Modern
Full-Stack
Development

Using TypeScript, React, Node.js,
Webpack, and Docker

Frank Zammetti

ApPress:

Modern Full-Stack
Development

Using TypeScript, React, Node.js,
Webpack, and Docker

Frank Zammetti

Apress®

Modern Full-Stack Development

Frank Zammetti
Pottstown, PA, USA

ISBN-13 (pbk): 978-1-4842-5737-1 ISBN-13 (electronic): 978-1-4842-5738-8
https://doi.org/10.1007/978-1-4842-5738-8

Copyright © 2020 by Frank Zammetti

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Louise Corrigan

Development Editor: James Markham

Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar
Cover image designed by Ekrulila from Pexels

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is
Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484257371. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-5738-8

Dedicated to Traci, Andrew, and
Ashley - the only people I want to share
a shed in the woods with when the zombies come!

(Okay, maybe not the “only” ones...
but they get the good canned beans.)

Table of Contents

About the AUtROFccciicmmmimrmnie s —————————— XV
About the Technical REVIEWETccuussessssssnssssansssssnsssssnsssssnsssssnsssssnsssssnsssssnsssssnnssss xvii
AckNOWIEdgmEeNTSccuuiiisemmmmmssssnnmmmssssnnnesssssnsnesssssnnnesssssnnnsssssnnnnessssnnnnessssnnnnssssnnns Xix
INtroduCtionccuvieemissannmsssnnmsssnnmsssnnmssanssssannssssnnssssnnssssnnssssnnssssnnnsssnnssssnnnsssnnnnssnnnsss Xxi
Chapter 1: Server-Side Action: Node and NPM..........ccccemmmsmmnnmmssssnnnmsssssssssssssssnnsnsss 1
Of JavaScript Runtimes and Building (Mostly) SErvers.........cccoeeeeveeesesesessesseeseesenns 2
First Baby Steps with Node: Installation.............cccouceenriennnnnsncnssesse s 5
More Useful: Executing JavaScript SOUrce Files.........cccuoeevieresnressnesesesseseesesesenenns 7
Node’s Partner in Crime: NPM ..o s sesesnenes 8

A Few More NPM COMMANS..........ccouiermrenneresisesessesesesss s s sss s sssssssssnes 10
Initializing @ New NPM/Node Project.........cccocvervrcersesssses s sss s snssnnnns 11
Adding DEpendenCi@scccrrerrerrerrersissessessesses s s s s se e sn s snssnssn s sn e sn e snsnnenne s 13

A Quick Aside: Semantic Versioning.........cooueeeesessesssesessssesesssssssssssssssssessssssssssssssnes 14
Fisher Price’s “My First Node Web Server”...........orvrvnvnrnsesss s ses s e sessensens 15
BONUS EXAMPIE......ccceeererercerie s nr s nn s sn e nn e nn e nnenn e nnennn 18

1111 1P SRS 20
Chapter 2: A Few More Words: Advanced Node and NPM...........cccnnnmmmmmnnnnnnsssssnns 21
NPM: MOre 0N PACKAGE.JSON......cerrerrerrerrersersersessessessessens 21
NPM: Other COmMMANScccevrueerrrreerire e se s 25
Auditing Package SECUNILYcccucverirsrser s 26
Deduplication and Pruning.........cccucversrsensensssensessss s sss s sessssssssessssssssssssssssssssssssnns 26
Finding/Searching for Packages Sans BrOWSEFcccccvvernnmnesnnsessessssesssssssessnsenns 27

TABLE OF CONTENTS

Updating PaACKAQES........ccvvuerirreeririersir e s s e ssessee s e e s s ssne s ssne s s sne s 28
Publishing/Unpublishing Packages.........c.ccccucrmrrernicsesnesnsesse s ssssessessssens 28
Node: Standard MOdUIESccecerercercirir e 29
File SYSTEM (fS)....erririerrrirresisierrsse s nn s 30
HTTP and HTTPS (hitp and hitps)cccvvrrerirninsirsir s ses s ses e sesens 32
S (0S) cveverrereersersersersessessessessessessessessessesssssssssssssssssssssssssssssssassssssssssssssssssssssssssasssssanns 34
Path (Path).......ccccoereeriicrir e nn 35
PrOCESS. ..c.ueiereri s e e e r e n e n e n R e nennennenan 36
Query Strings (QUErYStriNG)ccoocerrerrernierr s 37
L (T) R 38
ULITIEIES (UL1) cvveeeerseeeee e s s nn e 39
The Rest 0f the Cast ..o s 40
SUMMEAIY ...ttt e s a e e e e e a e Re et ene e s e e e e nne e naeas 42
Chapter 3: Client-Side Adventures: Reactcccurcmmssmrmssmsmssssssssssssssssssssssnssssanas 43
A Brief History 0f REACL ..o 43
Yeah, Okay, History Nerd, That’s All Great, but What IS React?!cccocvvrvrrrvrieninnns 46
The Real Star of the Show: COmMPONENTS........cccvverververierrer s 48
Components Need INfo: Props......cocoeerierrsnesnc s e s s 55
Components (Sometimes) Need Memory: State.........cccceoeeeeeercececccecee s 57
Making Them LOOK GOOG: SEYIEcccrceriererser st sn e 60

In the ENd, WhY REACE?........ceeeeeeeereere et sae e saesaesaesn e sassa s sn s saenn e 62
SUMMEAIY ...t r e e R e s At Re et ne e s aenn e e nnenrnanan 63
Chapter 4: A Few More Words: Advanced Reactc.cccurussmmmsssmssssssssssssnsssssnssssanss 65
A Better Way to Write React Code: JSXoouirinnennimnsnine s sesse s 65
Yeah, Okay, So What Does It LOOK LIKE?!ccocrvrverrerierrerrer e 66

A Slight Detour into Babel Landcccvvvvrvrierrerserrerer s ses e 68
(0] 0T LT S 7
And Now, Put [t All TOGELNETc..cieeeireer et e e ene s 72

TABLE OF CONTENTS

L LT LT (0] 0L S 76
DefaUlt Props.......ccooereersersessesssssessesse s s s s s s e s e e s e e e e s snssnssnssnssnssnssnssnssnnnnnns 77
LR T O 2 (0] 4SS 80

ComPONENt LIfECYCIRcoverreeereriesise s ses e s s sn s s sn s sn s 83

E3 1111 1P 7SS 86

Chapter 5: Building a Strong Foundation: TypeScript.........cccccunnemmnmnssssnnnnsssssnsnnans 87

What IS TYPESCHIPL?......eeeeeccerer st n e nnenn e nn 87

Jumping into the Deep ENd.........ccorrvrcrrr e ne e 89
Beyond the Playgroundcccocrverirneniensesser e ssne e s ssnesneas o1
Configuring TypeScript Compilationcceeeeverernrrsere e see e 92

The Nitty Gritty: TYPES....cecerercercirer st sn e sn e nn e nnenn 93
R3] 1 [SRS 94
10T 0 SRR 94
51010 [T 95
ANY ..o a e eRe e e nRe e e eRe e e e eaeenenneaa 95
L RS 95
L]0 SRS 96
ENUMS ..ttt e r e sr e sn e nn e nn e nn e nn s nnn 97
FUNCHION ..ttt sn s e sn e nn s sn e nn e n 98
01T OSSPSR 99
Null, Void, and UnNdefinedccccviiiiiemiimiiiiciisisssssrssssssssssssessssessssssssssssssssssssssssens 99
CUSTOM TYPE AlIASES....eerrereerrereerrereersersessesssssessessesassaessessessssssssssssssssssssssssssssassasssnnes 101
UNION TYPES ..eeeeeeereeeresse e e ssesse e ssessssssssesssssesnessesse s e snessesresnessessessessnsssssnnsnsnnes 102

TypeScript == ES6 Features for “Free”!ccorvrvrrrsnserssrs s sns s 103
The let and const KEYWOIdS..........cccorirnernennennnsensessessesses s seseas 103
3 10T Q0 103
ArrOW FUNCHIONSceececercceir et sn e sn s sn e s nn s 104
Template LIteralS........ccccucvernrnensersensessessessessesses s ss s s s e s s s sssssssnnnas 105
Default PArameters ... s 105

vii

TABLE OF CONTENTS

Spread and Rest (and as an Added Bonus: Optional Arguments).........ccceeevverrerenne 106
(DL 0T (0o SRS 107

[0 LT 109
SUMMEAIY ...ttt r s as e a e e R e e e re e s e n e e ne e nsnnnnnnnnas 116
Chapter 6: A Few More Words: Advanced TypeScript..........cccennsemmnmnssssnnnsssssnnnns 119
INEEITACES ... —————— 119
Argument/Object INTErfacesccueerverernerrsre e 120
Methods in INTErfACES ... s 122
Interfaces and CIASSEScccierrerenrrersrre s 123
Extending INTErfaces ... 124
Namespaces and MOCUIEScccccerrerrirrerirre e s n s 125
NAMESPACES....c.erererersersessesses e s s e s e s e s e s e s e s sr s e s s s s s s s sn e s s snesnesr s s e s nnr e s nsnnnnnsnnnes 125
MOGUIES......ceceeercire e 129

DT o0 2 (0] £ 131
Decorator FACIOMIES........cceereecrereere e 134
Third-Party LIDFAri€scccccvrerrersersessessessessessssssssessesssnssnnes 135
Debugging TYPESCHPL APPS....ccecrerriererrirrir s sn e sn s sn e snssr s sn s snennennanans 136
SOUICE MAPS ..o s s s e s e s e s a e sa e sa e sa e sa e sa e sn e na e e e nnennennnnnnnes 137

E3 1111 P2 7SS 140
Chapter 7: Tying It Up in @ Bow: WebpackK..........ccousemmmmmmssnmmsasssssssssssssssssssssssssssans 141
What’s a Bundle, and How Do | Make One?..........coccvvrvmncernenven s ssesseessesseesaens 142
What's Webpack All ADOUL?ccocrierierersirser s ss e se e sn e s e sae s 143
Dependency Graph ... s 143
BN Y e ———————————————— 144
01011 SRRSO 144
(072 T [T 145
PIUGINS ..ottt n e nr e nr e r e n e nn e nn e nn e nn e n s 146
100 R 147
Browser CompatiDilitycccccveenirenicrnsrec s 148

viil

TABLE OF CONTENTS

Getting Started With WEDPACK.........cccccererirrrrre e ses e e sae e e sassaesnsnens 148
Getting More COMPIEX......cccveeerierererere s se s sr s s 150
CONFIGUIALION.......eceeceeccceeee e r e sr e r e sr e r e sr e nn e nnnnnnnnn s 153

USING MOTUIES......coeireererenisesesesre e s s sr s snesn s n e snen e 156

L L L= g 7T T] o S 157

B 1111 112 SRS 159

Chapter 8: Delivering the Goods: MailBag, the Server.........occccemmrrrrsssssssssssnnnnnnas 161

What Are We BUIlAiNG?cccoieenererresise e ss s ssessssessssssssssssssssssnsens 161
BasiC REQUITEMENTSceveererieererreeree s seesaessessesssessesssessesssessssssssssssasssnsssessnessesns 162

Setting Up the ProjECT ..ot 163
Source File RUNAOWN ... ss s s sn s sn e sn s sn e sn e nn s nn s nnenn s 164
Adding Node MOUUIESc.ccecerrerrerierererser s se s sn s sn e sn s snssn e sr e nnenan 165
AQdING TYPES ...evreeerrrrereserresesesss e s sse e e ssesr s srs s saesa s sse s s e sne s snssns e snnnnnsens 166
A More Convenient Development Environment..........ccccevivievivreniennessesseesesseesnes 168

The Starting Point: Main.IS.......ccocveiiiencccr e 170
A Quick Detour: Time to Take @ RESTcccccocrcrcrcrer e 170
Another Quick Detour: Express, for Fun and Profit...........cccovvrercrcscscscescescenn, 176
Back 10 the Code! ..ot 177

Gotta Know What We’re Talking t0: Serverinfo.tsccocveverevnnenssssessesses s sennenns 187

Time to Send the Mail: SMIP.AS......ccecvcrcrcr s 189
A Quick Detour: NOAeMAaIIErcccvcveercercercr s 190
Another QUICK Detour: GENENICSccvverrerreriersersir s s snesr e sre s saenas 190
BacK t0 the Code! ... s 193

Time to Get the Mail (and Other Stuff): imaP.tS.......cccevvriernicrrr e 195
A Quick Detour: emailjs-imap-client and mailparsercccceecveerrsssensnesnesensennns 195
Back 10 the Code! ..ot sr e n e 196

Reach Out and Touch Someone: contactS.1Scccucvveenicresnsesns e 204
A Quick Detour: NOSQL.........ccovuiiererrrerinrseress e se s e sessssessssssssessssenens 204
Another QUiCK Detour: NEDB ... 207

ix

TABLE OF CONTENTS

Back 10 the COdE! ... s 209
TESHNG I AL e r e n e sn s nr e nr e snnn s 212
001 ET0 g P2 L [T 1T o OSSR 215
SUQQESTEA EXBITISES ...uveveererrerrersersessessessessssssssssssssesssssssssssassassssssssssssssssssssssssssssssnnens 216
SUMMEAIY ...ttt e s a e s e s s ae e e a e e s e n e e ae e e e nennaens 217
Chapter 9: Delivering the Goods: MailBag, the Client...........cccccusvmmrrnssnnnnessssnnnns 219
What Are We BUilding?cccvcrcerirrinisser s se s ss s ss s e e s sns s 219
BasiC ReqUIrEMENTSccocrverrerircr s sn e sr s 223
Setting Up the PrOJECTce ettt se s e sn e sn e sn e sa s sn s sn s 224
Source File RUNAOWNccovreieirccsers e 228
The Starting Point: index.html...........corrrcr s 230
The Starting Point, Redux: Main.tSXc.ccocvvrverrriennenserser s ses s ses e e e e sassesses 230
A Quick Detour: State’ing the ODVIOUScccceerrierrniennniesers e 231
BaCk 10 the COUE! ... s 234

A Bit of Configuration: CONfig.tS........cccevrerererenerrrrre e 237
A'WOrKer for All SBASONScocrrrerererrresersssesesssesessssesessssesessssssesssssssssssssssssssssssssens 237
A QUICK DEIOUI: AJAXoceeereseeseseeesesesssssss s s s e sssssssssssssssssssssssssssssssssssssnsnans 238
Mirroring the Server Part 1: Contacts.is........ccocucvevriennsnscsncc s 242
Mirroring the Server Part 2: IMAPLS ... s 244
Mirroring the Server Part 3: SMTPASccocrvrcrcrcrr s 247

A Cavalcade of COMPONENTS........cceveerieerrerieererrsererssessesssesssessesssessesssessssssesasssasssssssesses 247
A Quick Detour: Material-Ul...........cccoeerrrerennssesesmsesesssssssssssssssesssesssssssssssssssssssssnens 248
BaSELAYOUL.ESX......ceecereresresesses s s nr e sn e nr e n e n e nr e nn e n e nn e nn s 253

A Quick Detour: Functional Components.........ccccvererinsensssssssssss s ses s ssssesssnsnns 260
L0100 T 3 GRS 261
MaIIDOXLISEESX ..v.vceiereeescriee e sse s 264
0] 12T I 266
0] g1 2 T T 268
MESSAGELIST.ISX ...ccuereecirieerier e nne 273

TABLE OF CONTENTS

MESSAGEVIBW.ISX.....eiceecerieriir e s e s sn e s sn e s ne e ne s e e nnenn 275
WEICOMEBVIBW.ESX ...t s s 280
SUQQESTEA EXBITISESveererreerreesersesssssesssssessnssneses s s sns s sns s s s s sassr s s snssrssnssnesnssnssnsnnas 280
E3 1111 P2 7SS 281
Chapter 10: Time for Fun: BattleJong, the Serverccucccmrnnsnnnnnssssnnnmnsssnnn 283
What Are We BUIldiNg? ..o e s se e se s sns e 284
BasiC REQUIrEMENTSccecerieriererer s sn e sn e sn s sn s sn s sn s sn e nnnnns 285
Setting Up the PrOJECT ..ottt sn s sa s 286
Some tsconfig.jSON ChaANQEScccceeeeerrrce e 287
Adding NOdE MOUUIESccceererererrerrerresese e san e 289
D [0] T] LRSS 289
Source File RUNAOWN ..ot 289
The Starting Point (the ONLY Point, in Fact!): Serverts........cccocvvrvrrrvrcrsersensensensennn 289
A Quick Detour: WEDSOCKELS ..o 290
BaCK 10 the COdE! ... s 293
Serving the Client: The EXPress SErver ... rerniessscsesssese e ssesssens 294
Handling Messages: The WebSocket Server and Overall Game Design..........c....... 294
Finishing Up the WebS0oCKEet SEIVer ... s 299

Of Tiles and Board LayOULS...........ccceererenmnimnnsmsesssess s e sn s sesse s 300
SUQYESTEA EXEITISES ...uveererrerrerrerserssssssssssesssssassassassassasssssassassassasssssssssssssssssssssssssssnnnns 303
SUMIMAIY ...t cre e sas s e e s e s e s s s s s e s e s e sr e s e nr e s e nne s e nresa e s e e e nrenrensnnnennnnrannnnnan 304
Chapter 11: Time for Fun: BattleJong, the Client..............ccccinnimmmnnsennnssnnssssansnnnes 305
What Are We BUIlAING?coeoiieercresiserse s sesssssssnnsens 305
BasiC REQUIrEMENTScccvverieriirierersir s se s s e e se e e e e snssnssassassassassnesnsnns 306
Setting Up the PrOJECE ...t sn s 307
Some tsconfig.jSoN CRANQES........ccceeeerererecere e sr e sn e 308
Some webpack.config.js Changesccuceenrrernseresnsessssse s sesens 309
AddiNG LIDFAIIES ...veevereereerererrersessessessessessessessesssassssssssassanses 311

xi

TABLE OF CONTENTS

AAING TYPES .evereeeeerierer et sae s s se e s e s sa e s sr e s ae s ae s e e a e s n e ae s sne s ae e nnnnnis 311
Source File RUNAOWN ..ot 31
The Starting Point: indeX.ntml ..o 312
The REAL Starting Point: Main.tSX......ccccevvrrvrvernenseniesres s sss s e e sessessassenses 313
The Basic Layout: BaseLayout.tSX.........cccverrrrerrersinsinsessss s ses e e e 313
Feedback and Status: ControlArea.tsXccceverrrenesessnssesssesesssese e 316
ST - 317
GAME StAtE MESSAQGES.....eererrerrrrrrreerrersersessessesaessessesaessessesaesaesassaesassassaesasssssassassanans 318
Where the Action IS: PlayerBoard.tSXcccvvrvriersessessessesses s ses s s ses e s e snssnenes 319
A Quick Detour: Custom-Type Definitions..........cccvervrrersersensensenses s 320
Back 10 the COdE! ... 321
The ReNder ProCeSS ... s sssss s s sss s sassssnens 322
Talking to the Server: SOCKEICOMMLIS........ccccvcercrcercr s 326
Handling Server-Sent MESSageS.........cucrvrrerrersernessessesses s sessessessessessesssssssssssnnses 327
Sending Messages 10 the SEIVEr ... s 329
The Main Code: STate.1S ..o s 329
A Few Interface for GOOd MEASUIE..........ccceererereresseseresese s sesessenens 330
The Beginning of the State Object.........cccocvercrircrcr e 330
BaCK t0 the Code! ... s 332
Message Handler Methods............cooerinnnnnnsnsnrer e 334
The Big Kahuna: tileClCK()cevverrerrerrerrersersersersessessss s sessessessessssssssesssssessssssssessssens 335
SUQGPESTEU EXBITISESueeveurruererersesis s s ses e e sss s e sas s sse e sne e s eas s se s sne e nnens 344
1111 112 TSSOSO 345
Chapter 12: Bringing the Dev Ship into Harbor: DoCKercccccemrrrrssssssssssssnnnnnnas 347
An Introduction to Containers and Containerization.............cccooveeerrierersscnessscsesescens 347
The Star of the SHOW: DOCKE ... 349
INSTAIING DOCKET ..ot ss e e sse s s saesnssaesresn e snesnesnesnesnssnennennnnans 350
Your First Container: “Hello, World!” of COUISE!cccvvivenimrinnnsesnsenssssssssesssssssesssnens 352

xii

TABLE OF CONTENTS

A Quick Rundown of Key Docker COmmaNs..........ccooerereeessesesessessssesessssessesessessssenss 353
LiStiNg IMAQEScceeeeererrerrerrerse e rsesse e e sse e e s ssessesse s s ssesnssrssns s e ssesnenrsnsssnsnnnnnnnes 353
LiSting CONTAINEIScecoueeeeecc e sn e sn e sn s sr e sn e sn e sr e nn e nn e nn e nne s 353
Starting (and Stopping) CONtAINErSccceeeeeeecercre e s 354
Remove Containers and IMages..........coccevrmrenenserenesessssesesssse s ssesessessssessesssssnes 355
PUITING IMAJES....cccereriririrerer ettt sn s sn e nr s nn s 355
Searching for IMAQEScocevererererere e sa e sr e sa e sa e sr e sa e sa e sa e nne s 355
Attaching 10 @ CONTAINET.........c.cvververierrerrer e n e e sn s 356
Viewing Container LOGS.......cccuverrirermniesesisessssesseses e ssssessessssesssssssessssesssssssessssssens 356

Creating YOur OWN IMAQE......ccceeeererererrerresse e sse e ssesasssnsnns 357

Deploying 10 DOCKEr HUD..........cccvvirerierererserser et se e se e se e e e snssnssassnssasnnns 362

Wrapping Up MailBag and BattleJong...........cccvvrcrcrcercscscesces s 363

SUQGGESTEU EXBITISESuciveurruereserresessessssessesesssssesessessssnssessssesssssssessssssssssssssssssssssssnsasens 365

E3 1111 P2 7SS 365

1T - 367

xiii

About the Author

Frank Zammetti is an application architect for a major financial firm with nearly 25
years of professional experience (plus almost 15 years of nonprofessional experience
before that). He is an author of, including this one, 12 technical books for Apress.

Frank has also authored over two dozen certification exams for SHL as well as several
independent articles for various publications. He is also a fiction author (shameless plug:
look him up on Amazon if you like sci-fi) and a musician of some renown (and here,
“some” should be taken to mean very little). Frank has been married for 25 years (to the
same woman even!) and they have two children together.

About the Technical Reviewer

Kenneth Fukizi is a software engineer, architect, and consultant with experience in
coding on different platforms internationally. Prior to dedicated software development,
he worked as a lecturer for a year and was then head of IT in different organizations.
He has domain experience working with technology for companies in a wide variety

of sectors. When he’s not working, he likes reading up on emerging technologies and
strives to be an active member of the software community.

Xvii

Acknowledgments

I'd like to acknowledge the exceptional team at Apress for allowing me to write not one
but twelve books for them over the last decade or so. I've worked with so many great
people, and it’s virtually impossible not to forget someone in a list like this, but among
the crew for sure are Ami Knox, Arockia Rajan Dhurai, Beth Christmas, Dulcy Nirmala
Chellappa, Chris Mills, Christine Ricketts, Dominic Shakeshaft, Douglas Pundick, Frank
Parnell, Frank Pohlmann, Gary Cornell, Jill Balzano, Julie Miller, Katie Stence, Kelly
Gunther, Kelly Winquist, Kevin Shea, Kim Wimpsett, Kimberly van der Elst, Krishnan
Sathyamurthy, Laura Cheu, Laura Esterman, Leah Weissburg, Leonard Cuellar, Liz
Welch, Louise Corrigan, Marilyn Smith, Michelle Lowman, Nancy Chen, Nicole Faraclas,
Nirmal Selvaraj, Richard Dal Porto, Sharon Wilkey, Sofia Marchant, Stephanie Parker,
Steve Anglin, Tina Nielsen, and Tracy Brown Collins.

As I said, I'm sure I've forgotten someone, but rest assured it was not on purpose!
Thank you all for giving me a shot and allowing me to continue this journey. I most
definitely could not have done it alone and I thank you all, unreservedly!

Xix

Introduction

You know, when I started learning how to program, it was a piece of cake!

You'd turn on the computer and be greeted by a nice little “Ready” prompt. You'd
start typing in some code (BASIC), and eventually, you'd type run, hit Enter, and watch
whatever it was you put in there spit back something (my first program was a man drawn
with various keyboard characters doing jumping jacks). You might save that program to a
cassette - yes, kids, a cassette! - and hand it to your friends if you wanted to share.

But that was it. It was just that easy.

Nowadays, though, the story is very different.

Writing even a trivial application now involves layers upon layers of abstractions and
complexities that you must mix together, like baking the world’s most complicated cake,
hoping it all works in the end. Then, should you want to distribute the technological
terror you've constructed (sorry, Aldearan), you've got even more challenges to
overcome.

How anyone learns to program from scratch these days, I'm not sure!

But I'm hoping to help there!

With this book, I'm going to look at the ingredients that go into baking a cake - err,
building an application - these days. To be sure, it won’t cover everything. And no one
recipe is necessarily the same anyway - there are lots of choices available to a developer
now. But I believe I've chosen the ones most commonly used to build modern full-stack
applications.

What exactly is a full-stack application anyway? Well, simply put, it’s an application
that includes both a front-end “client,” like a web site, and a back-end “server,” like, well,
a server! We're talking about building an application that combines those two halves
into a coherent whole. Most application development these days is web-based in some
way (where “web” doesn’t have to mean something available on the public Internet, but
something built with web technologies like HTML, JavaScript, and CSS), so that’s what
we're going to be doing in this book.

To do this, we're going to use React, which is one of the most popular libraries for
building clients out there today. And we’ll use Node.js, which is a popular choice for
back-end development. We're also going to use TypeScript, a language that enhances

xxi

INTRODUCTION

JavaScript on both sides of the fence to make our coding lives better. We're going to
touch on several other tools that relate to all of this including Babel and Webpack. We’ll
talk about some strategies for connecting the client to the server including REST and
WebSockets. Finally, you'll learn about packaging up applications using the very popular
Docker.

All this will be combined to build two full, real applications. This way, it’s not just
simple, contrived examples. No, it'll be real code, practical solutions to real problems
encountered in building them, and real techniques for putting all these pieces together
and making sense of all this complexity.

In the end, you'll have a solid foundation for building modern full-stack applications
that you can go forward with on your own to create greatness.

I mean it'll never be as great as my guy doing jumping jacks written in BASIC and
loaded off a cassette, but you gotta have goals.

So let’s get to it. There’s work to be done, learning to be accomplished, and, I hope,
fun to be had!

xxii

CHAPTER 1

Server-Side Action: Node
and NPM

Welcome to the book! I hope you've got a comfy chair under you, a tasty drink on

the table next to you and perhaps a light snack (may I suggest some dark chocolate
biscotti?), and your brain ready to soak up a ton of knowledge on modern web
development, ‘cause that’s what the show is all about and the curtains are about to be
drawn!

In this book, we'll be building two full apps that will demonstrate all the concepts
that we’ll be discussing along the way in a practical manner. Far from being just simple,
contrived bits of code, these are two full apps which are functional and useful (and
even fun, given that one of them is a game, which will provide you a whole new way of
looking at coding). As we do so, you'll get insight into the thinking that went into them,
their design and architecture, so you get a holistic picture of what'’s involved in building
something like these two apps. You will even, here and there, get some notes about
issues I faced and how I resolved them, things that will almost certainly help you achieve
your goals as you charge onward into your own projects.

To start, we'll look at what is most usually (though not exclusively, as you'll learn!)
the purview of the server side. Remember that we're talking “full-stack” development
here, which means you’ll be learning about coding clients as well as the server code they
make use of in order to form a cohesive, whole application. In this chapter, we'll begin by
looking at two extremely popular tools for developing servers: Node.js and NPM.

© Frank Zammetti 2020
F. Zammetti, Modern Full-Stack Development, https://doi.org/10.1007/978-1-4842-5738-8_1

CHAPTER 1 SERVER-SIDE ACTION: NODE AND NPM

Of JavaScript Runtimes and Building (Mostly)
Servers

Ryan Dahl - that cat has some talent, I tell ya!

Ryan is the creator of a fantastic piece of software called Node.js (or just plain Node,
as it is often written, and as I'll write it from here on out). Ryan first presented Node at
the European JSConf in 2009, and it was quickly recognized as a potential game-changer,
as evidenced by the standing ovation his presentation received (I presume Ryan is an
excellent presenter generally as well).

Node is a platform for running primarily, though not exclusively, server-side
code that has high performance and is capable of handling large request loads with
ease. It is based on the most widely used language on the planet today: JavaScript. It’s
straightforward to get started with and understand, yet it puts tremendous power in the
hands of developers, in large part thanks to its asynchronous and event-driven model
of programming. In Node, almost everything you do is nonblocking, meaning code
won'’t hold up the processing of other request threads. Most types of I/O, which is where
blocking comes into play most, are asynchronous in Node, whether it’s network calls
or file system calls or database calls. This, plus the fact that to execute code, Node uses
Google’s popular and highly tuned V8 JavaScript engine, the same engine that powers its
Chrome browser, makes it very high performance and able to handle a large request load
(assuming that you as the developer don’t botch things of course!).

It’s also worth noting that, as weird as it may sound, Node is single-threaded. It at
first seems like this would be a performance bottleneck, but in fact, it’s a net benefit
because it avoids context-switching. However, this is a little bit of a misnomer in that
it’'s more correct to say that Node is event-driven and single-threaded with background
workers. When you fire off some type of I/0 request, Node will generally spawn a new
thread for that. But, while it’s doing its work, that single event-driven thread continues
executing your code. All of this is managed with an event queue mechanism so that
the callbacks for those I/O operations are fired, back on that single thread, when the
responses come back. All of this means that there is no (or at least minimal) context-
switching between threads but also that the single thread is never sitting idle (unless
there is literally no work to do of course), so you wind up with that net positive benefit I
mentioned.

CHAPTER 1 SERVER-SIDE ACTION: NODE AND NPM

Note In later chapters, you’ll see that Node isn’t specific to the server side of
the equation, and in fact, you don’t always build apps with Node; sometimes you
use it to install and execute tools for various purposes on your own development
machine. Hold on to that thought; we’ll be coming back to before long a few
chapters from now.

None of these technical details are especially important to use as a Node developer,
but the performance it yields is what makes it no wonder that so many significant players
and sites have adopted Node to one degree or another. These aren’t minor outfits we're
talking about, we're talking names you doubtless know, including DuckDuckGo, eBay,
LinkedIn, Microsoft, Netflix, PayPal, Walmart, and Yahoo, to name just a few examples.
These are large businesses that require top-tier performance, and Node can deliver on
that promise (again, with the caveat that you as the developer don’t mess things up,
because that’s always possible).

Node is a first-class runtime environment, meaning that you can do such things as
interacting with the local file system, access relational databases, call remote systems,
and much more. In the past, you'd have to use a “proper” runtime, such as Java or .Net
to do all this; JavaScript wasn’t a player in that space. With Node, this is no longer true. It
can compete not only on performance but also in terms of what capabilities it provides
to developers. If you can think of it, chances are you can do it with Node, and that wasn’t
always the case with JavaScript.

To be clear, Node isn’t in and of itself a server. You can’t just start up Node and
make HTTP requests to it from a web browser. It won’t do anything in response to your
requests by default. No, to use Node as a server, you must write some (straightforward
and concise, as you'll see) code that then runs on the Node “runtime.” Yes, you effectively
write your own web server and app server, if you want to split hairs (or potentially FTP,
Telnet, or any other type of server you might wish to). That’s a very odd thing to do as
a developer - we usually apply the “don’t reinvent the wheel” mantra for stuff like that
and pull one of the hundreds of existing options off the shelf. Plus, writing such servers
sounds (and probably actually is) daunting to most developers, and for good reason! To
be sure, it absolutely would be if you tried to write a web server from scratch in many
other languages, especially if you want it to do more than just serve static content files.
But not with Node!

CHAPTER 1 SERVER-SIDE ACTION: NODE AND NPM

But remember, acting as a server is just one capability that Node provides as a
JavaScript runtime, and it can provide this functionality only if you, as a developer, feed it
the code it needs to do so! In fact, a great many developer tools, and other types of apps,
use Node as their runtime nowadays. Node really is all over the place!

Note As you’ll see, React, Webpack, and TypeScript, three things that are primary
focuses of this book (Docker being the outlier), use Node to run and/or to be
installed (well, NPM is used to install them if we’re being accurate, but we’ll get to
NPM in just a moment). These are tools, not servers, which is the main point: Node
is useful for much more than just creating servers!

Node allows you to use the same language and knowledge on both client and server,
something that was difficult to accomplish before. In fact, aside from Java and some
Microsoft technologies (see project Blazor, which seeks to do the same thing with C#,
if you're curious), there never has really been an opportunity to do so until Node came
along. It’s a pretty compelling opportunity.

Another critical aspect of Node is a driving design goal of the project, which
is keeping its core functionality to an absolute minimum and providing extended
functionality by way of APIs (in the form of JavaScript modules) that you can pick and
choose from as needed. Node gets out of your way as much as possible and allows you
only to introduce the complexity you really need, when you need it. Node ships with an
extensive library of such modules, but each must be imported into your code, and then
there are literally thousands of other modules that you can bring in as needed, some of
which you'll see as we progress throughout this book.

In addition to all of this, getting, installing, and running Node are trivial exercises,
regardless of your operating system preference. There are no complicated installs with
all sorts of dependencies to manage, nor is there a vast set of configuration files to mess
with before you can bring up a server and handle requests. It’s a five-minute exercise,
depending on the speed of your Internet connection and how fast you can type! There
is also no required tooling to work with Node. In fact, a simple text editor is enough, in
simplest terms (though that isn’t to say you won’t want a robust IDE with Node support
later, but at least for this book I won’t be assuming anything other than Notepad or some
equivalent text editor).

CHAPTER 1 SERVER-SIDE ACTION: NODE AND NPM

All of this makes working with Node so much more straightforward than many
competing options while providing you with top-notch performance and load handling
capabilities. Moreover, it does so with a consistent technological underpinning as that
which you develop your client applications.

That’s Node in a nutshell!

Next, let’s see about getting it onto your machine so that you can start playing with
some code together and we can look at Node in a little more depth.

Note If you aren’t a JavaScript expert, don’t worry, we won’t be getting too fancy.
Even when we get to the apps, I'll consciously keep things as simple as possible. It
is expected that you have some experience with JavaScript though, but you don’t
need to be Brendan Eich or Doug Crockford (but if you have no experience with
TypeScript, that’s fine; we’ll start from square one with it later).

First Baby Steps with Node: Installation
To get started, there’s only one address to remember:
http://nodejs.org

That’s your one-stop shop for all things Node, beginning, right from the front page,
with downloading it, as you can see in Figure 1-1.

CHAPTER 1 SERVER-SIDE ACTION: NODE AND NPM

HOME ABOUT DOWNLOADS DOCS GET INVOLVED SECURITY NEWS FOUNDATION

Node.js® is a JavaScript runtime built on Chrome's V8 JavaScript engine.

Download for Windows (x64)

10.16.3 LTS 12.10.0 Current

Recommended For Most Users Latest Features

Other Downloads | Changelog | APIDocs Other Downloads | Changelog | API Docs
Or have a look at the Long Term Support (LTS) schedule.

Sign up for Node.js Everywhere, the official Node.js Monthly Newsletter.

£l LINUX FOUNDATION Report Node.js
© Node.js Foundation. All Rights Reserved. Portions of this site originally ® Joyent.

Node.js is a trademark of Joyent, Inc. and is used with its permission. Please review the Trademark Guidelines of the Node.js Foundation.

Linux Foundation is a registered trademark of The Linux Foundation.

Linux is a registered trademark of Linus Torvalds.

Node.js Project Licensing Information.

Figure 1-1. Node has a simple web site, but it gets the job done!

Usually, I would tell you to install the latest version available, but in this case, it might
be better to choose a long-term support (LTS) version, because they tend to be more
stable. However, it shouldn’t (he said, with fingers crossed) matter which you choose, for
the purposes of this book. For the record, however, I developed all the code using version
10.16.3, so if you encounter any problems, I would suggest choosing that version, which
you can get from the Other Downloads link and then the Previous Releases link (you'll
be able to download any past version you like from there).

The download will install in whatever fashion is appropriate for your system, and
I leave this as an exercise for the reader. For example, on Windows, Node provides a
perfectly ordinary and straightforward installer that will walk you through the necessary
(and extremely simple) steps. On macOS X, a typical install wizard will do the same.

6

CHAPTER 1 SERVER-SIDE ACTION: NODE AND NPM

Once the install completes, you will be ready to play with Node. The installer should
have added the Node directory to your path. So, as a first simple test, go to a command
prompt or console prompt, type node, and press Enter. You should be greeted with a
> prompt. Node is now listening for your commands in interactive mode. To confirm,
type the following:

console.log("Hello, you ugly bad of mostly water!");

Press Enter, and you should be greeted with something like what you see in Figure 1-2
(platform differences excepted, I'm a Windows guy myself, unashamedly, so that’s where
the screenshots throughout this book will be from, perhaps with a few exceptions later).

+.| Administrator: Command Prompt - node

C:\WINDOWS\system32>node

> console.log("Hello, you ugly bag of mostly water!");
Hello, you ugly bag of mostly water!

undefined

>

v

Figure 1-2. The rather uppity (though technically accurate) first greeting, proving
Node is alive

If you find that this doesn’t work, please take a moment and ensure that Node is
indeed in your path. It will make things a lot easier going forward.

More Useful: Executing JavaScript Source Files

Interacting with Node in CLI (Command-Line Interface) mode like this is fine and dandy,
but it’s limited. What you really want to do is execute a saved JavaScript file using Node. As it
happens, that’s easy to do. Create a text file named test. js (it could be anything, but that’s a
pretty good choice at this point), and type the following code into it (and, of course, save it):

let a = 55
let b = 3;
let ¢ = a * b;

console.log(${a} * ${b} = ${c}");

CHAPTER 1 SERVER-SIDE ACTION: NODE AND NPM

To execute this file, assuming you are in the directory in which the file is located, you
simply must type this:

node test.js

Press Enter after that, and you should be greeted with an execution, such as the one
you see in Figure 1-3.

"=+, Administrator: Command Prompt

C:\temp>node test.js
5 * 3 = 15

C:\temp>_

W

Figure 1-3. It ain’t much, but it’s a real program running with Node!

Clearly, this little bit of code is unexceptional, but it does demonstrate that Node can
execute plain old JavaScript just fine. It demonstrates that we're dealing with at least the
ES2015 specification as well, being more specific, thanks to the use of let and template
literals (or string interpolation if you prefer). You can experiment a bit if you like, and you
will see that Node should run any basic JavaScript that you care to throw at it like this.

Node’s Partner in Crime: NPM

NPM, which stands for Node Package Manager, is a companion app that installs
alongside Node (though it is developed separately and can be updated on a different
schedule than Node). With it, you can download packages, which are reusable JavaScript
modules (and any supporting stuff they might need) from a central package registry (or a
private repository if you have one). The central repository you can find at

WWW . Npm3js . com

You can visit it through a web browser and look through all the packages available,
which makes finding exactly what you need easy.

CHAPTER 1 SERVER-SIDE ACTION: NODE AND NPM

Using NPM is simple: it's merely another command to run from a command
prompt, just like Node is. For example, let’s say you create a directory named
MyFirstNodeProject. In it, you execute the following:

npm install express

Here, npm is the CLI program that is NPM itself, and install is one command you
can issue to it. Then, express is an argument to that command, and this is the general
form that most of your interactions with NPM will take.

Note Most NPM commands have a shorter form as well. For example, rather than
type install, you can just type i, and it will do the same thing. Consult the NPM
docs for these shortcuts, or be pedantic like your favorite author and always type it
long-form, err, for clarity or something!

If you execute that, you'll find that a directory called node-modules has been created,
and inside it will be a lot of...well, a lot of stuff you typically don’t need to worry about
too much! In short, though, it’s all the code that makes up the Express module (which
doesn’t matter right now, but is a JavaScript module, or package if you prefer, which we'll
be using in the MailBag app a few chapters hence... but we’ll get to that app in due time,
we've got a fair bit of ground to cover before then, so for now suffice it to say it’s one of
the two apps we're going to be building with the technologies discussed over the first six
chapters), plus whatever modules Express itself depends on (and whatever they might
depend on, and so on). NPM takes care of fetching all those dependencies for you. You'll
also notice a file named package-1lock. json has been created, and for our purposes
here, you don’t need to worry about that except to know not to delete it as NPM needs it
to do its job.

When you use the install command like this, the modules you name are installed
in the current directory, and this is referred to as the local cache, or project cache. You
can also install the module into what'’s called the global cache by adding an argument to
the command:

npm install -g express

CHAPTER 1 SERVER-SIDE ACTION: NODE AND NPM

Now, Express will be installed in a location outside the current directory and will
be shared by all Node projects (or, more precisely, it will be available to all projects,
because, of course, a project won’t use a globally installed module unless you tell it to).
Most usually, you will want to install dependencies in the project cache so that different
projects can use different version of a given module than other projects (there is always a
single version of a given module in the global cache, if any are present at all).

A Few More NPM Commands

Aside from install, there are many other NPM commands, but you'll probably only use
a subset most of the time. For example, to find out what modules are installed in your
project, you can issue this command:

npm 1ls

Like on a *nix system, 1s is short for list, and that’s what it does: lists the installed
modules. What you'll see is a textual tree that shows the modules and then the modules
they depend on. In other words, more will likely be shown than just the modules you
explicitly installed (some modules don’t have dependencies, but in the NPM ecosystem,
those tend to be the exception rather than the rule).

Tip One very helpful tip | can give is that if you want to see just the top-level
modules, whether in the global or local cache, you can add --depth=0 to the Is
command.

If you want to see what’s installed in global cache instead, you can do
npm -g 1s

In fact, keep that -g option in mind because you can add that to most NPM
commands to differentiate between the local and global caches.
You can also update a given module:

npm update express

Just provide the name of the module to update, and NPM will take care of it, updating
to the latest available version. If you don’t provide a package name, then NPM will dutifully
update all packages. And yes, you can drop a -g on it either way to target the global cache.

10

CHAPTER 1 SERVER-SIDE ACTION: NODE AND NPM

You can, of course, uninstall packages too:
npm uninstall express

Execute that and NPM will wipe Express from the local cache, along with its transient
dependencies (so long as nothing else that remains that depends on them).

These few commands represent likely the majority of what you'll need to interact
with NPM. I refer you to the NPM docs for other commands (and note that just typing
npm and hitting Enter at a command prompt will show you a list of available commands,
and you can then type npm help <command> to get information about each).

Initializing a New NPM/Node Project

Now, in all of this, I did skip one step that clearly is optional but is, in fact, typical, and
that’s initializing a new project. With most Node/NPM projects, you'll also have a file
named package. json in the root directory of the project. This file is the project manifest
file, and it provides metadata information to NPM (and Node, at least indirectly) about
your project that it needs to do certain things. It will tell NPM what modules to install if
they haven’t been installed yet for one thing (which makes giving a project to another
developer very easy!). It will also contain information like the name and version of the
project, its main entry point, and lots of other information (most of which is optional, but
we’ll look at that a bit more in the next chapter).

While you can write this file by hand or even go entirely without it, it’s a good idea to
have it, and it’s a good idea to let NPM create it for you, which you can do by executing
this command:

npm init

Ifyou are following along, please make sure the directory you run this from is empty
(delete node_modules and package-lock. json if present, both of which will be described
later). This will trigger an interactive process that walks you through the creation of the
package.json file, something like you see in Figure 1-4.

11

CHAPTER 1 SERVER-SIDE ACTION: NODE AND NPM

=+, Administrator: Command Prompt

C:\temp>npm init
This utility will walk you through creating a package.json file.
It only covers the most common items, and tries to guess sensible defaults.

See "npm help json® for definitive documentation on these fields
and exactly what they do.

Use "npm install <pkg> afterwards to install a package and
save it as a dependency in the package.json file.

Press ~C at any time to quit.
package name: (temp)

version: (1.0.0)

description: Init'ing a project
entry point: (test.js)

test command:

git repository:

keywords:

author: Frank W. Zammetti
license: (ISC)

About to write to C:\temp\package.json:

{
"name”: "temp",
"version": "1.8.8",
"description”: "Init'ing a project”,
"main": "test.js",
“scripts": {
"test": "echo \"Error: no test specified\" && exit 1"
)
"author™: "Frank W. Zammetti",
"license": "ISC"
}

Is this OK? (yes)

C:\temp>

Figure 1-4. Initializing a project with NPM

This will walk you through an interactive, step-by-step process wherein you can
enter whichever information is relevant to your project, if any. You can just hit Enter on
each option to use the default (or a blank value, whichever is applicable), or you can
enter the values that are appropriate to you. For our purposes here though, you indeed
can and should simply hit Enter on each prompt in the process.

12

