

FORSCHUNGSBERICHTE

350

Simone Dietrich Lichtbogenbasierte Pulverherstellung für die additive Fertigung

Simone Dietrich

Lichtbogenbasierte Pulverherstellung für die additive Fertigung

utzverlag · München 2019

Forschungsberichte IWB Band 350

Ebook (PDF)-Ausgabe: ISBN 978-3-8316-7512-8 Version: 1 vom 22.10.2019 Copyright© utzverlag 2019

Alternative Ausgabe: Softcover ISBN 978-3-8316-4822-1 Copyright© utzverlag 2019

TECHNISCHE UNIVERSITÄT MÜNCHEN

Lehrstuhl für Werkzeugmaschinen und Fertigungstechnik

Lichtbogenbasierte Pulverherstellung für die additive Fertigung

Simone Dietrich

Vollständiger Abdruck der von der Fakultät für Maschinenwesen der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr.-Ing. Gunther Reinhart

Prüfer der Dissertation:

- 1. Prof. Dr.-Ing. Michael F. Zäh
- 2. Prof. Dr.-Ing. Martin Faulstich

Die Dissertation wurde am 11.02.2019 bei der Technischen Universität München eingereicht und durch die Fakultät für Maschinenwesen am 05.07.2019 angenommen.

Simone Dietrich

Lichtbogenbasierte Pulverherstellung für die additive Fertigung

Forschungsberichte IWB

Band 350

Zugl.: Diss., München, Techn. Univ., 2019

Bibliografische Information der Deutschen Nationalbibliothek: Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Das Werk ist urheberrechtlich geschützt. Sämtliche, auch auszugsweise Verwertungen bleiben vorbehalten.

Copyright © utzverlag GmbH · 2019

ISBN 978-3-8316-4822-1

Printed in Germany utzverlag GmbH, München 089-277791-00 · www.utzverlag.de

Geleitwort der Herausgeber

Die Produktionstechnik ist für die Weiterentwicklung unserer Industriegesellschaft von zentraler Bedeutung, denn die Leistungsfähigkeit eines Industriebetriebes hängt entscheidend von den eingesetzten Produktionsmitteln, den angewandten Produktionsverfahren und der eingeführten Produktionsorganisation ab. Erst das optimale Zusammenspiel von Mensch, Organisation und Technik erlaubt es, alle Potentiale für den Unternehmenserfolg auszuschöpfen.

Um in dem Spannungsfeld Komplexität, Kosten, Zeit und Qualität bestehen zu können, müssen Produktionsstrukturen ständig neu überdacht und weiterentwickelt werden. Dabei ist es notwendig, die Komplexität von Produkten, Produktionsabläufen und -systemen einerseits zu verringern und andererseits besser zu beherrschen.

Ziel der Forschungsarbeiten des *iwb* ist die ständige Verbesserung von Produktentwicklungs- und Planungssystemen, von Herstellverfahren sowie von Produktionsanlagen. Betriebsorganisation, Produktions- und Arbeitsstrukturen sowie Systeme zur Auftragsabwicklung werden unter besonderer Berücksichtigung mitarbeiterorientierter Anforderungen entwickelt. Die dabei notwendige Steigerung des Automatisierungsgrades darf jedoch nicht zu einer Verfestigung arbeitsteiliger Strukturen führen. Fragen der optimalen Einbindung des Menschen in den Produktentstehungsprozess spielen deshalb eine sehr wichtige Rolle.

Die im Rahmen dieser Buchreihe erscheinenden Bände stammen thematisch aus den Forschungsbereichen des *iwb*. Diese reichen von der Entwicklung von Produktionssystemen über deren Planung bis hin zu den eingesetzten Technologien in den Bereichen Fertigung und Montage. Steuerung und Betrieb von Produktionssystemen, Qualitätssicherung, Verfügbarkeit und Autonomie sind Querschnittsthemen hierfür. In den *iwb* Forschungsberichten werden neue Ergebnisse und Erkenntnisse aus der praxisnahen Forschung des *iwb* veröffentlicht. Diese Buchreihe soll dazu beitragen, den Wissenstransfer zwischen dem Hochschulbereich und dem Anwender in der Praxis zu verbessern.

Gunther Reinhart

Vorwort

Mein Dank gilt an dieser Stelle all jenen Personen, die zur Entstehung der vorliegenden Dissertationsschrift beigetragen haben.

Die Dissertation ist im Rahmen des vom Bayerischen Staatsministerium für Wirtschaft, Energie und Technologie, Projektträger DLR Luftfahrtforschung und -technologie sowie Munich Aerospace geförderten Forschungsprojekts KonRAT (Komponenten von Raketentriebwerken für Anwendungen in Transportsystemen der Luftund Raumfahrt) entstanden. Einen herzlichen Dank richte ich auf diesem Weg an die Förderer und alle beteiligten Projektpartner für die kooperative Zusammenarbeit und Unterstützung.

Besonders bedanken möchte ich mich bei Herrn Prof. Dr.-Ing. Michael Zäh und Herrn Prof. Dr.-Ing. Gunther Reinhart, die mir beide die Möglichkeit eingeräumt haben, eine Dissertation anzufertigen. Herrn Professor Zäh danke ich für die freundlichen und offenen Gespräche und die Zeit, die er in die Betreuung investiert hat, besonders während des gemeinsamen Abschlusses dieser Arbeit. Herrn Professor Dr.-Ing. Martin Faulstich möchte ich für Übernahme der Zweitprüfung und die damit verbundene Mühe und Zeit danken.

Martin möchte ich danken für die Ausdauer und Geduld, die er mir und dem Projekt entgegengebracht hat. Ohne deine Gesellschaft wären die stundenlangen Autofahrten eintönig und die Arbeit vor Ort kaum zu bewältigen gewesen.

Meinen Eltern gebührt ein Dankeschön, das weit über die Promotion hinausgeht. Ohne euch wäre dieser Schritt nicht möglich gewesen und ich bin euch sehr dankbar, dass ich diese Richtung einschlagen konnte. Meinen Großeltern und meinem Bruder möchte ich dafür danken, dass ich immer willkommen bin, auch wenn ich in den letzten Jahren wenig Zeit für euch hatte.

Zuletzt und ganz besonders möchte ich mich bei Philipp bedanken, dass wir auch meine Arbeit gemeinsam zu einem Abschluss bringen konnten. Danke für deine unermüdliche Geduld. Ohne deine Unterstützung in den letzten Jahren würde es dieses Buch sicher nicht geben.

Einen herzlichen Dank euch alle!

Inhaltsverzeichnis

In	Inhaltsverzeichnis I			
Al	okür	zungs-	und Formelzeichenverzeichnis	V
1	Ein	Einleitung		
	1.1	Motiv	ation	1
	1.2	Zielse	tzung und Aufbau der Arbeit	3
2	Sta	nd der	Technik und Forschung	5
	2.1	Defini	itionen	5
	2.2	Grund	llagen der additiven Fertigung	9
		2.2.1	Laserstrahlschmelzprozess und zugehörige Prozesskette	9
		2.2.2	Werkstoffgruppe der Aluminiumlegierungen	11
		2.2.3	Anforderungen an die Pulvereigenschaften	13
	2.3	Alumi	iniumpulver-Herstellungsverfahren	17
		2.3.1	Übersicht	17
		2.3.2	Aufschmelzen und Verdüsen	21
		2.3.3	Sicherheitsaspekte bei der Aluminiumpulver-Herstellung	26
	2.4	Bewei	rtung des Stands der Technik und Forschung	30
3	The	rmiscl	hes Spritzen	33
	3.1	Übersicht und Verfahrensauswahl		
	3.2	Eigenschaften des Lichtbogenspritzens		
	3.3	Zusammenfassung		
4	Koi	ızeptio	nierung des Pulverherstellungsprozesses	43
	4.1	Vorgehen zur Anlagenentwicklung		
	4.2	Präzis	ierung der Randbedingungen	46
	4.3	Ermitt	tlung von Funktionen und Strukturen	48
	4.4	Identifizierung eines Lösungskonzepts		54
	4.5	Fazit		55
5	Ent	wurfsp	blanung	57
	5.1	Gliede	erung in Module	57

	5.2	Gestalten der Module 60			
		5.2.1 Zerstäubereinheit			
		5.2.2	Prozesskammer	61	
		5.2.3	Gasaufbereitung	78	
	5.3	Fazit		81	
6	Sicł	nerheit	saspekte und Ausführungsplanung	83	
	6.1	Ausfü	hrungsplanung – Aufbau des Prototyps	83	
	6.2	Sicher	heitsaspekte	90	
	6.3	Anlagensicherheit		91	
		6.3.1	Explosionsschutz	92	
		6.3.2	Gefährdungsidentifikation	102	
		6.3.3	Risikoeinschätzung und Risikominderung	105	
	6.4	Fazit		108	
7	Em	Empirisches Prozessmodell auf Basis eines prototypischen			
	Auf	ufbaus			
	7.1	Pulver	runtersuchungen	112	
		7.1.1	Partikelgrößenverteilung	114	
		7.1.2	Partikelform	116	
		7.1.3	Fließfähigkeit der Partikel	119	
		7.1.4	Sauerstoffgehalt	120	
		7.1.5	Chemische Zusammensetzung des Pulvers	125	
		7.1.6	Sicherheitsrelevante Größen	127	
	7.2	Unters	suchungen nach dem Laserstrahlschmelzprozess	132	
		7.2.1	Oberflächenfärbung und -rauheit	134	
		7.2.2	Bauteildichte und Porosität	135	
		7.2.3	Härtemessung	139	
	7.3	Zusam	nmenfassung der Untersuchungsergebnisse	140	
8	Bew	vertung	g der lichtbogenbasierten Pulverherstellung	143	
	8.1	Wirtso	chaftliche Bewertung	143	

	8.2	Übertragbarkeit auf andere Werkstoffe	148
9	Schlussbetrachtung		151
	9.1	Zusammenfassung	151
	9.2	Ausblick	153
10	0 Literaturverzeichnis		155
11	Ver	zeichnis betreuter Studienarbeiten	167
12	2 Anhang 16		

Abkürzung	Bedeutung
Al	Aluminium
Ar	Argon
BFE	Basic Flowability Energy (dt. Fließfähigkeitsenergie)
BMBF	Bundesministerium für Bildung und Forschung
BSE	Back Scattered Electrons (dt. Rückstreuelektronen)
CCN	Close-Coupled Nozzle (dt.: nah-gekoppelte Düse)
Ce	Cerium
CN	confined Nozzle (dt.: beengte Düse)
CO_2	Kohlenstoffdioxid
Cu	Kupfer
D	Druck
De	Detektionswahrscheinlichkeit
DIN	Deutsches Institut für Normung
Dĸ	Durchmesser der Prozesskammer
DLN	de Laval Nozzle (dt.: Lavaldüse)
EASA	European Aviation Safety Agency
EIGA	Electrode Induction-melting Gas Atomization
EG	Europäische Gemeinschaft
EN	Europäische Norm
EU	Europäische Union
E999	Experiment 999 (dt.: Versuch 999)
Fe	Eisen
FFN	Free-Fall Nozzle (dt.: Freifall-Düse)
FMEA	Failure Mode and Effect Analysis (dt. Fehlermöglichkeits- und -einflussana- lyse)
GSU	Gesundheits-, Sicherheits- und Umwelteinflüsse
Н	Wasserstoff
На	Häufigkeit
HV	Vickershärte
HVBG	Hauptverband der gewerblichen Berufsgenossenschaften
Ι	Stromstärke
ICP-OES	Inductively Coupled Plasma Optical Emission Spectrometry (dt. Emissionsspektrometrie)
ISO	International Organization for Standardization

Abkürzungs- und Formelzeichenverzeichnis

Abkürzung	Bedeutung		
LabVIEW	Laboratory Virtual Instrumentation Engineering Workbench		
Mg	Magnesium		
Mw.	arithmetischer Mittelwert		
Ν	Stickstoff		
Ni	Nickel		
0	Sauerstoff		
p	Irrtumswahrscheinlichkeit		
ProdSG	Produktsicherheitsgesetz		
ProdSV	Produktsicherheitsverordnung		
psi	Pound per Square Inch (dt.: Pfund pro Quadratzoll)		
Q ²	Vorhersagemaß		
R ²	Bestimmtheitsmaß		
Ra	Mittenrauwert		
REM	Rasterelektronenmikroskop		
RPN	Risk Priority Number (dt.: Risiko-Prioritätszahl)		
Rz	Rautiefe		
S	Schweregrad		
SE	Sekundärelektronen		
SGK	Sauerstoffgrenzkonzentration		
Si	Silizium		
Std.	Standardabweichung (einer Stichprobe)		
tl	Trendlinie		
T-O-P	technisch, organisatorisch, persönlich		
TRBS	Technische Regeln für Betriebssicherheit		
U	Spannung		
V	Variante		
VDE	Verband der Elektrotechnik, Elektronik und Informationstechnik		
VDI	Verein Deutscher Ingenieure		
W	Würfel		

Formelzeichen	Einheit	Bedeutung
Α	m ²	Fläche eines Partikels
A _D	m ²	Drahtquerschnittsfläche
A _{P, Al}	_	Anzahl der Aluminium-Partikel
A _{Wand}	m ²	Oberfläche der Prozesskammer
a	m/s	Beschleunigung
α	W/(m ² K)	Wärmeübergangskoeffizient
β	0	Strahl-Öffnungswinkel
c _{Al}	J/(kg K)	spezifische Wärmekapazität von Aluminium
c _{Ar}	J/(kg K)	spezifische Wärmekapazität von Argon
c _D	J/(kg K)	spezifische Wärmekapazität des Drahtmaterials
c _G	J/(kg K)	spezifische Wärmekapazität des Gases
D	N/m ²	Druck
d, d _i	mm	Distanz (i = 1, 2, 3)
$D_{Al_2O_3}$	mm	Dicke der Oxidschicht
D_K	m	Durchmesser der Prozesskammer
d_{L}	mm	Schichthöhe
D _x	μm	Partikeldurchmesser, unterhalb dessen oder bei dem der Durchmesser von x Prozent der Partikel liegt
D _{max}	mm	maximaler Partikeldurchmesser
Ė _{ab, gesamt}	kJ	Summe der abgeführten Energien
E _D	MJ/m ³	Energiedichte im Draht
Es	kJ/mm³	Energiedichte in der Spur
E _{O, Al}	kJ/mol	Oxidationsenthalpie von Aluminium
Ė _{zu, gesamt}	kJ	Summe der zugeführten Energien
F _{G, Iso}	Ν	Gewichtskraft in Isopropanol
F _{G, Luft}	Ν	Gewichtskraft in Luft
h	mm	Hatch (dt.: lateraler Abstand der Schweißraupen)
H _{ab, Gas}	kJ	abgeführter Wärmestrom des Gases
Hab, Partikel	kJ	abgeführter Wärmestrom der Partikel
H _{zu, Draht}	kJ	abgeführter Wärmestrom des Drahtes
Ḣ _{zu, Gas}	kJ	zugeführter Wärmestrom des Gases
Ι	А	Stromstärke
L	m	charakteristische Länge
$m_{Al_2O_3}$	kg	Masse der Oxidschicht

Formelzeichen	Einheit	Bedeutung
m _D	kg/s	Massenstrom des Drahtes
\dot{m}_{G}	kg/s	Massenstrom des Gases
$Mol_{Al_2O_3} \\$	g/mol	molare Masse von Al ₂ O ₃
Mol _{Pulver, Al₂O₃}	g/mol	berechnete molare Masse von Al_2O_3 im Pulver
m _{P, Al}	Kg	Masse eines Aluminium-Partikels
N _{P, Al}	-	Anzahl der Aluminium-Partikel
η	Ns/m ²	dynamische Viskosität
Р	W	Leistung
P _{el}	kJ	elektrische Leistung
р	-	Irrtumswahrscheinlichkeit
Q ²	-	Vorhersagemaß
\dot{Q}_{Wand}	kJ	durch die Prozesskammerwand transferierte Wärme
R	-	Roundness (Rundheit)
R ²	-	Bestimmtheitsmaß
R _P	mm	Radius eines Partikels
ρ	kg/m ³	Dichte
ρ_{Al}	kg/m³	Dichte von Aluminium
$\rho_{Al_2O_3}$	kg/m³	Dichte von Aluminiumoxid
ρ_{Iso}	kg/m³	Dichte von Isopropanol
ρ_{O_2}	kg/m³	Dichte von Sauerstoff
$\rho_{\rm W}$	_	relative Dichte des Würfels
σ	variabel	Standardabweichung
σ_{O}	N/m	Oberflächenspannung
t	S	Zeit
t_{Anlage}	h	Anlagenlaufzeit
T _{D, zu}	Κ	Temperatur des zugeführten Drahtes
T _{G, zu}	Κ	Temperatur des zugeführten Gases
T _i	Κ	Temperatur innerhalb der Prozesskammer
T _U	К	Temperatur der Umgebung
U	V	Spannung
\dot{V}_{G}	m³/s	Volumenstrom des Gases
v _r	m/s	relative Strömungsgeschwindigkeit
$\mathbf{v}_{\mathbf{S}}$	mm/s	Belichtungsgeschwindigkeit

Formelzeichen	Einheit	Bedeutung
v _D	m/s	Drahtzufuhrgeschwindigkeit

1 Einleitung

Die Europäische Agentur für Flugsicherheit (EASA, engl. *European Aviation Safety Agency*) prognostiziert, dass das Transportaufkommen der Luftfahrt zwischen dem Jahr 2014 und dem Jahr 2035 um 45 % steigen wird [1, S. 6]. Die Luftfahrzeuge stoßen eine Vielzahl an Schadstoffen aus, zu denen auch das klimabeeinflussende Kohlenstoffdioxid (CO₂) gehört. Für den CO₂-Ausstoß der Luftfahrt wird daher ebenfalls ein damit einhergehender Anstieg von 45 % in derselben Zeitspanne vorhergesagt. Um den Klimawandel zu begrenzen, hat die Europäische Union (EU) sich zum Ziel gesetzt, die Treibhausgase im Transportsektor bis 2030 um 20 % (im Vergleich zu 2008) und bis zum Jahr 2050 um insgesamt 70 % zu senken [1, S. 11].

Damit diese Ziele erreicht werden können, ist es erforderlich, die Effizienz der Flugzeuge zu steigern. Eine mögliche Lösung ist, die Leermasse der Flugzeuge durch den Einsatz leichterer, aber mindestens ebenso hochfester Werkstoffe zu reduzieren. Hierdurch steigt der Nutzlastfaktor, und der spezifische CO₂-Ausstoß sinkt. Eine weitere Möglichkeit besteht darin, topologieoptimiert gestaltete Strukturbauteile zu verwenden. Die Topologieoptimierung erhöht den Grad der Werkstoffausnutzung und ermöglicht so leichtere Bauteile. Diese weisen meist komplexe Geometrien auf und werden vermehrt durch additive Fertigungsverfahren hergestellt. Eine häufig verwendete Technologie im Bereich der Luft- und Raumfahrttechnik ist das pulverbettbasierte Laserstrahlschmelzverfahren (engl. *Laser Beam Melting*). Es nutzt einerseits die hohe Designfreiheit aus und erlaubt andererseits, luftfahrtrelevante Titan- und Aluminiumlegierungen für Strukturbauteile und Hochleistungs-Nickelbasislegierungen für Triebwerksbauteile (z. B. Inconel[®] 718) zu verwenden.

1.1 Motivation

Die Verwendung von additiven Fertigungsverfahren ermöglicht eine topologieoptimierte Bauweise und eine damit einhergehende Reduzierung der Bauteilmasse. Beispiele für diesen Anwendungsfall sind eine Einspritzdüse eines Flugzeugtriebwerks der General Electric Company, bei der eine Masseeinsparung von 25 % bezogen auf das ursprüngliche Design erzielt wurde [2], sowie ein topologieoptimierter Befestigungswinkel, bei dem eine Reduzierung der Masse von 54 % gegenüber dem Ausgangsdesign erreicht werden konnte [2, 3].

Die Leermasse eines Flugzeugs lässt sich voraussichtlich um insgesamt 4 % bis 7 % reduzieren, wenn die traditionell (d. h. durch Zerspanen, Gießen usw.) gefertigten Bauteile durch Ausnutzung des Leichtbaupotenzials, welches durch den höheren

Formgebungsfreiheitsgrad der additiven Fertigung ermöglicht wird, verbessert werden. Dabei wird das größte Potenzial bei Bauteilen aus Aluminiumlegierungen gesehen [4, S. 6].

Neben dem Leichtbau bietet das Laserstrahlschmelzen zudem die Vorteile der Funktionsintegration, beispielsweise durch innenliegende Kühlkanäle im Bauteil, und der Bauteilkonsolidierung, d. h. des Zusammenfassens mehrerer Komponenten zu einem Bauteil. Die genannte Einspritzdüse bestand bisher aus 18 einzelnen Komponenten. Nach einer Optimierung des Designs für die additive Fertigung kann diese in einem Stück gefertigt werden [2]. Das spart Masse und Montagezeit bei der Fertigung der Komponente.

Die Vielzahl an neuen Einsatzmöglichkeiten der additiven Fertigung erzeugt auch eine große Nachfrage nach neuen Pulverwerkstoffen. Großen Bedarf sieht das Bundesministerium für Bildung und Forschung (BMBF) unter anderem bei der Herstellung anforderungsgerechter Werkstoffkombinationen sowie funktionsgerechter Werkstoffe [5]. Aufgrund des zunehmenden Einsatzes der additiven Fertigung als Fertigungstechnologie und der steigenden Anzahl an Anwendungsfällen wird prognostiziert, dass der Umsatz im Pulvermarkt für die additive Fertigung zwischen dem Jahr 2015 und dem Jahr 2020 um 24,4 % steigen wird (vgl. Abbildung 1).

Abbildung 1: Weltweiter Pulvermarkt für die additive Fertigung [6]

Trotz dieses starken Wachstums wird der Anteil des Pulvers für die additive Fertigung am Weltpulvermarkt im Jahr 2020 nur etwa 1,7 % betragen (additive Fertigung 225,14 Mio. Euro; Weltpulvermarkt 13,3 Mrd. Euro) [6, 7]. Für die pulverproduzierenden Unternehmen gewinnt die additive Fertigung nur langsam an Bedeutung, da dieser Absatzmarkt aktuell nicht nur klein ist, sondern zudem auch sehr spezielle Anforderungen an die Pulverwerkstoffe stellt. Die Pulverherstellung für die additive Fertigung erfolgt derzeit mittels großvolumiger Verdüsungsanlagen, die eine breitere Partikelgrößenverteilung im Pulver produzieren, als für die additive Fertigung geeignet ist. Die Herstellung von Pulver aus neuen Legierungen auf diesen Anlagen ist u. a. durch den Produktionsausfall für Standardwerkstoffe (z. B. AlSi10Mg, Inconel 718) kostenintensiv und wird in der Regel erst bei einem entsprechenden Auftragsvolumen durchgeführt. Dies verzögert schnelle Entwicklungsprozesse neuer Werkstoffe und bietet wenig Spielraum für die Erprobung neuer Legierungen.

Vor diesem Hintergrund wird im Rahmen der vorliegenden Dissertation ein neues Verfahren zur Herstellung kleiner Pulvermengen für die Werkstofferprobung untersucht.

1.2 Zielsetzung und Aufbau der Arbeit

Ziel der Arbeit ist, ein Verfahren zur Herstellung individueller Pulverwerkstoffe in kleinen Mengen zu identifizieren, einen Gestaltungsvorschlag für eine Anlage herzuleiten und das Potenzial des Pulvers und des Verfahrens hinsichtlich der Eignung für das Laserstrahlschmelzen zu bewerten.

Das Verfahren soll sich für eine labormaßstäbliche Bemusterung neuer Werkstoffe für die Forschung und Entwicklung eignen. Insbesondere wird dabei das Anwendungsbeispiel der Aluminiumlegierungen betrachtet. Die Werkstoffgruppe der Aluminiumlegierungen stellt – aufgrund ihrer hohen Sauerstoffaffinität – eine besondere Herausforderung hinsichtlich der Arbeitssicherheit dar. Daneben sollen aber auch andere, weniger reaktive Materialien auf der Anlage verarbeitet werden können.

Das gesetzte Ziel soll über die in Abbildung 2 dargestellten Arbeitsschritte erreicht werden. Die im Stand der Technik (Kapitel 2) näher erläuterten Hintergründe und Herausforderungen der Aluminiumpulver-Herstellung und der Lösungsansatz des thermischen Spritzens (Kapitel 3) fließen im Hauptteil der Arbeit (Kapitel 4 bis Kapitel 7) zusammen. Nach einer Bewertung des ausgewählten Verfahrens (Kapitel 8) schließt die Arbeit mit einer Schlussbetrachtung ab (Kapitel 9).