar substrate, fixed and imaged (Figure 1.1) [15]. This was only done as a proof of principle for developing EM techniques, though, and no attempt was made to draw conclusions from any correlation. A correlative study from 1960 by Goodman and Morgan was performed on separate cell cultures and published as two papers, one for light [16] and one for transmission electron microscopy (TEM)[17].

Other correlative studies from 1969 [18] and 1970 [19, 20] used biopsy samples that had been divided and processed for either light or electron microscopy, and then extrapolated between the morphological findings in each. Additional studies of correlative microscopy went a step further and used the same sample but adjacent sections. In

Figure 1.1 The first micrograph to compare a sample imaged with a light microscope; 1) and an electron microscope; 2), was published by Keith Porter in 194515. While not truly correlative, e.g. of the same specimen, this did demonstrate that samples prepared with the same procedures could be imaged using multiple methods. Reproduced with permission of ROCKEFELLER UNIVERSITY PRESS via Copyright Clearance Center ©1945.
1970, Watari and coworkers published a study of the islets of Langerhans using adjacent resin-embedded sections [21], and in 1979, Hyde et al. used the same block to first cut thick sections and inspect them by LM, then selected areas were cut out from these samples, and thin sectioned for TEM [22]. A very early attempt to combine immunohistochemistry with TEM was published in 1974 by Bordi and Bussolati [23].

In 1980, Gonda and Hsu combined LM, scanning electron microscopy (SEM) and TEM to study developing mouse blastocysts [24]. These early studies, although not meeting the criteria for correlative microscopy that we use today, were examples of researchers trying to use multiple microscopy methods to bridge the resolution gap between photons and electrons.

It was probably the 1967 article by McDonald, Pease, and Hayes [25] that examined sectioned rabbit tissues by LM and SEM, that marks the first use of correlative microscopy with the specific purpose of adding the extra resolution available in the EM to the LM data (Figure 1.2). A 1969 paper by McDonald and Hayes used fixed, dried blood cells and clots and correlated images of the same cells using their morphology and proximity to neighboring cells to identify them [26]. In 1971, a short technical note was published by Ayres, Allen, and Williams using specimens from a cervical biopsy that were inspected by SEM, then reprocessed for LM imaging [27]. At the same time, a group led by H.D. Geissinger at the University of Guelph was working intensely on correlative microscopy and matching the same area in cell preparations and tissue slices using SEM and LM [28]. In a 1973 paper, Geissinger, Basrur, and Yamashiro constructed a custom-built holder with a measuring caliper that could transfer between the LM stage and SEM specimen chamber [29,30], and by use of a method of correlated integers [31] they were able to reacquire the same coordinates and image the same area. Geissinger, Abandowitz, and Josefowicz used the same technique to examine hair shafts in transmitted and reflected light and SEM [32].

Geissenger and coworkers continued to explore the possibilities of correlative microscopy, combining many imaging modalities: SEM-interferometry [33], and LM polarization-SEM-TEM (Figure 1.3) [34]. This approach of combining multiple LM and EM techniques was also adopted by other investigators. A paper from 1989 used a combination of live cell video microscopy, low-voltage SEM, and high-voltage TEM to study membrane associated glycoproteins in human platelet cells [35], and that same year a paper used intravital video microscopy, LM and TEM to study capillary growth [36].

These early efforts to bridge the resolution scale were pioneering and led to a greater interest in using combined microscopic techniques to increase the data content of bio-imaging experiments. This interest was further demonstrated in 1987 with the publication of the first book describing CLEM instrumentation and methods [37].

1.4 CLEM Matures as a Scientific Tool 1990 to 2017

In the next 25 years, the technique would continue to progress, not only with specific CLEM developments aimed at more precise and faster correlation but also by constantly implementing improvements made in the LM and EM fields. For example, in the early 1980s LM in the life sciences was reinvigorated by the development and commercialization of confocal laser scanning microscopy [38, 39]. This was quickly supplemented by the discovery of green fluorescent protein (GFP) [40, 41] and other
fluorophores, allowing functional imaging in live cells [42, 43]. In the 1990s, subdiffraction-limited or super-resolution LM techniques with resolutions below the limit set by Abbe's law started to appear. First was stimulated emission depletion (STED) microscopy [44], followed by structured illumination microscopy (SIM) [45], stochastic optical reconstruction microscopy (STORM) [46], and photoactivated localization microscopy (PALM) [47]. More recent developments such as light sheet microscopy [48], tissue clearing, expansion microscopy [49], and adaptive optics [50] continue to extend the capabilities of LM and in due course will find their way into CLEM.

On the EM side, electron tomography (ET), which offers 3D visualization of a selected part of a specimen at very high resolution, has been continuously improved since 1968.
and with the growing computational power is still increasingly applied and optimized. One of the most recent developments is ET done under cryo-conditions [51, 52], providing exciting new applications in the field of structural biology. It is also of great importance for CLEM that the resolution of SEMs has been steadily improved, now almost approaching the TEM level [53]. Moreover, SEMs gained extended automated capabilities for 3D imaging [54, 55, 56], which greatly facilitates CLEM in the z-axis. Further improvements in LM and EM have made them more complementary in terms of resolution, contrast generation, and image dimensions. The promising power of combining these complementary modalities in integrated or modular microscopy settings has boosted the development and applications of CLEM in the last decade.

One of the main challenges in CLEM studies is to use LM to determine where you are in the landscape of the nanoworld of EM. Sadly for microscopists, a cellular version of GPS does not yet exist. To correlate a region of interest (ROI) in a light micrograph to the corresponding area in an electron micrograph is no easy task. Ideally, what is needed is a probe that can be easily visualized in both microscopes. An early but noncorrelative immunohistochemical study did develop such a probe using horseradish peroxidase (HRP)-antiperoxidase-diaminobenzidine (DAB), but only inspected it in the TEM [57].

Figure 1.3 The laboratory of Professor H.D. Geissigner pioneered the development of different correlative microscopy workflows using multiple imaging modalities. This elegant example from a 1980 paper demonstrates the extra information to be gained through the correlation of LM (inset a × 400), SEM (a × 1500) and TEM (b × 5400) examining a sample of human muscle in a patient with muscular distrophy. Reprinted by permission of the publisher from Ultrastructural Pathology © 1980 (Taylor & Francis Ltd, http://www.tandfonline.com).
To the best of our knowledge, the first demonstration of a directly correlative tracer, visible in both LM and EM, was in 1980 when Roth synthesized a FITC-protein A-colloidal gold complex to label antibodies to amylase in sections of pancreas [58]. In 1982, Maranto used photoconversion of the fluorescent dye Lucifer yellow in the presence of DAB to create an osmiophilic polymer [59], and this was followed by other studies using photooxidized fluorophores [60, 61]. In 1987, Quattrochi and colleagues synthesized fluorescent nanospheres linked by IgG to protein A-colloidal gold, and used them for retrograde neuronal labeling [62]. Polishchuk in 2000 used live-cell confocal microscopy to localize GFP to the Golgi complex and subsequent HRP-DAB reaction to relocate the ROI by serial section TEM to create 3D reconstructions [63]. In 2001, Adams reported the engineering of ReAsh-EDT$_2$ [64] a biarsenical ligand that could photooxidize tetracysteine tagged GFP for use in CLEM studies [65]. In 2005, Grabenbauer demonstrated a new method that proved it was possible to use GFP to directly photooxidize DAB, thus allowing for the correlative visualization of endogenously expressed proteins [66]. This was followed in 2011 by the engineering of Mini-SOG, a fluorescent flavoprotein that was both fluorescent and a high-efficiency photooxidizer developed specifically by Roger Tsien for CLEM [67]. All these attempts were hampered by the diffusible, nonquantitative HRP DAB reaction product that decreased the precision of the correlation.

In 2012, Martell and co-workers developed APEX, a small (28-kDa) genetically engineered peroxidase that can be coupled to fluoroproteins, remains active following fixation, creates a more precise localized reaction and does not require light to reduce DAB [68]. APEX is now also available in a modular form incorporating a GFP binding protein [69]. In 2015, the laboratory of Ben Giepmans developed a probe called FLIPPER, expressly for CLEM studies containing a fluoroprotein and a peroxidase that could be genetically expressed [70]. Most recently Arnold et al. developed a cryo-LM stage that, combined with fiducial markers and a computational algorithm, is able to allow for precise correlation between cryo-LM and FIB-SEM [71] (Figure 1.4). This development is very exciting, as CLEM can now be used to precisely guide the FIB milling process of vitrified cellular samples and capture specific structures in their native orientation.

Since the interest in CLEM continues to increase, other types of probes are becoming rapidly available. In parallel and addition to the DAB-dependent probes already described, others tried to preserve fluorescent signals in resin-embedded tissues to make the CLEM workflow more flexible. In 2014, Peddie et al. succeeded in retaining fluoroprotein signals in resin embedded heavy metal stained tissues [72], and in the same year, Perkovic and co-authors published a similar method for organic fluorophores [73]. Super-resolution probes for CLEM have also been developed. In 2015, Paez Sengla and colleagues developed fixation-resistant photoactivatable fluoroproteins for CLEM [74]. Recently, scientists working in Jena, Germany, synthesized polylactide nanoparticles incorporating iridium (III) complexes [75], Müller et al. reported the use of self-labeling protein tags for time resolved CLEM experiments [76] and the laboratory of Roger Tsien described the use of Click-EM for imaging metabolically tagged non-protein biomolecules [77]. Nonfluorescent detection techniques to relocate ROIs have also been investigated. Physical marking of tissues using an infrared laser can help to reacquire an ROI at the EM level [78]. In 2012, Glenn and co-authors developed probes that are cathodoluminescent, raising the possibility of discriminating between multiple probes at the EM level [79]. In 2015, Nagayama et al. demonstrated eGFP cathodoluminescence [80], and
Furukawa and co-workers developed rare-earth nanophosphors for cathodoluminescent imaging in scanning-transmission EM [81]. In 2016, Fukushima and co-workers reported the development of yttrium oxide nanophosphors, which are both fluorescent and cathodoluminescent as well as electron dense [82] and Hemelaar et al. reported the use of fluorescent/cathodoluminescent nanodiamonds for correlative studies [83].

Although we still lack a cellular equivalent of GPS, a 2017 publication, integrating several of the developments mentioned above, has demonstrated a correlation technique using cathodoluminescence with a precision of <5 nm between LM and EM images [84]. While the development of probes is invaluable for the progress of CLEM, their applications are maximized thanks to the many computer vision and bioinformatics specialists who have made strides in the “back end” of the process; that of data analysis and eventual overlaying of the LM and EM digital data [85, 86, 87, 88]. With the development of specifically engineered probes and software, the CLEM workflow has become easier and more accessible to nonspecialist labs.

A way to minimize the effort to find back ROIs by LM and EM is to combine LM and EM in one microscope. The first attempt at such an integrated device was in 1978, when Hartmann and co-workers published a note describing an attachment to a commercial SEM that incorporated light microscope optics [89]. Further adaptations were made, and in 1981 JS Ploem presented a prototype Leitz instrument at the VIII Conference on Analytical Cytology and Cytometry [90]. In 1982, Wouters and Koerten also published an integrated instrument for LM and SEM [91]. Then, for over 20 years there was little progress on the instrumentation front, until in 2008 three groups from Utrecht...
University and Leiden University Medical Center collaborated on the design of an adaptation to a TEM that incorporated a tilting sample holder and an aspherical (NA 0.55) objective lens mounted inside a TEM column perpendicular to the electron beam and connected externally to a scanning confocal microscope [92]. This integrated light and TEM was commercialized by FEI (now Thermo Fischer) under the name iCorr.

Although this approach worked successfully, it required special specimen preparation that had to compromise between preserving the fluorescent signal and maintaining ultrastructural integrity and contrast, which for room-temperature CLEM still is a challenge. An improvement on this design introducing cryo-EM to observe fluorochromes in their hydrated state was published in 2012 [93].

The following year a collaborative effort between groups from both academia and industry published the design for an integrated room-temperature fluorescence-SEM. This system employed a reflective mirror and a 45X NA 0.41 objective lens placed in an SEM column in which holes were bored to allow passage of the electron beam [94]. This design also required special specimen preparation with fixation in low-concentration gluteraldehyde and dehydration insensitive fluorochromes. As far as can be determined, this design was never commercialized.

In 2010, Nishiyama and co-workers published the design for a combined instrument in which a fluorescence microscope was mounted over an inverted SEM with the sample in a chamber constructed of a silicon nitride film [95]. This was later marketed by JEOL as the ClairScope. Because of its limited magnification and resolution capacity, it was never widely adopted but proved the impetus for other designs of integrated instruments.

In 2011, Albert Polman in AMOLF, Amsterdam developed the SPARC, a custom-built stage that could be installed in an SEM containing a swinging parabolic mirror connected to an external CCD camera recording cathodoluminescence [96]. This design was used primarily for materials science and nanophotonics applications, although recent breakthroughs in biological applications could change that [97]. In 2013, the Charged Particle Optics group of Delft University of Technology developed SECOM, which included a high NA optical lens inside the vacuum chamber directly below the SEM pole piece [98, 99]. Both SPARC and SECOM are marketed by a spinoff company, DELMIC BV. In 2013, DELMIC joined with Phenom-World BV to develop the Delphi that used a similar design to SECOM but as a standalone instrument; it was unveiled in 2014 at the IMC in Prague. A SECOM variant including super-resolution capability was released in 2016. Using this SECOM platform, Peddie et al. recently presented strong stable blinking properties of GFP and YFP in-vacuo, and used this to achieve super resolution CLEM of resin-embedded cells [100] (Figure 1.5). Additional developmental work is underway on integrated instrumentation such as the inclusion of a miniature fluorescence microscope into a serial blockface sectioning SEM system for 3D CLEM studies [101]; and with the growing interest in correlative microscopy we can expect to see new instruments with additional capabilities that could bring CLEM into more widespread use.

The early trend to combine multiple modes of light and electron microscopy continued into the 1990s with various permutations of light, fluorescence, video, SEM, and TEM being employed [102], and increasing numbers of studies that went beyond mere proof of principle to address significant scientific questions [103, 104, 105]. Newly developing microscopic techniques were integrated into CLEM studies including: intraval