Complexity Challenges in Cyber Physical Systems
Complexity Challenges in Cyber Physical Systems

Using Modeling and Simulation (M&S) to Support Intelligence, Adaptation and Autonomy

Saurabh Mittal
The MITRE Corporation
Fairborn
OH, USA

Andreas Tolk
The MITRE Corporation
Hampton
VA, USA
To the Infinite Intelligence that created things simple, just, and accommodating enough, which manifests itself in complex universes, both within and without, that we all share, enjoy, and strive to understand.

Saurabh Mittal

To all scientists and researchers who dare to leave the comfort of their home discipline and seek collaboration with like-minded partners to create transdisciplinary teams inspiring progress in our complex work.

Andreas Tolk
Contents

Preface xi
Foreword by Barry Martin Horowitz xv
About the Editors xvii
List of Contributors xix
Author Biography xxiii

Part I Introduction 1

1 The Complexity in Application of Modeling and Simulation for Cyber Physical Systems Engineering 3
Saurabh Mittal and Andreas Tolk

2 Challenges in the Operation and Design of Intelligent Cyber-Physical Systems 27
Sebastian Castro, Pieter J. Mosterman, Akshay H. Rajhans, and Roberto G. Valenti

3 NATO Use of Modeling and Simulation to Evolve Autonomous Systems 53
Jan Mazal, Agostino Bruzzzone, Michele Turi, Marco Biagini, Fabio Corona, and Jason Jones

Part II Modeling Support to CPS Engineering 81

4 Multi-Perspective Modeling and Holistic Simulation: A System-Thinking Approach to Very Complex Systems Analysis 83
Mamadou K. Traoré
5 A Unifying Framework for the Hierarchical Co-Simulation of Cyber-Physical Systems 111
 Fernando J. Barros

6 Model-Based Systems of Systems Engineering Trade-off Analytics 131
 Aleksandra Markina-Khusid, Ryan Jacobs, and Judith Dahmann

7 Taming Complexity and Risk in Internet of Things (IoT) Ecosystem Using System Entity Structure (SES) Modeling 163
 Saurabh Mittal, Sheila A. Cane, Charles Schmidt, Richard B. Harris, and John Tufarolo

Part III Simulation-Based CPS Engineering 191

8 Simulation Model Continuity for Efficient Development of Embedded Controllers in Cyber-Physical Systems 193
 Rodrigo Castro, Ezequiel Pecker Marcosig, and Juan I. Giribet

9 Cyber-Physical Systems Design Methodology for the Prediction of Symptomatic Events in Chronic Diseases 223
 Kevin Henares, Josué Pagán, José L. Ayala, Marina Zapater, and José L. Risco-Martín

10 Model-Based Engineering with Application to Autonomy 255
 Rahul Bhadani, Matt Bunting, and Jonathan Sprinkle

Part IV The Cyber Element 287

11 Perspectives on Securing Cyber Physical Systems 289
 Zach Furness

12 Cyber-Physical System Resilience: Frameworks, Metrics, Complexities, Challenges, and Future Directions 301
 Md Ariful Haque, Sachin Shetty, and Bheshaj Krishnappa

13 The Cyber Creation of Social Structures 339
 E. Dante Suarez and Loren Demerath
Part V Way Forward 371

14 A Research Agenda for Complexity in Application of Modeling and Simulation for Cyber Physical Systems Engineering 373
Andreas Tolk and Saurabh Mittal

Cyber Physical Systems – Modeling and Simulation to Balance Enthusiasm and Caution 391
Kris Rośfjord

Index 395
The various definitions for Cyber Physical Systems (CPSes) all focus on their computational and physical components, integrating sensors, networks, motors, and more. But we often overlook that CPS will significantly change the way we access systems and our environment. They are ubiquitous: cars self-park, recognize street signs and react accordingly, know the distance to other cars and keep the correct distance, and more. CPS allows a new family of medical devices, from surgical assisting tools to smart prostheses. Smart houses observe the comfort level of people and control the air conditioning accordingly. They are learning when people are home, can prepare their meals and keep the meals warm in case of a traffic jam. If the house were part of the smart city, sensors would have learned about the jam and diverted the traffic, automatically reconfiguring the traffic lights and communicating the news to the smart cars. First responders as well as soldiers are getting accustomed to their colleague CPS in human cyber teams, where the CPS can assess regions too dangerous or otherwise not reachable for the human team partners. However, all this support comes with a price: growing complexity! How can we either manage or govern such intelligent, adaptive, and autonomous systems? How can we take advantage of positive emergence, and avoid the major consequences of negative ones?

We went through a similar dramatic change before, namely when the Internet changed our view on searching for and gaining access to information. Many CPSes are using the Internet to gather and change information as well; and again, it comes with a price. Before the Internet era, many complex systems had both the software and hardware components, but they were shielded from cyberattacks due to a lack of network access. Due to the additional capability of connectedness of these components across varied networks (both within and without the organization that own the CPS), new challenges have emerged. Some of the challenges include cyber security, control, test, degree of connectivity, constant vigilance and operation, degree of autonomy, intelligence-based behavior, resilience, and impact on the socioeconomic fabric.
As is the case in many current publications, CPS and Internet of Things (IoT) are used interchangeably but there are some subtle differences between the two. We understand CPS as domain-specific versions of IoT, so the difference lies in terms of scale, societal impact and the propagation of effects. CPS are more focused towards a specific domain such as aviation, health, military, defense, manufacturing, etc. Due to the domain-specific nature, CPS can be studied in more detail at both the operational technology and information technology levels. However, the resulting danger is that CPS within their domains share neither their insights nor benefit from insights of other CPS from other domains. A domain-agnostic common theory providing common methods that lead to domain specific solutions would be advantageous, and some candidates exist and will be discussed, but no common formalism in support of this idea has been widely accepted yet.

Modeling and Simulation (M&S) has emerged as a mechanism by which various CPS challenges can be studied in a virtual environment. Model-based engineering (MBE) and simulation-based engineering are two distinct activities, even though the simulation activity subsumes the modeling activity. A model is an abstract representation of the system and is evaluated in an environment that may be a live (people using real systems), a virtual (people using simulated systems), or a constructive (simulated people and systems) environment. The simulation infrastructure ensures the model system is provided the right environment for evaluating the capabilities, which are essentially the system’s capabilities that need to be tested and evaluated.

We started our journey in Fall 2017, when we gratefully received some internal MITRE research funding to research the challenges of hybrid simulation in support of CPS. We allocated part of the funding to bring experts to a panel discussion. The experts belonged to disparate domains who employ M&S to address the CPS challenges and conduct CPS engineering together. Interestingly, this spawned some collaboration, as we discovered similarities in our challenges and solutions, from which this book ultimately emerged. This book tries to organize the obtained insights and report the latest in the use of M&S for CPS engineering. We address the subject in five parts: Introduction, Modeling Support to CPS Engineering, Simulation-Based CPS Engineering, The Cyber Element, and The Way Forward.

The Part I begins with a chapter from us and provides an overview of complexities associated with the application of M&S to CPS Engineering. Castro et al. in the second chapter, provide a more detailed description of the challenges in the operation and design of intelligent CPS. The third chapter by Mazal et al. discusses M&S in the context of autonomous systems involvement within the North Atlantic Treaty Organization (NATO). Part II begins with a chapter from Traoré on multi-perspective modeling and holistic simulation for very complex systems analysis. The next chapter by Barros describes a unifying framework for hierarchical co-simulation of CPS. This is followed by model-based system of systems engineering tradeoff analytics by Markina-Khusid et al. The next chapter by Mittal
et al. considers a larger version of CPS, i.e. IoT, and the complexities associated
with developing a risk assessment framework. Part III begins with a chapter from
Castrol et al. on simulation model continuity for efficient development of embed-
ded controllers in CPS. This is followed by another practical application by
Henares et al. on CPS design methodology for prediction of symptomatic events
in chronic diseases. In this chapter they present the entire lifecycle methodology
for CPS engineering from concept to cloud deployment and execution. The next
chapter by Bhadani et al. applies model-based engineering to the subject of auton-
omy in CPS. Part IV begins with a chapter by Furness on providing various per-
spectives on securing CPS. This is supported by the next chapter by Haque et al.
on CPS resilience and discusses frameworks, complexities, and future directions
on resilient systems engineering. The next chapter by Suarez and Demareth dis-
cusses the creation of social structures employing CPS. The Part V incorporates
another chapter by the editors on the way forward and provides a research agenda
for addressing complexity in application of M&S for CPS engineering.

Editing this book was a rewarding journey that offered plenty of opportunities
to learn and discover. We invite you to share the exciting journey of CPS engineer-
ing that offers a wealth of opportunities for advancement at various levels. CPS
are going to shape our lives: observing the well-being of the elderly, observing our
health, observing and optimizing our production systems, and many more oppor-
tunities. Just as our children can hardly imagine finding information on certain
topics of interest – mainly due to homework or college projects – before Internet
and Google, the new generation may no longer imagine how often we had to prac-
tice parallel parking, or how parcels were delivered only once a day. We hope to
contribute to the efficient development of future CPS solutions with this compen-
dium, and hopefully generate some ideas for scholars and researchers as well.

Saurabh Mittal1, PhD
The MITRE Corporation,
Fairborn, OH, USA

Andreas Tolk2, PhD
The MITRE Corporation,
Hampton, VA, USA

1, 2 The author’s affiliation with the MITRE Corporation is provided for identification purposes
only, and is not intended to convey or imply MITRE’s concurrence with, or support for, the
positions, opinions, or viewpoints expressed by the author. Approved for Public Release,
Foreword

Several important global trends are occurring with regards to the advancement of cyber physical systems. Worldwide, significant technology-driven advances are being pursued that address increasing cyber physical system performance, safety, and security while achieving design, development, and operational efficiencies that reduce cost. These trends include:

- Significant investment in higher levels of automation for physical systems, including autonomous systems.
- Increasing research and early applications of Artificial Intelligence to physical systems (AI), including addressing “Dependable AI” for high assurance AI-software design and development.
- Development of advanced static and dynamic analysis tools by the Modeling and Simulation community. The resulting Model-based Systems Engineering (MBSE) analysis tools and methods address considerations related to the growing complexity of highly integrated System-of-System architectures.
- Development of cyberattack resilient system architectures that can restore acceptable system operation in response to a real-time detection of a functionally disabling cyberattack.

These initiatives bring with them increased complexity of system designs, with a corresponding set of risks that need to be addressed when designing new or significantly upgraded systems. These risks include:

- Cyberattacks that include supply chain and insider attacks that can directly impact the application layer of physical systems and, in the worst case, can potentially result in operator or user injuries or loss of life.
- Safety-related incidents due to undetected deficiencies in system design.
- Operator errors due to uncertainties related to human–machine roles under anomalous circumstances.

But, perhaps the most concerning risk is the recognized shortage of engineers and scientists who can contribute to the development of these new technologies and
tools, as well as the shortage of the workforce that can productively employ the analysis tools that are designed to enable high productivity in the development and evaluation of new cyber physical system designs. This book helps to address this risk by providing a well-constructed, selective set of articles that together offer the reader an integrated view of the state-of-the-art in addressing complex cyber physical system design and development. By integrating the diverse set of articles, the book serves to compliment the education curriculums at Universities, which tends to separate the subjects discussed above into the curriculums of different departments (e.g. Mechanical Engineering for physical systems, Computer Science for AI and cybersecurity, Systems Engineering for complex system design analysis, etc.). As a result, I believe that books of this kind can play a significant role in enabling engineers to build on their formal education and prior experience in a manner that supports the greatly needed enhanced design and evaluation skills that the trends in cyber physical systems are calling for.

Reading this book is something that I highly recommend for engineers and scientists who are interested in becoming important participants in the global trends related to advancing the automation levels of cyber physical systems!

Barry Martin Horowitz
Member of the National Academy of Engineering
Munster Professor Systems and Information Engineering
University of Virginia
Previously CEO of The MITRE Corporation
Previously Virginia Cybersecurity Commissioner
March 2019
About the Editors

SAURABH MITTAL is Chief Scientist for Simulation, Experimentation, and Gaming Department at The MITRE Corporation in Fairborn, OH, Vice President-Memberships and member of Board of Directors for Society of Modeling and Simulation (SCS) International in San Diego, CA. He holds a PhD and MS in Electrical and Computer Engineering with dual minors in Systems and Industrial Engineering, and Management and Information Systems from the University of Arizona, Tucson. He has co-authored over 100 publications as book chapters, journal articles, and conference proceedings including 3 books, covering topics in the areas of complex systems, system of systems, complex adaptive systems, emergent behavior, modeling and simulation (M&S), and M&S-based systems engineering across many disciplines. He serves on many international conference program/technical committees, as a referee for prestigious scholastic journals and on the editorial boards of Transactions of SCS, Journal of Defense M&S and Enterprise Architecture Body of Knowledge. He is a recipient of Herculean Effort Leadership award from the University of Arizona, US DoD’s highest civilian contractor recognition: Golden Eagle award, and Outstanding Service and Professional Contribution awards from SCS.

ANDREAS TOLK is a Senior Divisional Staff Member at The MITRE Corporation in Hampton, VA, and adjunct Full Professor at Old Dominion University in Norfolk, VA. He holds a PhD and MSc in Computer Science from the University of the Federal Armed Forces of Germany. His research interests include computational and epistemological foundations and constraints of modeling and simulation as well as mathematical foundations for the composition of model-based solutions in computational sciences. He published more than 250 peer reviewed journal articles, book chapters, and conference papers, and edited 10 textbooks and compendia on Modeling and Simulation and Systems Engineering topics. He is a Fellow of the Society for Modeling and Simulation and Senior Member of IEEE and the Association for Computing Machinery.
List of Contributors

Jose L. Ayala
Complutense University of Madrid
Madrid
Spain

Fernando J. Barros
Department of Informatics
Engineering
University of Coimbra
Coimbra
Portugal

Rahul Bhadani
Department of Electrical and
Computer Engineering
University of Arizona
Tucson
AZ
USA

Matt Bunting
Department of Electrical and
Computer Engineering
University of Arizona
Tucson
AZ
USA

Sheila A. Cane
Quinnipiac University
Hamden
CT
USA

Sebastian Castro
MathWorks
Natick
MA
USA

Marco Biagini
NATO Modelling & Simulation Center
of Excellence (M&S COE)
Italy

Rodrigo Castro
Departamento de Computación,
FCEyN
Universidad de Buenos Aires
and Instituto de Ciencias de la
Computación, CONICET
Buenos Aires
Argentina

Agostino Bruzzone
Genoa University
Genoa
Italy
Fabio Corona
NATO Modelling & Simulation Center of Excellence (M&S COE)
Italy

Judith Dahmann
The MITRE Corporation
McLean
VA
USA

Loren Demerath
Department of Sociology
Centenary College of Louisiana
Shreveport
LA
USA

Zach Furness
INOVA Health Systems
Sterling
VA
USA

Juan I. Giribet
Departamento de Ingeniería Electrónica y Matemática, FIUBA
Universidad de Buenos Aires, and Instituto Argentino de Matemática Alberto Calderón, CONICET
Buenos Aires
Argentina

Md Ariful Haque
Computational Modeling and Simulation Engineering
Old Dominion University
Norfolk
VA
USA

Richard B. Harris
The MITRE Corporation
McLean
VA
USA

Kevin Henares
Complutense University of Madrid
Madrid
Spain

Ryan Jacobs
The MITRE Corporation
McLean
VA
USA

Jason Jones
NATO Modelling & Simulation Center of Excellence (M&S COE)
Italy

Bheshaj Krishnappa
Risk Analysis and Mitigation
ReliabilityFirst Corporation
Cleveland
OH
USA

Ezequiel Pecker Marcosig
Departamento de Ingeniería Electrónica, FIUBA
Universidad de Buenos Aires and Instituto de Ciencias de la Computación, CONICET
Buenos Aires
Argentina

Aleksandra Markina-Khusid
The MITRE Corporation
McLean
VA
USA
Jan Mazal
NATO Modelling & Simulation Center of Excellence (M&S COE)
Italy

Saurabh Mittal
The MITRE Corporation
Fairborn
OH
USA

Pieter J. Mosterman
MathWorks
Natick
MA
USA

Josué Pagán
Technical University of Madrid
Madrid
Spain

Akshay H. Rajhans
MathWorks
Natick
MA
USA

José L. Risco-Martín
Complutense University of Madrid
Madrid
Spain

Charles Schmidt
The MITRE Corporation
McLean
VA
USA

Sachin Shetty
Computational Modeling and Simulation Engineering
Old Dominion University
Norfolk
VA
USA

Jonathan Sprinkle
Department of Electrical and Computer Engineering
The University of Arizona
Tucson
AZ
USA

E. Dante Suarez
School of Business, Department of Finance and Decision Sciences
Trinity University
San Antonio
TX
USA

Andreas Tolk
The MITRE Corporation
Hampton
VA
USA

Mamadou K. Traoré
IMS UMR CNRS
University of Bordeaux
Bordeaux
France
List of Contributors

John Tufarolo
Research Innovations, Inc.
Alexandria
VA
USA

Michele Turi
NATO Modelling & Simulation Center
of Excellence (M&S COE)
Italy

Marina Zapater
Swiss Federal Institute of Technology
Lausanne
Lausanne
Switzerland
Author Biography

Aleksandra Markina-Khusid is a Principal Systems Engineer in The MITRE Corporation Systems Engineering Technical Center, supporting several SoS modeling efforts for DoD and DHS. She is the MITRE Model Based Engineering Capability Area Team leader. Dr. Markina-Khusid holds a BS degree in Physics, MS and PhD degrees in Electrical Engineering, and an MS in Engineering & Management, all from the Massachusetts Institute of Technology.

Agostino G. Bruzzone is Full Professor at DIME University of Genoa, Director of M&S Net (International Network involving 34 Centers) Director of the MISS McLeod Institute of Simulation Science – Genoa Center (over 28 Centers distributed worldwide) founder member and president of the Liophant Simulation, he served as Vice President and Member of the Board of MIMOS (Movimento Italiano di Simulazione), member of the NATO MSG, Executive VP of the Society for Modeling and Simulation International. He works on innovative modeling, AI techniques, application of Neural Networks, GAs and Fuzzy Logic to industrial plant problems using Simulation and Chaos Theory. He is member of several International Technical and Organization Committees (i.e. AI Application of IASTED, AI Conference, ESS, AMS) and General Coordinator of Scientific Initiatives (i.e. General Chair of SCSC and I3M). He teaches “M&S” for the DIMS PhD Program (Doctorship in Integrated Mathematical M&S). He is Director of the Master Program in Industrial Plants & Technologies for the University of Genoa and founder and chair of STRATEGOS International MSc in Engineering Technologies for Strategy and Security (http://www.itim.unige.it/strategos). He served as Project Leader for the NATO Science & Technology Organization at the Centre for Maritime Research and Experimentation (CMRE) founding the new research track on Modeling and Simulation. He has been the 10th scientist worldwide to enter into the Modeling and Simulation Hall of Fame as top Lifetime Achievement Awards of the Society for Modeling and Simulation International.

Akshay H. Rajhans is Principal Cyber-Physical Systems Research Scientist at MathWorks in the Advanced Research & Technology Office, where his research
focuses on technical computing for and model-based design and analysis of cyberphysical systems (CPS). Previously, he worked on research and development and application engineering of electronic control systems for diesel-engine applications at Cummins, and invented a model-based approach to non-intrusive load monitoring at Bosch Research and Technology Center. Dr. Rajhans has been involved in leadership capacities in top research conferences in CPS and modeling and simulation communities, including as the inaugural CPS Track Chair at both the Winter Simulation Conference (2017) and the Spring Simulation Conference (2019), and as a Co-Chair of the International Workshop on Monitoring and Testing of CPS (2019). He is a recipient of the 2011 IEEE/ACM William J. McCalla Best Paper Award and his work has been recognized as a Research Highlight in “Communications of the ACM,” ACM’s flagship magazine. Dr. Rajhans has a PhD in Electrical and Computer Engineering from Carnegie Mellon University and an MS in Electrical Engineering from the University of Pennsylvania. He is a member of IEEE and ACM.

Bheshaj Krishnappa is currently working as a Principal at ReliabilityFirst Corporation. Mr. Krishnappa is responsible for risk analysis and mitigation of threats to bulk power system reliability and security across a large geographic area in the United States. He has over 22 years of professional experience working for large- and mid-sized companies in senior roles implementing and managing information technology, security, and business solutions to achieve organizational objectives. He is a business graduate knowledgeable in sustainable business practices that contribute to the triple bottom line of social, environmental, and economic performance. He is motivated to apply his vast knowledge to achieve individual and organizational goals in creating a sustainable positive impact.

Charles Schmidt is a Group Lead at The MITRE Corporation. He has over 17 years of experience in cybersecurity, security automation, and standards development. He holds a BS in Mathematics and Computer Science from Carleton College and an MS in Computer Science from the University of Utah.

Ezequiel Pecker Marcosig received a degree in Electronic Engineering from the Faculty of Engineering (FIUBA) of the University of Buenos Aires, Argentina. He is currently a PhD student at FIUBA and ICC-CONICET working on modeling and simulation based design of hybrid controllers for cyber-physical systems. His work is supported with a PhD Fellowship from the Peruilh Foundation. Since 2013, he is a Teaching Assistant in the Department of Electronic Engineering at FIUBA in the area of Automatic Control. His academic interests include automatic control, cyber-physical systems, modeling and simulation, and hybrid systems.

E. Dante Suarez is Associate Professor for Finance and Decision Sciences at Trinity University, USA. He holds PhD and MS in Economics from Arizona State University, USA. Suarez’s main research field is international finance, where he
studies the integration of international financial markets, such as the relationship between American depositary receipts and their corresponding underlying stocks. This research is aimed at understanding how markets around the world interact with each other in this age of globalization. Other research areas include econometrics, European studies and Latin American business practices.

Fabio Corona is employed in the Concept Development and Experimentation Branch (CD&E) at NATO Modelling & Simulation Centre of Excellence in Rome. His primary interests at the Centre are emerging technologies and concepts regarding Autonomous System and M&S as a Service. He earned a PhD degree in Electrical Engineering from “Politecnico di Torino” and a MSc degree in Electronics Engineering from “Roma Tre” University. After joining the Italian Army, his employment ranged from the internetworking field under the Italian Army Signal Headquarter to the maintenance and procurement of optoelectronic and communication systems under the Italian Army Logistics Headquarter. During his PhD study, the main research field was in efficiency and power quality of photovoltaic systems under mismatching conditions.

Fernando Barros is a Professor in the Department of Informatics Engineering at the University of Coimbra. He holds a PhD in Electrical Engineering from the University of Coimbra. His research interests include theory of modeling and simulation, hybrid systems and dynamic topology models. He has published more than 80 contributions to journals, book chapters, and conference proceedings. Fernando Barros is a member of IEEE.

Jan Mazal is graduate of the Faculty of Military Systems Management of the Military College of Ground Forces in Vyskov. In 2003 he graduated the Academic Course of Military Intelligence in Fort Huachuca, Arizona, USA. Since 2005 he is a doctor in the field of the theory of the defence management and since 2013 he is Associate professor in the problematic of military management and C4ISR systems. He is former deputy chief of the Department of Military Management and Tactics at the University of Defence in Brno, currently he works as Doctrine Education and Training Branch Chief at NATO Modelling & Simulation Centre of Excellence in ROME. He is focused on the issue of military intelligence and reconnaissance, C4ISR systems, and Operational Decision Support. He is the author and co-author of more than 70 professional publications, he solved more than 10 scientific projects, and he is the author of a number of functional samples and application software. In his previous military practice, he held command and staff functions at the tactical level and also he took part in the foreign missions as EUFOR (2006) and ISAF (2010).

Jason M. Jones is the Deputy Director for the NATO Modelling & Simulation Centre of Excellence. He has been a U.S. Army Functional Area 57, Simulations
Operations Officer, since 2003 and has worked in all aspects of simulations: training, planning, world-wide simulation distribution, testing, and experimentation. Areas of expertise include: live and constructive training; missile defense and logistics simulation; and knowledge management. He has a Master’s Degree in Modeling, Virtual Environments, and Simulations from the Naval Postgraduate School in Monterey, CA, where his thesis examined the use of commercial gaming software for training infantry squads.

John Tufarolo is the Technical Director for Systems Engineering at Research Innovations. He holds a BS in Electrical Engineering from Drexel University, and an MS in Systems Engineering from George Mason University, and has more than 32 years of experience providing systems engineering project work, planning, and leadership in complex distributed systems.

Jonathan Sprinkle is the Litton Industries John M. Leonis Distinguished Associate Professor of Electrical and Computer Engineering at the University of Arizona. In 2013 he received the NSF CAREER award, and in 2009, he received the UA’s Ed and Joan Biggers Faculty Support Grant for work in autonomous systems. His work has an emphasis for industry impact, and he was recognized with the UA “Catapult Award” by Tech Launch Arizona in 2014, and in 2012 his team won the NSF I-Corps Best Team award. His research interests and experience are in systems control and engineering, and he teaches courses ranging from systems modeling and control to mobile application development and software engineering.

José L. Ayala got his PhD in Electronic Engineering from Technical University of Madrid and is currently an Associate Professor in the Department of Computer Architecture and Automation at Complutense University of Madrid. During his career, he has collaborated and performed research stays in University of California in Irvine, University of California in Los Angeles, EPFL, and University of Bologna. He is currently the VP New Initiatives of the IEEE Council of Electronic Design Automation; CEDA representative in IEEE IoT initiative and IEEE Smart Cities initiative; and steering committee of several international conferences (IEEE Smart Cities Conference, IEEE GLSVLSI, VLSI-SoC, PATMOS, IEEE ASAP, etc). His research interests focus on IoT and edge solutions for personalized medicine approaches, including health monitoring, wireless sensor networks, and disease modeling.

José L. Risco-Martín is Associate Professor at Complutense University of Madrid. He is head of the Department of Computer Architecture and Automation. Previously, he was Assistant Professor at Colegio Universitario de Segovia and Assistant Professor at C.E.S. Felipe II de Aranjuez. Dr. Risco-Martín served as General Chair for SummerSim’17, Program Chair for SummerSim’15, General
Chair for Summer Computer Simulation Conference 2016 and Vice General Chair for SummerSim’16. He has co-authored more than 100 articles in various international conferences and journals. His research interests focus on design methodologies for integrated systems and high-performance embedded systems, including new modeling frameworks to explore thermal management techniques for Multi-Processor System-on-Chip, dynamic memory management and memory hierarchy optimizations for embedded systems, Networks-on-Chip interconnection design, low-power design of embedded systems and more generally Computer-Aided Design in M&S of Complex System, with emphasis on DEVS-based methodologies and tools.

Josué Pagán is a Teaching Assistant Professor in the Universidad Politécnica de Madrid. He got his PhD with honors in Computer Science at Complutense University of Madrid in 2018. His work focuses on develop robust methodologies for information acquisition in biophysical and critical scenarios. He has worked developing models for prompt prediction and classification of neurological diseases. On summer 2016 he did a 12-week research stay at the Embedded Pervasive Systems Lab at Washington State University under the supervision of Prof. Hassan Ghasemzadeh. Previously, on fall 2015 he did a 16-week research stay at the Pattern Recognition Lab. at Friedrich Alexander University under the supervision of Prof. Bjoern Eskofier. He achieved his MSc at Universidad Politécnica de Madrid in September 2013 with Honor Mention. He also achieved a Bachelor in Telecommunication Engineering by the Universidad Publica de Navarra in 2010.

Juan I. Giribet is a Researcher in the Instituto Argentino de Matemática (IAM-CONICET), Argentina. He is also Associate Professor in the Faculty of Engineering of the University of Buenos Aires, Argentina. He holds an MS and PhD in Electronic Engineering from the University of Buenos Aires. He published more than 70 contributions to journals and conference proceedings in topics covering electronic engineering and applied mathematics. He is Director of the master’s program in Engineering mathematics at University of Buenos Aires. He is a senior member of IEEE.

Judith Dahmann is a Principal Senior Scientist in the MITRE Corporation Center for The MITRE Systems Engineering Technical Center and the Capability Action Team leader for Systems of Systems (SoS). Dr. Dahmann holds a Bachelor’s Degree from Chatham College in Pittsburgh, PA (1972), spent a year as a special student at Dartmouth College (1971–1972), a Master’s Degree from The University of Chicago (1973), and a Doctorate from Johns Hopkins University (1984). Dr. Dahmann is an INCOSE Fellow and the co-chair of the INCOSE Systems of Systems Working Group and the DoD liaison and co-chair of the National Defense Industry Association SE Division SoS SE Committee.
Kevin Henares is a PhD student at the Complutense University of Madrid (UCM). He received an MSc in Computer Engineering in the same university (Spain, 2018) and a University Degree in Computer Engineering at the University of Vigo (Spain, 2016). His work focuses on the development of robust modeling and simulation methodologies to study the behavior of complex systems, and the generation of models to classify and predict critical events in neurological diseases. His email address is khenares@ucm.es.

Loren Demarath is Professor and Chair of the Sociology Department at Centenary College of Louisiana. He is currently working on information processing theory and model of emergence and complexity. He is the author of numerous publications examining how the evolution of meaning is guided by aesthetic responses to order. His book, Explaining Culture: The Social Pursuit of Subjective Order, describes the emergent nature of culture.

Marina Zapater is a Post-Doctoral researcher in the Embedded Systems Laboratory (ESL) at Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland, since 2016. She was non-tenure-track Assistant Professor in the Computer Architecture Department of Universidad Complutense de Madrid (UCM), Spain, in the academic year 2015–2016. She received her PhD degree in Electronic Engineering from Universidad Politécnica de Madrid, Spain, in 2015, and an MSc in Telecommunication Engineering and a MSc in Electronic Engineering, both from Universitat Politècnica de Catalunya (UPC), Spain, in 2010. Her research interests include thermal and power optimization of heterogeneous architectures, and energy efficiency in data centers. In this area, she has co-authored over 50 publications in top-notch international conferences and journals, and she has participated in several international research projects, including five European H2020 projects. She is IEEE member, and the current Young Professionals representative of IEEE CEDA. She has served as TPC of several conferences, including DATE, ISLPED, and VLSI-SoC.

Mamadou K. Traoré is Full Professor at University of Bordeaux in France. He holds an MS and PhD in Computer Science from the Blaise Pascal University in Clermont-Ferrand, France. His contributions are in formal specifications, symbolic manipulation and automated code synthesis of simulation models. He received the International DEVS M&S Award in 2011. He is a member of ACM and SCS.

Marco Biagini is the Concept Development and Experimentation (CD&E) Branch Chief at NATO Modelling & Simulation Centre of Excellence. He has a PhD in Mathematics, Engineering, and Simulation and master degrees in strategic studies, peace keeping and security studies, and new media and communication. He has more than 15 years of experience in the M&S field. He was Battalion