Advanced
Python
Development

Using Powerful Language Features
in Real-World Applications

Matthew Wilkes

ApPress

Advanced Python
Development

Using Powerful Language Features
in Real-World Applications

Matthew Wilkes

Apress’

Advanced Python Development: Using Powerful Language Features in Real-World
Applications

Matthew Wilkes
Leeds, West Yorkshire, UK

ISBN-13 (pbk): 978-1-4842-5792-0 ISBN-13 (electronic): 978-1-4842-5793-7
https://doi.org/10.1007/978-1-4842-5793-7

Copyright © 2020 by Matthew Wilkes

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The author asserts the moral right to be identified as the author of this work.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: James Markham

Coordinating Editor: Aditee Mirashi

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)
Photographs by Mark Wheelwright (Matthew), Stephanie Shadbolt (Jesse) and Niteo GmbH (Nejc)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-5792-0. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-5793-7

Table of Contents

About the AUROKccicmmimmienmismmssssas s annas Xi
About the Technical REVIEWErScussssmssssssssassssnssssssssassssnssssnsssassssnssssnsssassssanssas Xiii
Acknowledgments.......cccccuuisssnmmmnmmmmmmssssssssssnnnmmmsssssssssssnnnseesssssssssnnnnnnsesssssssnnnnnnnnnnss XV
11T 11T (1 . xvii
Chapter 1: Prototyping and environments...........ccccunsseemmmnssssnnmmnssssssnmsssssssssssssssssnnns 1
Prototyping in PYtNON.........cccocc et 1
Prototyping With the REPL...........ccccvicrninncsrnese s s sn s s sessesnnns 2
Prototyping with @ Python SCHipt ... s 6
Prototyping with scripts and pab ... ——————— 7
Prototyping With JUPYLEEcoeeeeeece e 11
Prototyping in this ChapLer...........ccvveiiiesns s 15
ENVIrONMENT SELUDcoveeeiic e 18
Setting Up @ NEBW PIOJECT......ovirvrere e r e e s s a e s e e e ne e 19
Prototyping OUF SCHPLS .cc.eviierreriererir s s s s ss s s sas e s sae s s e saesaesss e ssesne s 20
INStalling dePENUENCIES......ccvcereriererrerere s s sa e e saesae e e e naenne e 23
EXporting 10 @ .pY il .uverercere e 27
Building a command-ling interface..........c.cccviininininnsnrn 29
The SyS Module and @rgVccccvereirienieresn e s 30
10 12] S 32

1T T 34
Pushing the DOUNUANIESccocciiriiinin e e s p e e 37
REMOTE KEINEIS ... e 38
Developing code that cannot be run locally ... 42

iii

TABLE OF CONTENTS

The completed SCHPLcoe i e r e e 46
11T 111 T OSSP 48
AddItiONAl FESOUITES.......cuceeeerercresrese s e se e se s e se s e e nnnae s 49
Chapter 2: Testing, checking, lintingccccunseenmmmsssnnmmsmsssssmnmsssssessssnesssnm.s 51
2] T RS 54
WHEN 10 WILE TESEScoveeeereece e 57
Creating formatting functions for improved testability..........c.ccccervvrinininiininrcne 59
PV ——————————————————————————— 63
TYPE CRECKING ... s e p e e e e e e e pe e nns 77
INSEAIING MYPY .o e n s 78
AddiNg tYPE NINTS......ccoeceeeeecrres s ne e nnene s 79
Subclasses and INNEILANCEccvveerrenrnserere e 82

(€T 0T T] TS 85
Debugging and overuse of tyPing........ccvoeererrnrermrenerese s 87
When to use typing and when t0 avoid itccoeenrecnrerre e 89
Keeping type hints separate from Code..........c.ccorrirnirinininnnnn s 90
1 T PSS 92
Installing flake8 and DIACKcovoerreeerrierereere e 94
FiXing eXiStiNG COU......ccorrerereerererire e 94
Running automatiCally........c.ccocoereerneenerenereseres s 96
Running on PUll FEQUESTS.......cccrererirsircr e e 98
SUMIMAIY....evieeirere e e e n e Re e e e e e e e R e e s s e e e e e e e Re e pa e nen e e nrnnnns 99
AddItiONAl FESOUICES.....ceueerreerreeressesessesessesesessesessesss e ssssssssssssssssesssssssssssssssssssssssssssssssenees 100

LT 1110100 S 104
DireCtory STTUCIUIEcc e p e 105
Setup scripts and metadata...........coooivnirinnrn s ——————— 108
DEPENUBNCIES ...ccueruerieiiirer et se e s b et e e b b e e e nne 109
Declarative CoONfIgUrationscuoeeerirernsmnnesnese s se s 110

Things 10 aV0id iN SEIUP.PY...cccvrererrrerrresere s sre e nne e 111

LT IS (1] 02 [SR 117

iv

TABLE OF CONTENTS

CUSTOM INAEX SEIVETS ..cvvviueceseresssssssesesessssssss e s ss e s ss s ss e s s e sasss s s s s sesssssnsaes 119
SELHNG UP PYPISEIVETeveerereerrererererressssesessessesessessessessessssessesaessssessessessssessessesasssssensessens 121
DUFADIIEY ..vvveeesere st bbbt 123
0] 110 T 1 0 3O 123
101) O 124
Wheel formats and executing code on installationcccveevvevvrninnerinnnsnsenne s 125

Installing the console script using entrypointscccccvvrvrrenincrsn s 129

README, DEVELOP, and CHANGEScccoovmurrmeninereresesesesesesssssessssssssssssssssssssssssssssssssssssnenenes 130
Markdown fOFMAL..........coooceeeeeererer e 131
reStructured text fOrmMaL.........cooveecrrr s 133
READIME........cootetitetrererereseseseeessssssssss s s ssassss e e e e se e s s s ss s sssasnsnsnsnsnsnensnsnenes 135
CHANGES.Md and VEISIONING........ccvverirererenerinsesisesessesesissessssesessssesessessssssessssessssessssssesssnes 136

Upstream dependency VErSion PiNS.........ccuevirninernsessessesessssessessesssssssessesssssssessessesssssssessens 138
LOOSE PINS ..oueiuiriiirire st s s e b e e R e e e p e e R s 139
STHCE PINS e e e e nne s 140
Which pinning SCREME 10 USEcccccreviirirere e 141

UPIOAAING @ VEISION ... nenss s 141
CoNfigUIING TWINE ...c.eeeeecrrcere s 143

B30T 111 7o TSSOSO 144
AddItiONAl FESOUICES......ceueerreerreeresesessesesssse s sssse e e sesesrsssssssssessssesessessssessssssssensessssenees 144

Chapter 4: From script to framework........cccoummmmmmmnnmmmmmmmssssssssssssssmsssssssssssesssnnss 147

Writing @ SENSOT PIUGINoivirierecerer e s s s s s s 148
Developing the PIUGiN.......cvrce e 149
Adding @ new command OPLioNccccoeriinininien s ——— 152
SUDCOMMANGS......coivicccirir s sr s 153
ComMMANG OPLIONS......ccerrierirerire et e e e st e p s 156
(0 gl Lo T o SR 157
Off-loading parsing to Click with argument types......ccccvvvrvrrrrernrnrniese s sessees 162
Custom Click argument tYPES......cvvrvrrererrrrirrere s s s s e s se e s saesa e e snesaees 163
02T 03 T=T 0 0 0 0 166

TABLE OF CONTENTS

Allowing third-party SENSOr PIUGINS.......ccccvvereriririe e e 167
Plugin detection using fiXed NAMESccccecririeninininne e 169
Plugin detection using entrypoints..........ccccvivirinnininsnse s sses e ssesses s ssessenns 170
CONFIGUIAtION FIlESvvuereerrererrere s s sae e e e re e e e e nne s 174
ENVIironment variables...........oococevnnennssssse s 178
Approach for apd.sensors vs. Similar Programs........ccceeevrrerrerressssessessesessssessessesssssssessesses 179

£ 14134 7P 180
AQAItIONAl FESOUICES.......cuceeueereeereresessee s se e e s e e sre e e s e e snenn s 181

Chapter 5: Alternative interfaces.......ccccunemmrmssssnnnmsssssnnnsssssnmmssssnsesssss——— 183

WED MICTOSEIVICES. ...c.eeueereecrerererseserreeses e sse e e e s sesse e se e e sse e sse e sse e s e s e e sne e ssenssensesnsenees 183
WSGH ... s s s e e e e bbb b e e e e e e nan 184
Lo 0 1< [TSR 190
o G 192
PYthon dECOTAtOrSccceiriirre e e s 196
Testing the View fUNCHON ... 210
DEPIOYMENT ... e e e 213

Extending software as a third Partyc.ccverrenrnsnnnnnesers s e 214
Agreeing on an ad hoc signature With PEErS.........cccvvrrrrrrneseresere s sesesessenens 221
ADSIIact DASE CIASSES......cceeueerreererererrererrese s s e sre e e s e nnenens 223
FallDACK SIrALEIESccereecrercrerererene s s nre e 227
Bringing it @ll 10gETNer........c v 233

Fixing the serialization problem in OUr COUE.........ccvvrrrrereresernse s 235
L0} L TSRS 239

VEISIONING APISeceeiceeircer s s nr e nr e e nna e nr s 240
TESTADIITY .eveeeerrecerree e e 242

L1134 RS 244
AddItioN@l FESOUICES......cucuiuieririsissse s 245

Chapter 6: Aggregation ProCesscccurrrssssssresssssnnsssssssnssssssssnnsssssssnnsssssssnnssssssnnnnss 247

COOKIBOULLRTcvrereececcseressse e e s e e b ne e e e s ne e nnnne s 247
Creating a new temMPIALe ..o s 249

Creating the aggregation PACKAge.........ccvierirrrineninnnsnse s 252

vi

TABLE OF CONTENTS

DAtADASE TYPES....ee e e 254
(01T = 114] 257
Object-relational MAPPEIS.....ccvievererreriererr s s s e se e e a e s s s sae e s e saesaesa e e ssenaees 258
Versioning the databasecccvcrrererrserserie s sere e s s sr e e s aeeaes 263

LI 10110 L O 270
NEW tECNNOIOGIESeecveieererie e rtr et r e r s s r e se e s s e e a e e ae s e e e s nesae e e e e e snesnenanans 279
DAtADASES........ccererceree e 279
Custom attribute DENAVIONcceeeererrcersr s 279
LCTS] =] 2 (0] PP 280
SUMIMAIY ..ttt e R e e e e e R e R e e e e Re e R e e e e e Re e Re R e e e e e Re R e e e e e R nnin 280
AdAItIONAl FESOUICES.........ceeeeereeererererseersesesesese s e e ses e e s e e se e see e sesse e sss e seesesensessssenens 280
Chapter 7: Parallelization and asynC........cccccunussssmmmmmmmmmmmssssssssssnsssmsssssssssssssssnnns 283
L0410} o (T4 o T L SR 284
Making our code NONDIOCKINGcccereeerrnseresserersesersssesessesessse s sessssessssssssssssssessssssssssssssnnes 289
Multithreading and MUIIPrOCESSINGcccvrvererismrnsrnesr e 291
LOW-IEVEI thre@ds.......ccoeiveerercresir e 292

53T (=T 0o LSS 296
LOCKS aNd dEAAIOCKScceeeerereeerere e e 300
Av0iding global STAtecceeereererrerrreer e 306
Other synchronization Primitives.......c.cucceeeernsesnsesne s 312
ProCESSPOOIEXECULONSveueveecersesesiee s sesese e se s e e sr e nre e nennis 321
Making our code multithreadedc.cocvveeerenerns s 321
ASYNCIO ...t E e r e E e R e r s 322
ASYNC QBT .t ne e 323
L T OSSOSO 324
L3 T (] PSSR 327
ASYNC WIth oo e 331
AsYNC 10CKING PrIMITIVES....ccecerrerernsesesesese s sre e e s snanens 332
Working with synchronous lDrariescccvvevnennensnsesssessse s sessesessenens 334
Making our code @aSYNCRIONOUSccoveeverererenesese s nennes 335

vii

TABLE OF CONTENTS

0] 0 LT OO 339
MaKiNG @ CNOICE......cceiricircierie s r e s r e e s p e e nne 341
SUMIMANY ..ttt b e e e e e bR e e e R e R e e e e e Re e Re R e e e e e Re b e e e e e Renrn 343
AQAItIONAl FESOUICES.......cuceeeeereeerereresseersesesesesessesesse e ses e ses e e ssesesee e sessesessssessesesensssssenees 343
Chapter 8: Advanced aSYNCIO0ccuueeumrmssssnssmsssssnsnssssssnnnssssssnnnssssssnnnsssssnnnnsssssnnnnss 345
TEStING @SYNC COUERevveerreerererese s e s e e e e s s r e nensenrnnn e 345
TESHING OUF COUEcveeeerecerreserree s s nre s e nne e 347
Mocking objects for easier unit 1eStiNgcccvrvrervrrnressnesse s 356
ASYNChronOoUS datADASESccccrererrerererinersrre e s re e e e s nnens 368
Classic SQLAIChEMY SLYIE........cccucerererrnerrrese s s nra s 369
USING FUN_IN_BXECULOL ...c.veererueriesinsere st s e sss e s s as s s ss st s sae st st s sne s 373
LT 7T 0 T 0 - - 376
Av0iding COMPIEX QUETIES ..evverreeriererieriesir e s st s s sss e s s s s se s s sae st s e s s sse e s e snes 378
AREIMALIVESoeveerieesesesese s se e se s e nre e e e e nne e 391
Global variables in @SyNCRronNOUS COUE..........ccvverriereresernesrse e 392
£ 11134 7R 395
AddItioN@l FESOUICES.......ucueueerrresieeese e 395
Chapter 9: Viewing the datac.ccccemnnnmmmmnnnssnnmmssssnmmssssnmmssssssssssssssm 397
QUETY TUNCHIONS......ceiuece ettt e 397
Filtering dat@ ..o s 404
L L= Y U 408
AddItioNal FIITEISc.veeeecece e 415
Testing our query fUNCLIONS ..o s 417
Displaying MUIIPIE SENSOIS.......ccviiiicirre s r e ene 421
ProCessing dataccccoveernnennesesese s 425
Interactivity with Jupyter Widgets........ccovvvriirinrnsrr e 430
Multiply nested synchronous and asynchronous COde............ccevevnrenseresnsensessesesessesenses 431
THAYING UP cerrreerieerree s s n e e e s e nse e nre e e nannnnn e 437
Persistent endpointscccvvenicnns s ————— 439

viii

TABLE OF CONTENTS

Charting maps and geographic data.........c.ccvivvvvrrerienennnsesess s sss s ssesessessesses 440
T 0]) 4T TS 442
Supporting map type charts in apd.aggregation.........c.ccovvvvrieriennsnsenrene s 445
Drawing a custom map using the NEW CONfigsccvvrierierrrnienienssersere s sessennes 448

£ 11134 7 451
AddItiIONAl FESOUITES.......c.cereeerreereseressee e se e se s s sae e e snn e snene s 452

Chapter 10: Speeding things UPcccurmrmismmmssnmmssssmsssssesssssesssssessssssssssssssansessas 453

Optimizing @ FUNCHION ... 453
Profiling @and threads ..o 455
Interpreting the profile report.........ccnc e —————— 459
Other Profilers ..o e s s 462

Optimizing CONIOL FIOWcovceeeeeerecse e 468
Visualizing profiling data...........cccoverrenresrnsrese s 473
72T 31 T 477

B30T 111 T o OSSR 489
AddItiONAl FESOUICES......ceueieereerreeresesessesessesesessessssesssss e ssssssssessssssessssssessesssssnssssssssnssssssenees 489

Chapter 11: Fault tolerancecc.ucccmmnssnnnnmmssssnnnmsssssssnmsssssssssssssssssessssssssessssnnnnss 491

(0T P2 o T3 o OO 491
Getting items from @ CONTAINETccvcererr e e 492
CUSTOM EXCEPLIONS ...cvuevereere et rir e s a e e e e e e e s ae e e e e nnees 498
Tracebacks involving multiple eXCeptioNS.........cccvvvvrirnrrrniere s enes 502
Testing for exception handlingc.ccoccvvcrvnnenr s 507

L T 41 o 514
LT 4TI 1 =T O 518

I [0] o S 520
Lo Ty (oo N 00 o T SR 522
LT (0T T T PR 523
Logging CONfiQUIAtioN.........cceviiriiene e s s 530
Other NANAIETS.......cccovrirerrri e 532

ix

TABLE OF CONTENTS

Designing around ProbIBMS ... r e s 533
Scheduling SENSOF IOOKUPSc..civeverrerrerersesersessessesessessessessssessessesssssssessessesssssssessesssssssessees 533
31111117 OO 539
AdAItIONAl FESOUICES.........ceeueerieeresesessee s sr s se e s e e sae e se s e s snennas 540
Chapter 12: Callbacks and data analySisccussesesssmsmssnsesssnsssssnsssssnnssssnnssssnnssssas 541
GENErator data fOW ..o e 541
Generators that consume their own output.........ccccvvriiincnr 543
ENhanced generators ... s s s 548
QUELIES ...eeeeecaescseseseas s s ss e se e e bbb b b nE e e e e e e 556
Choosing @ CONtrol fOWcccceeriincre e e e e 559
SruCtUre fOr OUP ACHIONSccceeeer e 560
ANAIYSIS COFOULINEScvrueerreerreerenesessese e sese e e s e s e e ses e sse e nse e see e sennsenssnens 561
110251 (] o 0 - 567
Running the analySis PrOCESS.........cuurerrrrerersmrersesersesesessesesssessssesessesessssessssessssesesssnsssssssnses 571
PrOCESS STALUScovveeerreerieirine s ne s 574
CAIIDACKSeveuerenseerseersnesessesessesessssesessesessssesessssessssessesesenssssssssessssesenssssssensssenessnssssnssnsnsanes 578
Extending the actions available ... ———— 581
£ 1134 RS 584
AddItioN@l FESOUICES.......ucueueeresrsieeise s 584
o000 585
1T = 589

About the Author

Matthew Wilkes is a European software developer who has
worked with Python on web projects for the last 15 years.
As well as developing software, he has a long experience in
mentoring Python developers in a commercial setting.

He is also very involved in open source software, with
commits to many popular frameworks. His contributions
in that space are focused on the details of database and

security interactions of web frameworks.

About the Technical Reviewers

Coen de Groot is a freelance Python developer and trainer.
He has been passionate about computers and programming
since the late 1970s when he built his first “computer.”

After nearly finishing his computer science degree at
Leiden University, Coen has worked for a large oil company,
small startups, software agencies, and others. He has written
a lot of software in many different programming languages.
And he has worked in software support, delivered training,
led teams, and managed technical projects.

After about 20 years in IT, Coen tried something

different, trained as a business coach, hosted a large
community of coaches, and organized five conferences. But he quickly got pulled back
into building websites and other IT services for coaches and others.
For the last 10 years, Coen has mostly been programming in Python, with hints of
SQL, JavaScript, and others. And he still enjoys learning more Python and passing on
that knowledge face to face, in writing or on video.

Geek since he was able to walk, Nejc Zupan developed his
first computer game in primary school, won the national
robotics championship in high school, and cofounded
niteo.co while still in college. He has spoken at conferences
in five continents, mostly relating to the Web, Python, and
productivity. Whenever he is not coding, he is chasing big
waves around the world.

xiii

ABOUT THE TECHNICAL REVIEWERS

Xiv

Jesse Snyder began programming after many years of
deferring graduate studies in ethnomusicology and was
pleasantly surprised by how completely engrossing he found
the challenges and rewards of software design. After several
years in the Pacific Northwest nonprofit technology scene,
he now works as an independent consultant. When not at
work or playing Javanese gamelan music, he is likely out for
a long run through the beautiful parks and neighborhoods
around his home in Seattle, Washington.

Acknowledgments

Many people helped with this book in various ways. The thousands of contributors to
Python’s open source ecosystem must come first; without them there would be no book
to write. Thank you to Joanna for encouraging me, despite the difficulty and long hours.
Thanks also to the rest of my family for their unfailing support over the years.

For this book specifically, I'd like to thank Nejc Zupan, Jesse Snyder, Tom Blockley,
Alan Hoey, and Cris Ewing, all of whom gave valuable comments on the plan and
implementation. Thank you also to Mark Wheelwright of ISO Photography for his
excellent work in getting a good photograph of me and to the team at Apress for their
hardwork.

Finally, thank you to the people who continue to make the Web as weird and
wonderful a thing as it was when I was first drawn into working with the Internet.
Thomas Heasman-Hunt, Julia Evans, Ian Fieggen, Foone Turing, and countless
more - I doubt industrial software would have captured so much of my attention without
people like you.

Introduction

Python is a very successful programming language. In the three decades that it has
existed, it has become very widely used. It ships by default with major operating systems;
some of the largest websites in the world use Python for their back ends, and scientists
are using Python every day to advance our collective knowledge. As so many people are
working on and with Python daily, improvements come thick and fast. Not all Python
developers have the chance to attend conferences, or the time to follow the work done by
different parts of the community, so it’s inevitable that some features of the language and
ecosystem are not as well known as they deserve to be.

The objective of this book is to examine parts of the language and Python tooling
that may not be known to everyone. If you're an experienced Python developer, you
may well know many of these tools, but a good many more may be on your to-do list of
things to try when you have time. This is especially true if you're working on established
systems, where rearchitecting a component to take advantage of new language features
isn’t something that can be done frequently.

If you've been using Python for a shorter period, you may be more familiar with
recent additions to the language but less aware of some of the libraries available in the
wider ecosystem. A large part of the benefit of attending events like Python conferences
is the chance to notice minor quality-of-life improvements fellow programmers have
made and integrate them into your workflow.

This is not a reference book with stand-alone sections covering different features of
Python: the flow from chapter to chapter is dictated by how we would build a real piece
of software.

With many pieces of technical documentation, there is a tendency to provide simple
examples. Simple examples are great for explaining how something works, but not so
useful for understanding when to use it. They can also be tricky to build on, as complex
code is often architected quite differently to simple code.

By following this one example, we are able to consider technology choices in
context. You will learn what considerations to bear in mind when choosing if a particular
approach is suitable. Topics that are related by how they’re used will be covered together,
rather than topics that are related by how they work.

xvii

INTRODUCTION

This book

My objective in writing this book is to share knowledge from different parts of the
community and lessons learned over 15 years of writing Python code for a living. It will
help you to be productive, both with the core language and add-on libraries. You will
learn how to effectively use features of the language that are not strictly essential to be a
productive programmer, such as asynchronous programming, packaging, and testing.

However, this book is aimed at people who want to write code, not people who are
looking to understand deep magics. I will not delve too far into subjects that involve
implementation details of Python. You will not be expected to grok' Python C extensions,
metaclasses, or algorithms to benefit from this book.

Substantive code samples are shown as numbered listings, and the accompanying
code for this book includes electronic versions of these listings. Some of these listings
also have output shown directly beneath, rather than separately as a numbered figure.

The accompanying code for this book is also where you'll find copies of the full
codebase for the example on a chapter-by-chapter basis, as well as helper code for
the exercises. In general, I would recommend that you follow along with the code by
checking out the Git repository from the book’s website or the code distribution and
changing to the relevant branch for the chapter you're reading.

As well as listings, I show some console sessions. When lines which are formatted
like code begin with >, that indicates that a shell session is being shown. These sections
cover commands to be run from your operating system’s terminal. Any that involve >>>
are demonstrating a Python console session and should be run from within a Python
interpreter.

The example

This book’s example is that of a general-purpose data aggregator. If you work in DevOps,
then it is very likely you use a program of this sort to track the resource utilization of
servers. Alternatively, as a web developer, you may use something like this for statistics
aggregation from different deployments of the same system. Some scientists use similar
methods, for example, for aggregating the findings of air-quality sensors distributed

'A jargon word that became popular during the 1960s, when computing was a much smaller field.
To grok something is to understand it on a very deep and intuitive level. It is derived from Robert
Heinlein’s novel Stranger in a Strange Land.

xviii

INTRODUCTION

across a city. It isn’t something that every developer will need to build, but it is a problem
space that is familiar to many developers.

It has been picked not just because it’s a common task, but because it allows us to
explore many of the subjects we want to cover in a natural, unified way. You will be able
to follow the complete example perfectly well using any modern computer running any
modern operating system,? without purchasing any additional hardware. You may find
you get more out of some of the examples if you have additional computers to act as
remote data sources.

I will be using a Raspberry Pi Zero equipped with some aftermarket sensors for my
examples. This platform is widely available for approximately 5 US dollars and provides
lots of interesting data. There are commercial sensor add-ons available from many
Raspberry Pi stockists.

Although I'll be recommending things specific to the Raspberry Pi to make following
the examples easier, this book is not about the Internet of Things or the Raspberry Pi
itself. It's a means to an end; you should feel comfortable to adapt the examples to fit
tasks that are more relevant to your interests if you like. Any of the similar problems
mentioned earlier would follow the same design process.

Choice of topics

The topics covered by this book have been chosen to shine a light on a variety of different
aspects of Python programming. All are underused or under-understood by the Python
community as a whole, and none are things likely to be taught as a matter of course to
beginners. That’s not to say that they are necessarily complex or hard to understand
(although some certainly are), but they are techniques that I believe all Python
programmers should be familiar with, even if they choose not to use them.

Chapter 1 will introduce you to different ways of approaching the writing of very
simple programs in Python and, in particular, will cover Jupyter notebooks and an
introduction to the use of the Python debugger. Although both are relatively well-known
tools, many people are proficient in the use of one but not both. It will also cover ways

?However, if using Windows, I'd suggest you consider something like the Windows Subsystem for
Linux, as most add-ons are written with Linux or macOS systems in mind and so may perform
better under WSL.

Xix

INTRODUCTION

of approaching the writing of command-line interfaces and some useful third-party
libraries to support succinct command-line tool development.

Chapter 2 will cover tools that help you identify mistakes in your code, such as
automated testing and linting tools. These tools all make it easier to write code that you
can be confident in, whether it’s a large codebase, one that you rarely need to edit, or
one that will garner contributions from third parties. The tools covered here are all ones
I would recommend; however, the focus will be on understanding their advantages
and disadvantages. You may have used one or more of these tools, and you may have
opinions on whether some of them are appropriate to use. This chapter will help you
understand the trade-offs to help you make informed decisions.

Chapter 3 covers code packaging and dependency distribution in Python. These are
key features for writing applications that can be distributed to others and for designing
deployment systems that work reliably. We will use this to convert our stand-alone script
into an installable application.

Chapter 4 introduces plugin architectures. This is a powerful feature; it’s not
uncommon for people who learn them to try and apply them everywhere, which means
people can be wary of teaching them. For our example, a plugin architecture is a natural
fit. It also covers some advanced techniques for command-line tools that can make
debugging plugin-based systems easier.

Chapter 5 covers web interfaces and techniques such as decorators and closures to
write complex functions. These techniques are idiomatic in Python but hard to express
in many other programming languages. It also covers the appropriate use of abstract
base classes. It’'s common for people to advise against using ABCs because of the
tendency of people who learn them to want to use them everywhere. There are definite
advantages to a restrained use of ABCs in particular circumstances, especially when
combined with some of the tools from Chapter 2.

Chapter 6 expands our example with another major component, the aggregation
server that collects the data. This chapter also demonstrates some of the most useful
third-party libraries you will use as a Python programmer, such as “requests.”

Chapter 7 covers threading and asynchronous programming in Python. Threading
is often the source of subtle bugs. Asynchronous code can be used for similar tasks, but it
is an idiom that many Python programmers haven’t used because the program behaves
quite differently to synchronous programming. This chapter focuses on the real-world
use of concurrency to achieve a result, rather than demonstrations of a simple example
or the limits of what asynchronous programming can do. The objective is working code

INTRODUCTION

that is usable in the real world and a thorough understanding of the trade-offs, not a
stand-alone technology demonstration.

Chapter 8 goes further with asynchronous programming, adding in the testing of
asynchronous code and the various libraries that exist to write code that deals with
external tools (such as databases) in an async context. We will also look briefly at
some advanced techniques for writing good APIs that are helpful for asynchronous
programming, like context managers and context variables.

Chapter 9 sees us return to Jupyter to use its features for data visualization and easy
user interaction. We will look at how to use our asynchronous functions with widgets
in Jupyter notebooks as well as advanced use of iterators and ways of implementing
complex data types.

Chapter 10 details how to make Python code faster, using different types of caching
and for which situations they are an appropriate choice. It covers benchmarking
individual Python functions in your applications and how to interpret the results to find
the reasons for slowdown.

Chapter 11 extends some of the concepts we've visited earlier in the book to handle
faults more gracefully. We'll look at ways that our plugin architecture can be modified
to allow for handling errors seamlessly while retaining full backward compatibility, and
we'll take a closer look at designing processes that handle errors that they encounter.

In Chapter 12, the final chapter, we use Python’s iterator and coroutine features to
enhance the dashboards we’ve developed with features that aren’t passive data gatherers
but actively introspect the data we've gathered, allowing us to build multistep analysis
flows.

Python version

At the time of writing, the current release of Python is 3.8, and as such the examples in
this book are being tested against 3.8 and first development versions of Python 3.9. I do
not recommend using older versions. Very few code samples in this book do not work on
Python 3.7 or Python 3.6.

You will need Python pip installed to follow along with this book. It should already
be installed on your system if you have Python installed. Some operating systems
intentionally remove pip from their default installations of Python, in which case
you’ll need to install it using the operating system’s package manager explicitly. This is
common on Debian-based systems, where it can be installed with sudo apt install

xxi

INTRODUCTION

python3-pip. On other operating systems, use python -m ensurepip --upgrade to have
Python find the latest version of pip itself or find instructions specific to your operating
system.

Electronic versions of code samples and errata are available from the publisher and
the book’s website at https://advancedpython.dev. This should be your first port of call
if you encounter any problems working through this book.

xxii

https://advancedpython.dev/

CHAPTER 1

Prototyping
and environments

In this chapter, we will explore the different ways that you can experiment with what
different Python functions do and when is an appropriate time to use those different
options. Using one of those methods, we will build some simple functions to extract the
first pieces of data that we will be aggregating and see how to build those into a simple
command-line tool.

Prototyping in Python

During any Python project, from something that you'll spend a few hours developing to
projects that run for years, you'll need to prototype functions. It may be the first thing
you do, or it may sneak up on you mid-project, but sooner or later, you'll find yourself in
the Python shell trying code out.

There are two broad approaches for how to approach prototyping: either running a
piece of code and seeing what the results are or executing statements one at a time and
looking at the intermediate results. Generally speaking, executing statements one by one
is more productive, but at times it can seem easier to revert to running a block of code if
there are chunks you're already confident in.

The Python shell (also called the REPL for Read, Eval, Print, Loop) is most people’s
first introduction to using Python. Being able to launch an interpreter and type
commands live is a powerful way of jumping right into coding. It allows you to run
commands and immediately see what their result is, then adjust your input without
erasing the value of any variables. Compare that to a compiled language, where the
development flow is structured around compiling a file and then running the executable.
There is a significantly shorter latency for simple programs in interpreted languages like
Python.

© Matthew Wilkes 2020
M. Wilkes, Advanced Python Development, https://doi.org/10.1007/978-1-4842-5793-7_1

https://doi.org/10.1007/978-1-4842-5793-7_1#DOI

CHAPTER 1 PROTOTYPING AND ENVIRONMENTS

Prototyping with the REPL

The strength of the REPL is very much in trying out simple code and getting an intuitive
understanding of how functions work. It is less suited for cases where there is lots of flow
control, as itisn’t very forgiving of errors. If you make an error when typing part of a loop
body, you'll have to start again, rather than just editing the incorrect line. Modifying

a variable with a single line of Python code and seeing the output is a close fit to an
optimal use of the REPL for prototyping.

For example, I often find it hard to remember how the built-in function filter(...)
works. There are a few ways of reminding myself: I could look at the documentation
for this function on the Python website or using my code editor/IDE. Alternatively, I
could try using it in my code and then check that the values I got out are what I expect,
or I could use the REPL to either find a reference to the documentation or just try the
function out.

In practice, I generally find myself trying things out. A typical example looks like the
following one, where my first attempt has the arguments inverted, the second reminds
me that filter returns a custom object rather than a tuple or a list, and the third reminds
me that filter includes only elements that match the condition, rather than excluding
ones that match the condition.

>>> filter(range(10), lambda x: x == 5)
Traceback (most recent call last):

File "<stdin»", line 1, in <module>
TypeError: 'function' object is not iterable
>>> filter(lambda x: x == 5, range(10))
<filter object at 0x033854F0>
>>> tuple(filter(lambda x: x == 5, range(10)))
(5,)

Note The built-in function help(...) is invaluable when trying to understand
how functions work. As filter has a clear docstring, it may have been even more
straightforward to call help(filter) and read the information. However, when
chaining multiple function calls together, especially when trying to understand
existing code, being able to experiment with sample data and see how the
interactions play out is very helpful.

CHAPTER 1 PROTOTYPING AND ENVIRONMENTS

If we do try to use the REPL for a task involving more flow control, such as the
famous interview coding test question FizzBuzz (Listing 1-1), we can see its unforgiving
nature.

Listing 1-1. fizzbuzz.py - a typical implementation

for num in range(1, 101):
val = "'
if num % 3 == 0:
val += 'Fizz'
if num % 5 ==
val += 'Buzz’
if not val:
val = str(num)
print(val)

If we were to build this up step by step, we might start by creating a loop that outputs
the numbers unchanged:

>>> for num in range(1, 101):
print(num)

98
99
100

At this point, we will see the numbers 1 to 100 on new lines, so we would start adding
logic:

>>> for num in range(1, 101):
if num % 3 == 0:
print('Fizz")
else:
print(num)

CHAPTER 1 PROTOTYPING AND ENVIRONMENTS

98
Fizz
100

Every time we do this, we are having to reenter code that we entered before,
sometimes with small changes, sometimes verbatim. These lines are not editable once
they've been entered, so any typos mean that the whole loop needs to be retyped.

You may decide to prototype the body of the loop rather than the whole loop, to
make it easier to follow the action of the conditions. In this example, the values of n
from 1 to 14 are correctly generated with a three-way if statement, with n=15 being the
first to be incorrectly rendered. While this is in the middle of a loop body, it is difficult to
examine the way the conditions interact.

This is where you'll find the first of the differences between the REPL and a script’s
interpretation of indenting. The Python interpreter has a stricter interpretation of how
indenting should work when in REPL mode than when executing a script, requiring you
to have a blank line after any unindent that returns you to an indent level of 0.

>>> num = 15
>>> if num % 3 == 0:
print('Fizz")
. if num % 5 ==
File "<stdin>", line 3
if num % 5 ==

N

SyntaxError: invalid syntax

In addition, the REPL only allows a blank line when returning to an indent level of 0,
whereas in a Python file it is treated as an implicit continuation of the last indent level.
Listing 1-2 (which differs from Listing 1-1 only in the addition of blank lines) works when
invoked as python fizzbuzz_blank lines.py.

CHAPTER 1 PROTOTYPING AND ENVIRONMENTS
Listing 1-2. fizzbuzz_blank_lines.py

for num in range(1, 101):
val = "'
if num % 3 == 0:
val += 'Fizz'
if num % 5 ==
val += 'Buzz'

if not val:
val = str(num)

print(val)

However, typing the contents of Listing 1-2 into a Python interpreter results in the
following errors, due to the differences in indent parsing rules:

>>> for num in range(1, 101):
val = "'
if num % 3 == 0:
val += 'Fizz'
if num % 5 ==
val += 'Buzz'

>>> if not val:
File "<stdin>", line 1
if not val:

N

IndentationError: unexpected indent
>>> val = str(num)
File "<stdin>", line 1
val = str(num)

A

CHAPTER 1 PROTOTYPING AND ENVIRONMENTS

IndentationError: unexpected indent
>>>
>>> print(val)
File "<stdin>", line 1
print(val)

A

IndentationError: unexpected indent

It’s easy to make a mistake when using the REPL to prototype a loop or condition
when you're used to writing Python in files. The frustration of making a mistake and
having to reenter the code is enough to undo the time savings of using this method over
a simple script. While it is possible to scroll back to previous lines you entered using
the arrow keys, multiline constructs such as loops are not grouped together, making it
very difficult to re-run a loop body. The use of the >>> and . .. prompts throughout the
session also makes it difficult to copy and paste previous lines, either to re-run them or
to integrate them into a file.

Prototyping with a Python script

It is very much possible to prototype code by writing a simple Python script and running
it until it returns the correct result. Unlike using the REPL, this ensures that it is easy

to re-run code if you make a mistake, and code is stored in a file rather than in your
terminal’s scrollback buffer.! Unfortunately, it does mean that it is not possible to interact
with the code while it’s running, leading to this being nicknamed “printf debugging,’
after C’s function to print a variable.

As the nickname implies, the only practical way to get information from the
execution of the script is to use the print(...) function to log data to the console
window. In our example, it would be common to add a print to the loop body to see what
is happening for each iteration:

Tip f-strings are useful for printf debugging, as they let you interpolate variables
into a string without additional string formatting operations.

You'll be glad of this the first time you accidentally close the window and lose the code you're
working on.

6

CHAPTER 1 PROTOTYPING AND ENVIRONMENTS

for num in range(1,101):
print(f"n: {num} n%3: {num%3} n%5: {num%5}")

The following is the result:

n: 1 n%3: 1 n%5: 1

n: 98 n%3: 2 n%5: 3
n: 99 n%3: 0 n%5: 4
n: 100 n%3: 1 n%5: O

This provides an easily understood view at what the script is doing, but it does
require some repetition of logic. This repetition makes it easier for errors to be missed,
which can cause significant losses of time. The fact that the code is stored permanently
is the biggest advantage this has over the REPL, but it provides a poorer user experience
for the programmer. Typos and simple errors can become frustrating as there is a
necessary context switch from editing the file to running it in the terminal.? It can also
be more difficult to see the information you need at a glance, depending on how you
structure your print statements. Despite these flaws, its simplicity makes it very easy to
add debugging statements to an existing system, so this is one of the most commonly
used approaches to debugging, especially when trying to get a broad understanding of a
problem.

Prototyping with scripts and pdb

pdb, the built-in Python debugger, is the single most useful tool in any Python
developer’s arsenal. It is the most effective way to debug complex pieces of code and is
practically the only way of examining what a Python script is doing inside multistage
expressions like list comprehensions.?

2Some text editors integrate a terminal precisely to cut down on this kind of context switching.

3Pdb allows you to step through each iteration of a list comprehension, as you would do with a
loop. This is useful when you have existing code that you are trying to diagnose a problem with,
but frustrating when the list comprehension is incidental to your debugging.

CHAPTER 1 PROTOTYPING AND ENVIRONMENTS

In many ways, prototyping code is a specialized form of debugging. We know that
the code we've written is incomplete and contains errors, but rather than trying to find a
single flaw, we're trying to build up complexity in stages. Many of pdb’s features to assist
in debugging make this easier.

When you start a pdb session, you see a (Pdb) prompt that allows you to control the
debugger. The most important commands, in my view, are step, next, break, continue,
prettyprint, and debug.

Both step and next execute the current statement and move to the next one. They
differ in what they consider the “next” statement to be. Step moves to the next statement
regardless of where it is, so if the current line contains a function call, the next line is the
first line of that function. Next does not move execution into that function; it considers
the next statement to be the following statement in the current function. If you want to
examine what a function call is doing, then step into it. If you trust that the function is
doing the right thing, use next to gloss over its implementation and get the result.

break and continue allow for longer portions of the code to run without direct
examination. break is used to specify a line number where you want to be returned to
the pdb prompt, with an optional condition that is evaluated in that scope, for example,
break 20 x==1.The continue command returns to the normal flow of execution; you
won’t be returned to a pdb prompt unless you hit another breakpoint.

Tip If you find visual status displays more natural, you may find it hard to keep
track of where you are in a debugging session. | would recommend you install

the pdb++ debugger which shows a code listing with the current line highlighted.
IDEs, such as PyCharm, go one step further by allowing you to set breakpoints in a
running program and control stepping directly from your editor window.

Finally, debug allows you to specify any arbitrary python expression to step into. This
lets you call any function with any data from within a pdb prompt, which can be very
useful if you've already used next or continue to pass a point before you realize that’s
where the error was. It is invoked as debug somefunction() and modifies the (Pdb)

*These can all be abbreviated, as shown in bold. step becomes s, prettyprint becomes pp, etc.

8

CHAPTER 1 PROTOTYPING AND ENVIRONMENTS

prompt to let you know that you're in a nested pdb session by adding an extra pair of
parentheses, making the prompt ((Pdb)).5

Post-mortem debugging

There are two common ways of invoking pdb, either explicitly in the code or directly
for so-called “post-mortem debugging.” Post-mortem debugging starts a script in

pdb and will trigger pdb if an exception is raised. It is run through the use of python

-m pdb yourscript.py rather than python yourscript.py. The script will not start
automatically; you'll be shown a pdb prompt to allow you to set breakpoints. To begin
execution of the script, you should use the continue command. You will be returned to
the pdb prompt either when a breakpoint that you set is triggered or when the program
terminates. If the program terminates because of an error, it allows you to view the
variables that were set at the time the error occurred.

Alternatively, you can use step commands to run the statements in the file one by
one; however, for all but the simplest of scripts, it is better to set a breakpoint at the point
you want to start debugging and step from there.

The following is the result of running Listing 1-1 in pdb and setting a conditional
breakpoint (output abbreviated):

> python -m pdb fizzbuzz.py

> c:\fizzbuzz_pdb.py(1)<module>()
-> def fizzbuzz(num):

(Pdb) break 2, num==15

Breakpoint 1 at c:\fizzbuzz.py:2
(Pdb) continue

1

13
14

°T once so badly misunderstood a bug that I overused debug until the pdb prompt looked like
((((((Pdb)))))). This is an antipattern as it’s very easy to accidentally lose your place; try and
use conditional breakpoints if you find yourself in a similar situation.

