Beginning Game
Programming
with Pygame Zero

Coding Interactive Games on
Raspberry Pi Using Python

Stewart Watkiss

Beginning Game
Programming with
Pygame Zero

Coding Interactive Games on
Raspberry Pi Using Python

Stewart Watkiss

Apress’

Beginning Game Programming with Pygame Zero: Coding Interactive
Games on Raspberry Pi Using Python

Stewart Watkiss
Redditch, UK

ISBN-13 (pbk): 978-1-4842-5649-7 ISBN-13 (electronic): 978-1-4842-5650-3
https://doi.org/10.1007/978-1-4842-5650-3

Copyright © 2020 by Stewart Watkiss

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or hereafter
developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black

Development Editor: James Markham

Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress
Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business
Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book's product page, located at www.apress.com/
978-1-4842-5649-7. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-5650-3

For my children Oliver and Amelia.
You are the inspiration in my life.

Table of Contents

About the AUthOrccccmmnnmmmnsssmnssss s xiii
About the Technical ReVIEWETccsssesssssssassssnsssnsssassssassssnsssansssnsssas Xv
Acknowledgments.......cccursssssssmsmnmnmesssssssssssssnssssssssssssssssnnssssssssssnnnnns Xvii
Introduction........ccccmnimmmmsmnmnsesnnnns s ———— Xix
Chapter 1: Creating Computer GAMEScccevvssssennrmssssnnnssssssnsssssssssnssnss 1
Inspiration Rather Than Imitation...........cccccvvvvrnnininnnn e 2
Playing GAMEScceeerrrierireririeseris e sese s ses e se s ses e e ssesesse e st s e e sas e sessessnns 3
Create the RESOUICES........ccoveeereereeerer e se s e s 3
Development CYCIE ... e 4
Making Programming Enjoyable..........ccccvvrrninncsmnnsc s 6
Python and PYgame ZErococcuvvvevneniniensinnessessessss e sessessss e ssessssssessensenns 6
Compiled VS. INTEIPreted........ocvvvvererererreriere s sersere e ses s sae e s ssessesessessesneees 7
Choosing a Programming ENVIironMeNtcocvvvvvvevenessnsenenssessesesesessesessens 8
SUMMAIY..c et e s s b e e e e b e e e aenrs 10
Chapter 2: Getting Started with Python............ccccmmmmmnininnnnsssseenennnnn 11
UsSing the MU Editor..........cccevenerenernse s sessesenns 11
Python Programmingccoueeseienennesnesssesesssse s ssssesssssssssssessssesenns 15
VariabIEs ... ———————————— 19
Strings and FOrMatccocvvvrinienerr s s ss s e s ssesessesaesnes 24
I £ 27

TABLE OF CONTENTS

DICONANEScvccerceree e 30
TUPIES et e 31
Conditional Statements (if, elif, €1SE).......c.cceerrerrerrrrerrere e 31
Simple QUIZ GAME........ccvvrerer e 35
LOOPS — WRIIE, FOT......coiircere et sne 37
LT TN 0o OSSN 38
0] g 00 SRS 39
Forever Loop — WHile TFUEcocevererrcirere st 41
Changing Loop Flow — break and continuec.ccoveveevnieneresesensesesesenennes 41
FUNCLIONS ...ttt 42
Variable SCOPE......ccvverrrerirese st nne e 44
Refactoring the COEccceveverreriere e e sa e s snens 47
Further IMProvements ..o s s s 48
11T 111 T o OO 49
Chapter 3: PYygame Zeroccccsrussssnnnssssssnsnssssssssnsssssssnssssssssnnsssssnnnnss 51
Pygame Zero DevelopmMENt...........ccoreerenesesenmsesesessesessssessssesessesessssessesesessesenns 51
COMPASS GAIMEcveerreerrsesesesesre s r e sr s ne e sra e ans 52
ReqUITE FilES.....coueiriirereriesirsere e s sre s 53
Running Mu in Pygame Zero MOGEcccvverenerrerierenessensessessesessesessessssessessens 54
Adding a Background IMage........cccvvererininnieniensinsin e s sse s ses s see s saessens 55
X0 o T o 12 (] 57
Moving the Sprite Around the SCreen ... 60
Making the Movements More RealistiC..........ccccvvrernrerenenenenessseseseses e 63
Keeping GAme StAtec.ccccvvrerrrenmrnsernesese s s senns 67
Detecting ColliSIONSccvcevererirsinieness s saesessessesnens 73
Change in DIrECLION........cccvveverrr e eaeenes 77
G 01T TS0 (R 78

TABLE OF CONTENTS

Adding @ CountdoWn TIMEEcovierrerierererserseresse s s s ssessesessessesssssssessees 81
Final Code for Compass Game Version 0.1cccovvvmienrnncrnsenensenesnesesessenenns 83
SUMMAIY.c..eiviir i s e e s b e e s b e e aeers 89
Chapter 4: Game DeSigncccrrmsssnnnnmsssssnnnmsssssssnssssssssssssssnnnnsssssnnnnss 91
What Makes a Game Enjoyable?...........ccovverrenmrnsmsenessssnesessesessssesssessssssssssnens 91
Challenging but AChIieVabIE............ccoverirenernsernesere e 92
Choices and CONSEOUENCESccvverrererrersersersesessessessessssessessessessssessessessessssessesses 93
Rewards and Progress.......ccueirinnennesiensensse s ssesssssssssessessssssessesssssssassaessesnes 9
Likeable CharaClerscocvrienesesesesmsssssese s ses s sesssssssssas 94
Storyline/Historical REIEVANCE...........ccccrvrierinnsncrere s 95
L 10 Tu U0 T LS 95
Takes an Appropriate Level of Time to Playccccovvvrvnvniennnninncnenssensenaens 95
T [T 17 OSSN 96
L0 LAY o] 01 (0] 0T LR 96
IMProving COMPAsS GAMEccveververrereerersererssssssersersessssessessesssssssessessessssessessens 97
Updated TIMET ..o s e ene 97
AddiNg ODSTACIESc.veeeereeerirereree e 100
Adding @ High SCOTEcoeeerrrerrreere s se e 104
Try @nd EXCEPL.....cccveeeereersse s ses s s s sesss s 107
SUMMANY....eivierrnerrnese e e e p e e e npn e e 110

Chapter 5: Graphic Design.......ccccusemmmnsssssnnmmsssssssssssssnsssssssssnnsssssnnnne 1 11

Creating @ TREME ..o v sr e n e enen 112
File FOrMALS ..o s 113
Bitmap IMAgESccccviererrrirrre e 113
VECTOr IMAJES......c i 115

vii

TABLE OF CONTENTS

USEIUL TOOIS ... s 116
LIibreOffiCe DIraW......cccovrrienmseseresssssssse s ss s sesesssssssas 116
11116 o 1o < S 118
GIMP ... 120
BIBNAET ... 127
Create USiNG COUEoueerermrermreeise s e sssas 129

OTNEE SOUICESceeeerrcecccreri e 130

SUMMANY..c..citiiiire e e s e e e s b e s ae e e e nne s 130

Chapter 6: COlOrscourmrmsmsmsssssssssssssssssssssss s sssssnaes 131

COIOr MIXING vvvenerersererreesreesessesessese s ses e sse e s sesss e s sessssessssessesesensssenns 131

BOUNCING Ball......ccoouiceriierinesiree e s 135

Background Color SEIECLONcccvvereverreriererir s ees 139
Handling Mouse EVENLS..........ccovrinmnnn e 140
Creating the Color SEIECTONccvvvrverierrrrrere e 141

SUMMAIY.c.ueiteirerere e s e s s e e e s s s s s e se s e s aesaese e e saesaesee e e e saesaesseennesaens 143

Chapter 7: Tank GAME Zero0........uscssssussssnsssassssassssnsssansssassssnsssassssanssns 145

Vector Image of TANK.........ccccoevvininnnsnne s 145

Creating @ Dynamic LANASCAPEcccrvreererermrrenereeerenese s s sesse e sessenenns 152

Calculating the TraJECLOrYcovverererernserrnesere s 157

Detecting @ ColliSIONc.vceeererernserrneserese s 161

Complete GAME COUE......cccevrererrerererierere s e s s e s e sse e sae e s e ssesaessssessesnens 163

IMProving the GAME........cccccvereirrrere s e 179

LT 1§11 7 180

Chapter 8: Sound..........ccousmmsmmmssssmssmssmssss s 181

Recording Sound EffECtS........couoerereererererenernsesesese e 181

Creating Artificial Sound EffeCtSccvvvvnrenerisnnnssnesess s 182

viii

TABLE OF CONTENTS

Recording Audio on the Raspberry Pi.........cccccvvninnnininne e 183
Connecting a USB MIiCrOPRONEccccveererernensenesesessesessessssessessesssssssessesses 185

L T TR =T 0] (o S 186

L E o P T 187
Recording Sounds With AUAACITYccvvereverrerierieresessere s sersesseseesessensens 188
Creating Music with SONIC Pi ... 190
Downloading Free Sounds and MUSIC..........ccccerrneneresernsesensenesesesessesesseseseenes 193
Adding Sound Effects in Pygame Zero...........ccoovernererenernsesensesesesesenseseneens 193
Playing MusSiC in PYGame ZEr0.........ccueueerererrnsesssesssessssssessssessssessssssessssessssenes 194
Piano Game Created With TONES.........ccccveeernsernnenesesersse e e 195
L1414 O S 205
Chapter 9: Object-Oriented Programmingccccsmsssssnnsssssssssnsssssnns 207
What Is Object-Oriented Programming?ccccvivninvnieninsnsensessessesessessenns 207
00P Classes and ODJECES.......cccuererererinserenerire s 209
Creating a Class, Attributes, and Methods..........ccvvrrreriernsensenserenessensenes 209
Creating an Instance of a Class (ODJECL)........ccccrvvernierrinnerinsernesereserenaes 211
Accessing Attributes of an Object.........ccccovevricrininnn 213

B LT 0T1 070 (0 SR 213
Encapsulation and Data Abstractionccccoovcnvnirinnnnini e 215
INNEHTANCE ..o e 216
Design for Object-Oriented Programming.........ccocceveeernsenensesesesesssesessesensenes 218
Matching Pairs Memory Game.........c.cueeevenerrnsesnsesssesesssessseses e sesesessesessenes 219
Creating the ClasSes.........cuerrireresernsesenessse s s snenes 223
Program File ... ss s s snssenens 233
SUMMAIY.c.veiteirierere e e e s s sa e e s e s s sae s e e e s aeeaesee e s e eaesae e e e naennens 241

ix

TABLE OF CONTENTS

Chapter 10: Artificial Intelligence........cccusseerrrsssssnnsrsssssnnsesssssnnssssssnns 243
Memory Game With Al.........covierrrrrererrcrr et 244
A GOOU MEMOIY ...ttt e st e e e 263
BattleShipscovvciererirrr e ——————— 271
10T 111 1T o SR 291
Chapter 11: Improvements and Debuggingcccccusssennnrssssannnssssanes 293
Additional TECANIQUEScccvverririrrirerere s snes 293
More ADOUL PYJaME ZEI0ceereerersereresissese s sesse s s sse e ssssessennens 294
More ADOUL PYGAMEcoerreirerereses e s snens 295
AddiNg FONTS.......cceirierireserrse s s 296
SCrOlliNG SCIEENc.ceveerreerieerer e 296
Reading from a CSV config file.......c.cccorenernnsnnenensnesssesesesese s 298
JoystiCks and GAMEPAUS........cccvvrerrrererenernseresse s senns 301
Creating Arcade Games for PiCade..........c.cuoeerenernserennesessssessssesessesessesesenns 302

22 (0] T TSRS 304
DEDUGUING... et —————— 306
Error MESSAQESvevveererrerrenessesesresessesessesss e sse s sse e s e s ssesessesnssssssssensesnens 307
Check for Variable NAmesccccueeernnnrnenmnesesssesessessss s sessessssssessnnes 308
Print Statements..........cccvvivnisnns e ——— 308
IDE Debugging TOOIScccvueererenerrenerrnsesssesessssessssesssesessssessssesessessssassssnnes 309
Rubber Duck DeDUGQING.......coueerrerererenerreserinsesesesesssesessesessesessssesessessssenens 309
PEIrfOIMANCE......cceeveerrecr e 310
Space SNOOLEr GAMEcccevrvririeriere i sere s sr e sae e s nnens 312
L1114 O 328
WHEIE NEXL?......cccerererre s 328

TABLE OF CONTENTS

Appendix A: Quick Referencecccuussessrssssssnsssssssssssssssssnsssssssnsssssss 331
PYQAME ZEI0 ...t s e 331
USEful KEYWOIUS......cceceeeresirere s 331
Loy (o] g (370) OSSR 331
Background Image or COIOr.........ccvrerrerierererneneressssessessessessssessessessssessessens 332
SOUNT EffECEScovrvierecccririris e 332
MOUSE EVENLS ... 332
Keyboard EVENTS........ccccevererverrie e r e se s e s s e e s se e s nneas 333
DisSplaying TeXL.......ccveriererrier s sa e s 333
PYENON 3. s 334
I £ 334
DICLIONANIESeceeereeereecreree e 334
Conditional Statements (if, elif, €1S€)c.cocerrerrnrrnierrr s 335
0T 0L OSSPSR 335
Python 3 MOQUIES ..o e s 336
(22T Lo o 1 TS 336

MALH ..o ——————— 336
LR 337
DAETIME ... 338
Appendix B: More Information.........cccunssmmmmmmmmnnmmsmssssssssnnssssssssssssnns 339
PYENON ... s 339
PYJAME ZEI0.......ecieeecte ettt s s 339
PYJAME ...t s e e e 340
1T = 341

About the Author

Stewart Watkiss is a keen maker and
programmer. He has a master’s degree in
electronic engineering from the University
of Hull and a master’s degree in computer
science from Georgia Institute of Technology.
He has over 20 years of experience in the
IT industry, working in computer networking,
Linux system administration, technical

support, and cyber security. While working
toward Linux certification, he created the web
site www. penguintutor.com. The web site originally provided information
for those studying toward certification but has since added information on
electronics, projects, and learning computer programming.

Stewart often gives talks and runs workshops at local Raspberry Pi events.
He is also a STEM Ambassador and Code Club volunteer, helping to support
teachers and children learning programming.

xiii

http://www.penguintutor.com/

About the Technical Reviewer

Sai Yamanoor is an embedded systems engineer working for an industrial
gases company in Buffalo, NY. His interests, deeply rooted in DIY and
open source hardware, include developing gadgets that aid behavior
modification. He has published two books with his brother, and in his
spare time, he likes to contribute to build things that improve quality of
life. You can find his project portfolio at http://saiyamanoor.com.

https://urldefense.proofpoint.com/v2/url?u=http-3A__saiyamanoor.com_&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=E3AfiyxVwcAufBzWHjWU0E9DTfK7pUxOd3Vq_E0yK-A&m=XnS36DAEF2AJNAgdQVt3Udw3zJxHjAlGZxueTpbVaE4&s=bNX8CY93lJm-jjfZ643KcRLONwzXHQQrMMP4GS_i2ho&e=#_blank

Acknowledgments

My family has been very supportive in my maker activities and while
writing this book. Thank you to my wife Sarah for her support and to my
children Oliver and Amelia who have been a source of inspiration and help
while writing the book. Oliver has been particularly helpful in testing the
games and giving me feedback, and my daughter’s knowledge of music
was a great help while writing about making sounds.

I'd also like to thank the team behind the Raspberry Pi including the
Raspberry Pi Foundation and the community that has grown around it.
I've also been inspired by the work of Nicholas Tollervey who created the
Mu editor that is used throughout the book and Daniel Pope who created
Pygame Zero, without which the book wouldn’t have been possible.

I'm also grateful to all the support from the team at Apress, to Jessica
Vakili for her support in putting the book together, and to Sai Yamanoor
for the technical review. There are also many other people who helped to
contribute through reviews and getting the book production ready.

xvii

Introduction

This book is designed for anyone wanting to learn programming through
making fun games. It will also be useful for someone who has already
learned the basics of programming and wants to learn how to add fun
graphics and create their own games.

It is focused on making the games rather than teaching programming
theory. In this book, you're more likely to see code on how gravity affects
a missile’s trajectory rather than the most efficient way to search through
data. Even then the code is kept simple as games should be more about
playability rather than complex physics.

The book starts with a simple text-based game to cover the basics
of programming in Python. It then quickly moves on to creating simple
graphical games in Pygame Zero. The book introduces object-oriented
programming to make it easier to make more complex games. It also
explains how you can create your own graphics and sounds.

Throughout the book, you will get to apply the new techniques in a
variety of 2D games. As well as some new games, there are some variations
on class games including a space shooter game and battleships.

The games are designed to run on the Raspberry Pi, although they can
be used on other platforms that support Python 3 with Pygame Zero.

The games you make will be playable and hopefully fun to play. They are
only the beginning. If all you ever do is copy the code from this book, then you
are only going to learn so much, but by adapting and improving these games,
they can become more enjoyable as well as helping you learn more than you

Xix

INTRODUCTION

ever will from just typing out code that's written down for you. For each of the
games, there is a list of suggestions for you to develop the games further.

All the code and resource files used in the book are available from
the page to accompany the book at https://www.apress.com/gb/
book/9781484256497.

https://www.apress.com/gb/book/9781484256497
https://www.apress.com/gb/book/9781484256497

CHAPTER 1

Creating Computer
Games

Writing computer games is a great way to make programming enjoyable,
but it does have its disadvantages. The main disadvantage is that to make

a working game you need to write a lot of code which takes a lot of time.

A full working game is usually too much for a beginner programming book.
Fear not, as this book uses worked examples and takes advantage of the
simplicity of Python and Pygame Zero to make it as painless as possible.

In this book you will create a few different games to illustrate different
programming techniques.

Creating a game is more than just writing code. This book covers
some of the other aspects of creating a computer game as well as the
programming.

First you need an idea. That idea then needs to be developed to come
up with a set of rules and controls. It will likely need additional resources
such as images and sounds. You will then need to write the code to make it
happen. Next (and now comes the fun part) you need to test it to find out
what works and how it can be improved. You then go back to the start to
redefine the idea and repeat the programming cycle.

In this chapter you'll also find out about Python and Pygame Zero and
some of the reasons that make it suitable for game programming.

© Stewart Watkiss 2020 1
S. Watkiss, Beginning Game Programming with Pygame Zero,
https://doi.org/10.1007/978-1-4842-5650-3_1

CHAPTER 1 CREATING COMPUTER GAMES

Inspiration Rather Than Imitation

The first step is about coming up with an idea. For this you may take
inspiration from games you have played, which can be existing computer
games, card games, board games, or playground games. Or you could
come up with a completely new game, perhaps taking inspiration from
activities in the real world. If you are looking to create a game based on
something that has already been done before, then you do need to be
careful about infringing on other people’s intellectual property, including
copyright, patents, and trademarks.

Like many laws, the rules protecting games and computer programs
are complex and vary among different countries. It would not be possible
to provide real guidance on the complex legal intricacies, but there are
some general rules that you should follow.

Copyright can protect various aspects of work such as words, graphics,
code, and music. Copyright does not however cover the idea of the game
or how it’s played. The work is automatically copyrighted when it is created
and doesn’t normally need a specific copyright notice or registration,
although that can provide additional protection.

Patents are far more complex and can cover ideas and concepts.
Patents are intended for inventions, and in the case of game programming,
they can be granted for specific technical aspect of a game. For example,
there are patents covering the way that directions are shown in a car racing
game and how players are identified in a soccer game. It’s incredibly
difficult to know about what patents may relate to a game you are
developing. If you are creating a commercial game, then you may want to
look at getting professional advice on patents.

Trademarks are a way to protect names and logos, and in the case of
computer games, they can include the appearance of the characters. This
may prevent you from using a recognizable character if that character

CHAPTER 1 CREATING COMPUTER GAMES

is protected under a trademark. If you want to use any character that is
protected under a trademark, then you will need to get a license granting
you permission from the trademark owner.

Playing Games

The best way to learn about what makes a good game is to play them.
Rather than just playing one game, play lots of different ones. Play good
games and bad games and think about what makes the game good and bad.

Are you getting bored playing the game or does it have you hooked
so you can’t drag yourself away from the screen? Which games make you
want to keep playing and why?

As mentioned previously you don’t just need to take inspiration from
computer games. Play some board games as well. Think about what works
well and what doesn’t. Think about the differences between playing a
game using physical objects and when it is on a computer screen; there are
likely to be both advantages and disadvantages to both.

Create the Resources

When looking at additional resources, you will likely be thinking about
graphics and sound effects. There are other resources that you may need
including introductory videos, tutorials, and background music.

For most games you are going to want to include graphics. The look
and size of these graphics can determine the programming. For example,
if you have a character that needs to move around the screen, then you
will need to know how the character moves (whether its feet move) and
the amount of space that is needed for that character to move around. It
therefore makes sense to at least create an outline of any graphics prior to
starting programming.

CHAPTER 1 CREATING COMPUTER GAMES

Sound effects can sometimes be left until later in the project, although
they are often still an important part of creating an overall game. If leaving
them to be added later, then it is still a good idea to think about when they
will be used and what impact they will have when designing the game.

Development Cycle

The main buzzword relating to programming is agile. Agile programming
is a way of developing software creating code in small increments
implementing a feature at a time and then going back to add more code.
The term agile programming is normally used to refer to a programming
technique used for developing software across a team with regular reviews
and team meetings (called scrums), but a similar technique can be used
when programming on your own.

Some key points about developing code using an agile style
methodology:

1. Gather requirements. Meet with end users or review
your ideas with yourself as though you are the customer.

2. Plan the development. Split the work into small
chunks that can be implemented a bit at a time.

3. Design the code to complete the current feature.
4. Write the code.

5. Test the code. As well as testing the standalone code,
test how it interacts with other parts.

6. Assess whether the code is still in line with the
requirements.

7. Returnto 1. Consider the code that has been created.
Is that compatible with what it is trying to achieve?

CHAPTER 1 CREATING COMPUTER GAMES

Keep repeating this cycle for each part of the code you develop.

You then reach a release version once all the required parts have been

implemented. Follow the same cycle when adding more features or

improving the code.

Some things that are useful when using agile programming:

Design interfaces between how the different parts of
the code interact.

Work in short code sprints with incremental releases.

Perform regular short reviews of what has been
completed during the last step and what you will be
creating next. Reviews are normally performed daily
in a work environment but differ if you are working in
your spare time.

Perform test-driven development by having specific
tests that the code needs to pass. Automated tests are
popular in agile programming, but you can also test
manually.

Refactor code regularly; review code for improvements
for clarity/performance.

Regularly check with the users (or yourself if it’s a
personal project) to see that the design is in line with
the expectations.

Use rubber duck debugging (see Chapter 11).

The games in this book are created based around agile programming.

There will not be any of the code reviews specifically listed in the book, but

you will see how the code is built up starting a feature at a time.

CHAPTER 1 CREATING COMPUTER GAMES

Making Programming Enjoyable

Whether you have a full-time job writing computer games, or it’s
something you do in your spare time, programming should be something
you enjoy. I find a great deal of satisfaction from creating something that I
would like to play myself.

While you can try and think of the concepts in advance, you may not
know whether you enjoy the game until you get to play it. It’s then when
you get to tune the game to make sure it is the right difficulty or if there are
features that you will want to add. This is discussed more in Chapter 4
when you will see some of the techniques used to improve on an initial
game design.

Python and Pygame Zero

Python is a popular programming language used throughout education
and in industry. It is available across a number of different computer
operating systems including Apple Mac OS X, Microsoft Windows, and
Linux. Some of the benefits of learning Python are it is easy to learn, uses
less code (compared with some other languages), and can help teach good
programming techniques.

Pygame is a library that can be used within Python to make graphical
game programming easier. Pygame Zero is a library that uses Pygame but
makes graphical game programming even easier than Pygame by reducing
the amount of code needed. Using these, it is possible to create characters
on the screen and move them around very easily.

This book uses version 3.7 of Python running on Linux which is the
current version on the Raspberry Pi. The games should work across
different computer systems and more recent versions of Python with
Pygame Zero installed.

CHAPTER 1 CREATING COMPUTER GAMES

There are different styles for programming in Python. In this book the
first few programs are written using primarily functional programming
techniques, but then the later programs will be based around object-
oriented programming. The functional programming style is generally
considered easier to learn when starting programming, but once you start
creating longer programs, then it is often easier to write and understand
the code when written using object-oriented programming.

Compiled vs. Interpreted

Different computers and operating systems work in different ways. If you
are creating a game designed for a phone or tablet (using a touch screen),
then you may need to design the interface differently than if you are
designing a game for a game console with a game controller. Also, different
processors inside the computer and different ways that the operating
system works mean that it can be difficult to write games that will work
across multiple computers.

When writing computer code, you will normally use a programming
language which uses a text-based language. Computers can’t run that
directly, and the code needs to be converted into the machine code that
the computer can understand. When using a computer language such
as C, the code must be converted to machine code before you can run the
program. This is known as a compiled language and the program needs to
be compiled into machine code that matches the computer architecture it
will run on.

Python does this differently by converting the code to the machine
language using an interpreter. This is done while the program is running.
The benefit of this is that as long as there is an interpreter for the computer
you want to run the code, you don’t normally need to do anything extra
to run it on that computer. The disadvantage is that interpreted languages
can run slower because it needs to convert this code while it is running.

CHAPTER 1 CREATING COMPUTER GAMES

This performance won’t be an issue with any of the games in this book, but
you should be aware of it if programming a graphics-intensive game.
There is also a hybrid where the code is compiled to an intermediate
form, but then still needs an interpreter (or something similar) for it to run
on each particular computer architecture. This is how Java works using
the Java Virtual Machine to convert from the Java Bytecode to machine
language the computer can understand.
As Python is interpreted, it should be able to run on a variety of
different computers without needing any changes. Unfortunately, it
can sometimes be a little tricky to install the Python interpreter and the
Pygame Zero libraries on some platforms. Fortunately, there is a simpler
solution using the Mu editor which is the preferred editor for those starting
with Pygame Zero programming.

Choosing a Programming Environment

In this book the games have been designed for a Raspberry Pi, which is

a small, inexpensive computer designed specifically for those learning
computing and computer programming. There are different variants of the
Raspberry Pi including the tiny Raspberry Pi Zero and the fully featured
Raspberry Pi 4. You can use any model of Raspberry Pi for the games in
this book, although I would suggest using a Raspberry Pi 2 or better for
performance reasons. If you are also using the Raspberry Pi for designing
images for the games (as explained in Chapter 5), then a Raspberry Pi 4
may be advantageous, but it is not a requirement.

The Raspberry Pi is ideal for learning Python as most of the software
you need is already pre-installed. The programs will still run on other
computers and you are free to develop the code on another platform if you
prefer, but there are a few extra steps involved on other systems.

Python programs are text files, and as such, you can create them in any
text editor. If you've not programmed with Python before, then I suggest

CHAPTER 1 CREATING COMPUTER GAMES

you start with the Mu editor. The Mu editor is not the most powerful editor
available, but its simplicity makes it ideal for getting started. It also handles
most of the setup including Pygame Zero.

If using a Raspberry Pj, then latest versions of Raspbian include Mu,
but if it’s not already installed, then you can install Mu from a command
shell. Start the command shell by clicking the black terminal icon at the
top of the screen.

Then enter the following commands:

sudo apt update
sudo apt install mu-editor

You can then run Mu from the Raspbian menu system. From the start
menu, select the programming menu, then click Mu, which should look
like Figure 1-1.

+) (& leeheninsrebesQeniret ? B

Mode New Load Chec

¥
=

Please select the desired mode then chick "OK™. Otherwise, chck "Cancel

Change mode at any time by clicking the "Mode® button containing Mu's logo.

Cancel 0K

Python a

Figure 1-1. A screenshot of the Mu editor

CHAPTER 1 CREATING COMPUTER GAMES

If you would like to install Mu on other operating systems, then you
can download the Mu editor from https://codewith.mu/. When installing
under Windows, the recommendation on the Mu web site is to install for
“this user only” That will make it easier to add any modules that may be
required later.

The Mu editor has different modes which are useful for different
programming environments. This book uses the Python 3 and Pygame
Zero modes.

When you have more experience, you may want to change to a more
powerful editor. If using a Raspberry Pi, then you have a number to choose
from and you can run the programs directly from the command line. If you
are using a different environment, then you may need to set up a native
Python environment with Pygame Zero.

Summary

This chapter has looked at some of the things you should think of before
you start programming. It has given suggestions on where you can get
inspiration from and a warning about some of the pitfalls that you should
avoid around other people’s intellectual property.

It has explained what Python is and why Pygame Zero is a good choice
for those starting out in game programming.

In the next chapter, you will get started with creating code and create a
command-line game using Python.

10

https://codewith.mu/

CHAPTER 2

Getting Started
with Python

To get started with programming Python, this chapter begins with some
basic command-line programming. This will create a simple text-based
game that can be played using the keyboard. This is only the beginning;
from the next chapter onward, you will be able to create graphical games
that are fun to play.

Using the Mu Editor

When you first start the editor, it will ask you which mode to start in. The
modes that you will use for the projects in this book are Python 3 and
Pygame Zero. If you have already run the editor before, then it will start
in the mode last used, in which case you can change the mode using the
mode button on the top left of the editor.
For this chapter you will create basic text-based program, so you
should select Python 3. In future chapters, you should use Pygame Zero.
When you first start Mu, there should be an empty screen with a
comment# Write your code here :-).

The # at the beginning of the line means that this is a comment
and would be ignored. Comments are really useful for programmers to
explain how the program works, but Python just ignores them. You can

© Stewart Watkiss 2020
S. Watkiss, Beginning Game Programming with Pygame Zero,
https://doi.org/10.1007/978-1-4842-5650-3_2

11

CHAPTER 2 GETTING STARTED WITH PYTHON

delete that line for now, but when you write your own code, I suggest you
add comments to explain how the code works as that can be useful in
understanding the code in future.

To get started, you can create a basic program called “Hello World”. It is
one of the smallest programs that you can create. This is literally one line of
code as shown here:

print ("Hello World")

Replace the comment in the Mu editor with this print statement. You
will then need to save the program before running it; I'd suggest saving it in
the default folder (/home/pi/mu_code) and calling it helloworld.py. If you
try to run the code before saving, then you will be prompted to save it first.

After saving the file, click Run and you will see the program running in
the bottom part of the screen. In this case it prints Hello World to the text-
based screen area. This is shown in Figure 2-1.

Mu 1.0.2 - hefloworld py e

P (+)(&)(&)(x)05) (@) (MW (@) Q) 6)(d)?)(0
Mode New Load Save Stop Debug REPL Plotter Zoomdn Zoomout Theme Check Help Ouit
helloworldpy X

1 print ("Hello World")

Running: helloworld py

Hello World
>33

Python ¥

Figure 2-1. The Hello World program running in the Mu editor

12

CHAPTER 2 GETTING STARTED WITH PYTHON

Once you have finished, click the Stop icon to stop the program from
running.

This is the most common way of running a Python program from
Mu. Another alternative is to run the program from a Raspbian Linux
command shell. Save the current program using the Save button. You will
see where the file is saved by looking at the status message at the bottom of
the editor, in this case

/home/pi/mu_code/helloworld.py

To run this program from the command line, launch the terminal
program from the Raspbian menu launcher. The terminal is a text-based
interface used to communicate with the operating system including
starting other programs. You can change to the folder that the program is
stored in by using the cd command. The filename consists of the directory
which consists of all the characters up to the last “/” character (note that
the directory separator on Linux faces the opposite way to the folder
separator used on the Windows operating system).

In this case the directory path is /home/pi/mu_code/ and the filename
is helloworld.py. To change to the directory and run the program, enter the
following commands:

cd /home/pi/mu_code/
python3 helloworld.py

Your program will now run and display the same “Hello World” text as
you saw previously in the Mu output screen. This is shown in Figure 2-2.

13

CHAPTER 2 GETTING STARTED WITH PYTHON

& @ ” :.-":] ELXTerminaI

| File Edit Tabs Help

cd /home/pi/mu_code/
python3 helloworld.py

Hello World

Figure 2-2. Running the Hello World code from the command line

Another way to run Python code is using the REPL. It stands for read-
eval-print loop (but the name is not important). What the REPL does is it
provides a way of running Python code in an interactive mode. This can be
useful to test running small amounts of code prior to including it in your
programs.

To run the same code in the REPL, click REPL in the Mu editor menu
bar. You must be in the Python 3 mode to see that menu option. If the
REPL icon is not shown, then use the mode icon on the Mu menu bar to
change mode. After clicking the REPL icon, there will be an interactive
shell at the bottom of the screen. Note that if your previous programming
is still running, then it will show the program output and the REPL side by
side, and if so, then click the Stop button which will give the REPL the full
width of the editor.

You will see a prompt in the REPL screen which will normally show
“IN [1]:” Enter the previous program code at the prompt

print ("Hello World")

14

