Modeling with
Simulink

Programming and Simulating Ordinary
and Partial Differential Equations

Sulaymon L. Eshkabilov

Apress

Practical MATLAB
Modeling with Simulink

Programming and Simulating
Ordinary and Partial Differential
Equations

Sulaymon L. Eshkabilov

Apress’

Practical MATLAB Modeling with Simulink: Programming and Simulating Ordinary
and Partial Differential Equations

Sulaymon L. Eshkabilov
Ag & Biosystems Engineering Department, North Dakota State University, Fargo, USA

ISBN-13 (pbk): 978-1-4842-5798-2 ISBN-13 (electronic): 978-1-4842-5799-9
https://doi.org/10.1007/978-1-4842-5799-9

Copyright © 2020 by Sulaymon L. Eshkabilov

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image from rawpixel.com

Distributed to the book trade worldwide by Springer Science+Business Media, 1 New York Plaza, New York,
NY 10004, U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio rights,
please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484257982. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-5799-9

To the memory of my father.
To my mother.

To my wife, Nigora, after 25 wonderful years together.

Table of Contents

About the AULNOFcceiiiiiemmninisssnissssr s aan e nn s e e s annnenssnnns xiii
About the Technical REVIEWETccussseesmmssssnnnssssssnnnssssssnsnsssssssnnssssssnnsssssssnnsssssssnnnss XV
Acknowledgmentscccuieemmimssssnnnmmsssssnnmssssssnnmsssssnnnssssssnnnssssssnnnsssssnnnnsssssnnnnssssnnns Xvii
LT LT] | Xix
Part I: Ordinary Differential Equations........c.ccucccinnmmmnisnnmmnssesnmssssssmnsssssnnnnnes 1
Chapter 1: Analytical Solutions for ODES.........cocsememmmmmmmmssssssssssnnsmssssssssssssssssssesssssnns 3
ClaSSITYING ODESccccerreererererreneressesessese e sesesesss e s sessssessssessssesessssessssesssssssssssssenssssssssnssnnes 4
e 11110 e OSSO 5
o 101][S SO SSO 6
6 10 1]][SO 6
Analytical SOIULIONS OF ODESccccvreruererrersererseserseressessssessessessessssessessessssessessesssssssessessessssessesaes 8

(0 L0 T S 8

e 1110 0 OSSPSR 8
e 11110 T OO S S 9
e 11110 X OO 11
EXAMPIE 7 ..ttt n e g n e e e e n e R s 11
Second-Order ODES and @ System 0f ODES.........ccccvvevvrvrreneninsenese s sessessessssessessessessssessessenes 13
6 10 1] 0] O 13
6 101 0] [O 14
e 11110 00 SRS 15
e 11110 00 I OO 16
e 11110 00 1O 16
e 11110 0 1 TSRS 17
IR0 2 eI = (0] 4O 22

TABLE OF CONTENTS

6 10 1]][S 24
L T0] LT o] o R 25

e 11110 T I OSSOSO 25
e 1110 00 SOOI 26
e 11110 0 1 OO 26
EXAMPIE 18 ... e n e e n 26
L 101][SRS O 30
6 10 1] 0L SR 34
6 10 1]][2 36
31C] (<] T[0T 40
Chapter 2: Numerical Methods for First-Order ODES.........cccccmmmmrrssssssssssssnsssssssssnas 41
o] 1= g L= 1o o S 41
e 11110 e PSSP 42
Improved Euler Method.........ccooeiiririe s r e 44
Backward Euler MEthod..........cccoeriiriinininrnce s 45
6 0 1]][O 47
Midpoint Rule Method...........coeriir e e e s 50
e 11110 T OO S 51
RaIStON MEBLNOM.......c e e 55
Runge-Kutta Method..........ccuceiiiiiniiner et sn e 56
EXAMPIE 4 ...ttt e e e e n 57
Runge-Kutta-Gill METhOdcccvvrierevirierere s s s s s e s sae e s ssesaessssessesaeseesesnenaesnes 60
Runge-Kutta-Fehlberg Method ... 63
Adams-Bashforth Method.........ccccoveerrcrnerrere e e 66
e 11110 OSSOSO 66
MiINE MELNOMcoeeece et e 72
6 10 1] 0[SOS 73
Taylor SErieS METNOUccvierierererer et a e sresr e e s e a e sae e e e naennens 75
e 11110 T OSSPSR 75
Adams-Moulton METNOU..........ccoeeeeeere e e 78

TABLE OF CONTENTS

6 10 1] 0] [SR 80
MATLAB’S BUilt=in ODE SOIVEFScovuruieiereresssssssesesesssssssssesessssssssssssessssssssssssessssssssssssesssssnsans 85
e 11110 TR SOOI 87
The OPTIONS, ODESET, and ODEPLOT ToOIS Of SOIVEIS......cccceeercerrerreerererrerseeseereseeseessennens 93

e 11110 00 OO 95
EXAMPIE 11 e R e n 98
SIMUINK MOGEIING .veveerererie e s s a e s b e e s s a e e nnn 103
o 10 1]][1SS PRR S 103
SIMSETceiiesesrsisssr e e e bbb e e e e e AR R R E A e e e 11
(31C] (<] €T 11T 112
Chapter 3: Numerical Methods for Second-Order ODESccccccmrrrrssssssnsnnsnnnnnnas 113
1] g = 1o o SR 114
e 11110] e SRS S SN 114
o 10 1]][S SPR S 118
6 10 1]][SR 120
6 1]][S 122
e 11110 LT OO SRS 124
Runge-Kutta MELNOM...........correereerese s 128
EXAMPIE 6 ...ttt e n e e n e e 128
o 11 1] 0[SOS SRS 131
e 101 0] [OSSP 134
6 100][SO 136
e 11110 00 OSSOSO 138
Adams-Moulton Method..........ccoeeerrreree e 141
e 11110] 00 I OSSR 141
e 11110 0 TSSO 146
SIMUINK MOGEIING ...eveerererie s se s s sae e s s s a e e s ae s ae e e s nnes 151
6 101][1 SR 151
e 11110 =00 OSSOSO 153
e 11110 =00 1 OO RPRS SN 156

TABLE OF CONTENTS

6 100][SRR 157
Nonzero Starting Initial CONAItIONSc.cccvreirirrns e 158
e 11110 00 1 OSSOSO 159
00T 1T £ S 162
EXAMPIE 18 ... e e n e e 163
e L1 0[SOS 165
6 10 1] 0L SRS 166
6 0 1]][2 SR 169
01 1 TSSO 172
EXQAMPIE 22 ...ttt e e e e e e p e p e e ne 172
Chapter 4: Stiff ODESccccceurmrmrmmsssssssssssnnssssssssssssssssnsssssssssssssssnsnsssssssssssnsnnnnnnnness 177
e 11110] e SRS SSRN 177
o 10 1]][SRS SRS 179
6 0 1]][S 180
EXAMPIE 4 ... e e e e e nne 183
JACODIAN MALIIX ... se e 185
e 11110 LT SOOI SN 186
EXAMPIE 6 ...ttt s e n e e n e n e ne e 189
Chapter 5: Higher-Order and Coupled ODES........ccccuussemnnmssssssnnmssssssnssssssssnnssssssnnnss 193
Fourth-Order ODE ProbIem ... sesssssssas 193
RoDErtSON ProDIEM ...t s 197
AKZO-NODEI ProBIBM ... e e 199
Ly 1T oS o 0] 0] 206
(3TC] (=] €11 S 211
Chapter 6: Implicit ODES........ccccuunmmsssssssnmmmmmmmmsssssssssssmssssssssssssssssssssssssssssnsnnsssness 213
e 11110] e TSRO SSRN 214
o 10 1]][SO SRS 218
6 0 1]][S 220
EXAMPIE 4 ... e e e p e ene 223

viil

TABLE OF CONTENTS

6 10 1]][SRR 226
e 11110 LT SO SOOPS S RPYSSRN 229
(31C] (<] T T 232
Chapter 7: Comparative Analysis of ODE Solution Methods............ccccusnnnenmnnnnnnnas 233
e 11110 e OO 234
DIl EXEICISES .vuevrueerreerseesessessssesessasesessessssesesss e ssssesss e s sse e sss e ssssessssssessanessssessnssnsnsansssnssnsnns 251
o= {17 PN 251
(T (01T 252
(] (01T 252
(] (o1 253
(] (o1 TS 253
oG] (o1 SRS 254
o= (1T N 255
(=] (T 256
(] (01T TN 257
(=] (o1 T T T 258
(=] (o1 0 L 258
(] (o1 0 TS 259
oG] (o SO ST SSRS 259

Part II: Boundary Value Problems in Ordinary Differential Equations 261

Chapter 8: Boundary Value Problems........cccoummmmmmmnmmnmmmmmmsssssssnssssssssssssssssssssnnnss 203

Dirichlet Boundary Condition Problemc.cccvcvvrerniensensesiesessesesessssessessesssssssessessessssessessens 267
e 11110] e OSSOSO SRRSO 267
e 11110] OO SRPRS SN 271
Robin Boundary Condition Problem ... 274
EXAMPIE 3 ...t n e r e n e aenr 274
Sturm-Liouville Boundary Value ProbIEMccccecerevrrninennsinsese e sessesesessssessessessesessessesses 279
6 0 1]][SR 280
Stiff Boundary Value PrODIEMccovveivreriereeserseresesesseressesessesessesssssssessessesssssssessesssssssessesaes 285

ix

TABLE OF CONTENTS

6 01][SR 285
L31C] (<] €T 11T 289
DIl EXEICISESecueeueerreereecrenesessesessesesessesessee e e ses e ses e sse e seesesesse e ssssessesesessssssssnsssenesessesenas 289
(] (o1 0 S 290
(] (o1 TSSO 290
(=] {17 T N 290
(=] (1T S 290
(] (01T T 290
(] (o1 T 291
(] (o1 291
(] (oI OSSR 291
] (oL OSSOSO 291
(=] (1T R 291
(<] (o1 T T R 292
(] (o1 T T 292
(] (o T T 292

Part lll: Applications of Ordinary Differential Equations.........ccccccviineeennnnn 293

Chapter 9: Spring-Mass-Damper Systemscccccueemmmmnssssnnmmssssssnmssssssssmsssssnnns 295
Single Degree of Freedom SYSteM..........ccccvirrnennenmnes s s senns 295
Case 1: Free Vibration (MOLON)cccvvrreriennnniene e sse e sss e se s ssesessesaesnes 295
Case 2: Forced Vibration (MOION)ccccvrerieverrenierieressssersesessssessessessessssessessessssessessesssssssessenses 309
Two Degrees of Freedom SYSTEM ... st se s 320
Three Degrees of Freedom SYSEBM.........ccciiiiininncni e 328
Matrix Approach for n-Degree of Freedom SyStem ... 336
RETBIBNCES ... ettt e 343

Chapter 10: Electromechanical and Mechanical Systems...........ccccinssnnennrnsssnnnnns 345
MOdeling @ DG MOTOFccceruerriririerere e re s s s se s e a e e s s r e e s saesae e e e naenne e 345
Modeling a DG Motor with FIeXiDIe LOAdccvcvrereinrnieresessenenessssessesessessssessessessssessesaens 350
Modeling @ MICIOPNONEcoiiiicererecrr e s r s s s p e nne 356

TABLE OF CONTENTS

Modeling Motor: PUMP GEAr BOX........ceevrervererensersererssssssesessessssessessesssssssessesssssssessessesssssssessens 361
Modeling Double PeNdUIUM.........c..covririenerrr s 371
L31C] (<] €T 11T 384
Chapter 11: Trajectory Problems.......cccccussmrmssansmsssnsssssnsesssnsssssssssssnsssssnnssssnnssssas 385
Lt LT T0 0 o)< S 385
Thrown Ball TraJECIONIESccceveererrererree s e sr s se e sennenens 388
RETBIBNCES ... ettt e 400
Chapter 12: Simulation Problems........cccceiuumimmmnsssssssnnmmmmmmssssssssssnsssssssssssssssnns 401
[T 0T 1 OO 401
Lotka-Voltera ProbIEm ... s 407
L31C] (<] €T 11T ST 411
DIll EXEICISESecueeueereeereecresesessesesse e sessesessesesse e ses e sesse e sseseses e sesss e ssssessesesesssssnssnsssensssnnsenns 412
(=] (o1 0 S 412
EXEICISE 2 ...veuereeeresesessese e s e n s s e s e e e e R e ne e 413
(=] {17 T N 413
(=] (1T R 413
(] (01T T 414
(] (o1 T 414
(] (o1 415
oG] (oI ST 415
[] (o1 SO S TSSO S 416
(=] (1T R 416
(<] (01T T R 416
(] (o1 T T 417
(] (o1 T T 417
(] (o1 T ST 418
oG] (o1 T SO S 419
(=] {17 1 N 420
(=] (1T I R 422
(] (o1 T T O 423

TABLE OF CONTENTS

Part IV: Partial Differential Equations...........ccccnmmmmmmssssenssssnnnnnnsnsssssssssnssss 427

Chapter 13: Solving Partial Differential EQUationsccusemmmnsssenmnmnssssssnssssssnnns 429
§10[<] 0T)PSO PRSP 430
One-Dimensional Heat Transfer ProbIEMmcccovereecrnecrrere e 431
e 11110 e OO 432
Two-Dimensional Heat Transfer: Solving an Elliptic PDE with the Gauss-Seidel Method 436
o 11 1] 0[SOS TSRS 438
del2(): Laplace OPErator........ccocvererererserseresssssssessessessssesessesssssssessessssssssssessesssssssessesssssssessesses 443
6 111][S 444
WaVE EQUALIONoeiirccee e s e e e s s p e 447
Solving a One-Dimensional Wave EQUaLioNcccoreerncnenenesese e 448
e 11110 0 OO SRR S S 451
Solving a Two-Dimensional Wave EQUAtioNcccvvvvvninnnsiniene e sesse e sessessesnes 455
e 1110 LT OSSOSO 456
RETBIBNCES ... et e 459
DIl EXBICISEScueuererriseseisesessssese s s ss s s s s 460
(=] (o1 T T T 460
(] (o1 S 460
(=] £ 1T T PR 460
(] (01T 461
(] (o1 TS 461
(=] £ 1T RN 461
(] (o1 O 461
(] (o1 IR S 461
EXBICISE O ..t 462
(] (o1 T T 462
(=] (o1 0 L ST 462
EXEICISE 12 ..ot e np e 463
(=] {17 N 463

1T - 465

About the Author

- R === Dr.Sulaymon L. Eshkabilov is currently a visiting

professor in the Department of Agriculture and Biosystems
Engineering at North Dakota State University. He obtained
his ME diploma from Tashkent Automobile Road Institute
in 1994, his MSc from Rochester Institute of Technology,
USA in 2004, and his PhD from Academy Sciences of
Uzbekistan in 2005. He was an associate professor at
Tashkent Automobile Road Institute from December 2006 to
January 2017. He also held visiting professor and researcher
positions at Ohio University from 2010 to 2011 and Johannes
Kepler University, Austria, from January to September 2017. He has taught the following
courses: “MATLAB/Simulink Applications for Mechanical Engineering and Numerical
Analysis” and “Modeling of Engineering Systems” for undergraduate students, an
“Advanced MATLAB/Mechatronics” seminar/class, and “Control Applications,” “System
Identification,” “Experimentation and Testing with Analog and Digital Devices” for
graduate students.

His research areas are mechanical vibrations, control, mechatronics, system
dynamics, image processing, and microstructure analysis of materials. He is the author
of more than 30 research papers and 5 books. Three of the five books are devoted to
MATLAB/Simulink applications for mechanical engineering students and numerical
analysis. From 2009 to 2020, he was an external academic expert for the European
Commission, assessing academic projects.

xiii

About the Technical Reviewer

Karpur Shukla is a research fellow at the Centre for
Mathematical Modelling at FLAME University in Pune,
India. His current research interests focus on topological
quantum computation, nonequilibrium and finite-
temperature aspects of topological quantum field theories,
and applications of quantum materials effects for reversible
computing. He received an MSc in physics from Carnegie

Mellon University, with a background in theoretical analysis
of materials for spintronics applications as well as Monte Carlo simulations for the
renormalization group of finite-temperature spin lattice systems.

Acknowledgments

I express my special gratitude to the technical reviewers, proofreaders, and editors of
Apress for their very thorough work while reviewing the content and code in this book.
Without their critical insights and corrections at many points of the book, I would not
have been able to complete it with this quality. In addition, T would like to express my
special gratitude to Mark Powers for his on-time and well-planned correspondence
throughout this book project.

My cordial gratitude goes to my mother for her limitless support and love. Up until
the very last point of this book, she was always checking in about my progress.

I would like to thank my wife, Nigora, because without her great support, I would not
have been able to take up the challenging task of writing this book. I have spent many
weekends in my office writing and editing the book content and the MATLAB/Simulink
scripts and models. In addition, I would like to thank our children, Anbara, Durdona,
and Dovud, for being such delightful people and being the inspiration for my efforts
while writing this book.

xvii

Introduction

This book covers the most essential and hands-on tools and functions of the MATLAB
and Simulink packages and the Symbolic Math Toolbox (MuPAD notes) to solve, model,
and simulate ordinary differential equations (ODEs) and partial differential equations
(PDEs). It explains how to solve ODEs and PDEs symbolically and numerically via
interactive examples and case studies. The main principle of the book is “learn by doing,”
moving from the simple to the complex. This book contains dozens of solved problems
and simulation models embedded in MATLAB scripts and Simulink models, which
will help you to master programming and modeling essentials, as well as learn how to
program and model more difficult and complex problems that involve ODEs and PDEs.
Practical MATLAB Modeling with Simulink explains various practical issues
of programming and modeling in parallel by comparing the programming tools of
MATLAB to the modeling tools of Simulink. By studying this book, you'll be proficient
at using the MATLAB/Simulink packages and at using the source codes and models
from the book’s examples as templates for your own projects to solve modeling and
simulation, or engineering problems with ODEs and PDEs.

What You Will Learn

By the end of the book, you'll have learned how to do the following:
e Model complex problems using MATLAB and Simulink
e Use MATLAB and Simulink to solve ODEs and PDEs

e Use numerical methods to solve first-, second-, and higher-order and
coupled ODEs

o Solve stiff and implicit ODEs

» Employ numerical methods to solve first- and second-order linear
PDEs

Xix

INTRODUCTION

e Solve ODEs symbolically with the Symbolic Math Toolbox of
MATLAB

¢ Understand the applications and modeling aspects of differential

equations in solving various simulation problems

This book is aimed at engineers, programmers, data scientists, and students
majoring in engineering, applied/industrial math, data science, and scientific
computing. This book continues where Apress’ Beginning MATLAB and Simulink leaves
off.

The book is composed of three parts. Part 1 consists of the following chapters:

e Chapter 1 is dedicated to general formulations and solving ODEs
symbolically using The Symbolic Math Toolbox functions and
MuPAD note commands.

o Chapter 2 covers the most essential programming aspects to solve
first-order ODEs numerically by writing scripts based on the Euler,
Runge-Kutta, Milne, Adams-Bashforth, Ralston, and Adams-Moulton
methods. You'll write the scripts using MATLAB's built-in ODE
solvers, such as ode23, ode23t, ode45, odel5s, odel13, odeset, etc.,
and Simulink modeling.

o Chapter 3 is dedicated to solving second-order ODEs symbolically
and numerically using the Euler, Runge-Kutta, Milne, Adams-
Bashforth, Ralston, and Adams-Moulton methods. You'll do this
using MATLAB's built-in ODE solvers, such as ode23, ode23t, ode45,
odel5s, odel13, odeset, etc., and Simulink modeling.

o Chapter 4 addresses the issues of how to solve stiff ODEs by adjusting
a step size, specifying a solver setting, selecting an appropriate solver
type, and so forth.

o Chapter 5 is dedicated to solving higher-order and coupled ODEs.

o Chapter 6 is devoted to solving implicitly defined IVPs and
differential algebraic equations using MATLAB’s ode15i and Simulink
modeling.

INTRODUCTION

Chapter 7 is dedicated to a comparative analysis of solving ODEs
with MATLAB’s ODE solvers, Simulink modeling, script writing, and
computing analytical solutions with the Symbolic MATH Toolbox
(MuPAD notes).

Part 2 consists of the following chapter:

Chapter 8 covers most essential tools of solving boundary value
problems of ODEs numerically by using MATLAB solvers such as
bvp4c, bvp5c, bvpinit, deval, etc.

Part 3 consists of the following chapters:

Chapter 9 is devoted to applications of ODEs, specifically, modeling
and simulations of spring-mass-damper systems.

Chapter 10 is devoted to applications of ODEs, specifically, modeling
and simulations of mechanical and electromechanical systems.

Chapter 11 is devoted to applications of ODEs, specifically, modeling
and simulations of trajectory problems.

Chapter 12 is devoted to applications of ODEs, specifically, modeling
and simulations of several simulation problems, such as the Lotka-
Voltera and Lorenz systems.

Part 4 consists of the following chapter:

Chapter 13 is devoted to solving partial differential equations using
PDE toolbox functions, such as pdepe() and the Laplacian operator
del2(), and writing scripts based on Gauss-Seidel and finite
difference methods.

How to Access the Source Code

All of the source code (such as M/MN files, Simulink models, and SLX/MDL files)
discussed in the book is available to readers via the Download Source Code button at
WWw.apress.com/9781484257982.

xxi

http://www.apress.com/9781484257982

INTRODUCTION

A Note to Users

The given scripts in the context of the book may not be the best solutions to the given
problems, which was done intentionally in some cases to emphasize methods used to
improve them; in other cases, the given scripts are the most appropriate solutions to the
best knowledge of the author. Should I spot any better alternative solutions to exercises
given in the context of the book, I intend to publish them via the MathWorks MATLAB
Central User Community’s file exchange via my file exchange link there—under my
name.

No matter how hard we have worked to proofread the content of the book, it is
inevitable that there might be some typographical errors that have slipped through and
will appear in print. My apologies.

Sulaymon L. Eshkabilov
January 2020

xxii

PART |

Ordinary Differential
Equations

CHAPTER 1

Analytical Solutions
for ODEs

Many modeling problems in engineering applications can be formulated using ordinary
differential equations. There are a few different definitions of differential equation; one of
the simplest ones is “A differential equation is any equation which contains derivatives,
either ordinary derivatives or partial derivatives” given in [1]. From this definition,

we can derive that there are two types of differential equations: ordinary differential
equations (ODEs) and partial differential equations (PDEs). ODEs contain one type of
derivative or one independent variable, while PDEs contain two or more derivatives

or independent variables. For example, a general form for first-order ODEs can be
expressed by:

dy

Y fyx 1-1

I f(yx) (1-1)
where y(x) is a dependent variable whose values depend on values of the

independent variable of x. Another good example of an ODE is Newton’s second law of

motion formulated by:

B @ _mdv
dt dt

ma =F(t,v) (1-2)

. o . . . dv . .
where F(t, v) is the force, which is a function of time (#) and velocity (v); T is a velocity
change rate (acceleration) of a moving object; m is the mass of a moving object; a is an

. . . . dp . . .
acceleration of a moving object; p is momentum; and I is its derivative.

© Sulaymon L. Eshkabilov 2020
S. L. Eshkabilov, Practical MATLAB Modeling with Simulink, https://doi.org/10.1007/978-1-4842-5799-9 1

CHAPTER 1 ANALYTICAL SOLUTIONS FOR ODES

The previous formulation of Newton’s second law can be also rewritten in the
following way:

2
m_d(@j = mdzx :F[t,x’@) (1_3)
dt \ dt dt dt

d
where the derivative (d—:j of the displacement (x) of a moving object is the velocity

(v). In other words, the velocity is a change rate of the displacement x(¢) of a moving
object in time. This can be visualized with the flowchart displayed in Figure 1-1.

Position x(t) Force F{t)

_dp _mdv _md’x

G dx Tdt dt dt?
dt
{ Velocity v(t) _ { Momentum p
p=mv

Figure 1-1. Flowchart expressing motion and exerted force of a moving object

Classifying ODEs

There are two classifications of ODE-related problems.

o Initial value problems (IVPs): Here’s an example: X = xt —3x with
these initial conditions: x(0)=3, £(0)=1.
e Boundary value problems (BVPs): Here’s an example: X = xt —3x

with these boundary conditions: x(0) = 3, x(2)=1.50.

IVPs are defined with ODEs together with a specified value, called the initial
condition, of the unknown function at a given point in the solution domain. In the IVP of
ODEs, there might be a unique solution, no solution, or many solutions. By definition,

4

CHAPTER 1 ANALYTICAL SOLUTIONS FOR ODES

the IVP of ODEs can be explicitly defined or implicitly defined. Most IVPs are explicitly
defined.

We will start with explicitly defined IVPs and then move on to implicitly defined
ones. Besides being categorized by solution type (how the solution values change over
the solution search space), IVPs are divided into stiff and nonstiff problems. Moreover,
ODEs are either linear or nonlinear and are either homogeneous or nonhomogeneous.

Here are some specific examples of different ODE types, categories, and groups:

X=-0.04x+10"yz
Stiff ODEs: < y=0.04x-10"yz-3%10" y? t€[0,40]
z=3%10"y*
Nonstiff ODEs: y+2y=2¢, w+w=5

Linear ODEs: %=9.81—0.198v, X+3x+5x=0

d .. .
Nonlinear ODEs: d—’t’=9.81—0.198u2, #4+3x1+5x° =0
Homogeneous ODEs: y+2y=0, x+3x+5x=0
Nonhomogeneous ODEs: y+2y=sin(x), ¥+3x+5x=e*

This chapter contains several examples for ODEs and their application areas.

Example 1

This example shows an exponential growth problem. This equation could describe
unconstrained growth of biological organisms (bacteria), values of real estate or
investments, membership of a popular networking site, growth in retail business,
positive feedback of electrical systems, or generated chemical reactions. It is formulated
by the following first-order ODE:

ay_ uy has a solution: y(t) = y,e*

dt

CHAPTER 1 ANALYTICAL SOLUTIONS FOR ODES

Example 2

This example shows exponential decay. This equation could describe many phenomena
in nature and engineering, such as radioactive decay, washout of chemicals in a reactor,
discharge of a capacitor, and decomposition of material in a river. Exponential decay is
expressed with the following first-order ODE:

% =—uy has a solution: y() = y,e

Examples 1 and 2 are two simple examples of first-order ODEs.

Example 3

The motion of a falling object is expressed in the following way using Newton’s second

law:

md®y ydy
— =mgo ——
dt’ & dt

This is a second-order ODE that has a general solution in the following form:

()-8 ¢

2

4

where m is the mass of a falling object; gis gravitational acceleration; and y is an
air-drag coefficient of a falling object. There are three parameters. Specifically, m, g,

. d’ . d
and y are constant, and two parameters change over time: d_tg/ (acceleration) and d_Jt/

(velocity). In the general solution of a falling object using the equation of motion, C, and

C, are arbitrary numbers that are dependent on the initial conditions or, in other words,
can be computed considering the initial conditions of a falling object.

There are a few methods to evaluate the analytical solutions of ODEs, including
the separation of variables, introduction of new variables, and others. We show via
specific examples of these types of ODEs and explain how to evaluate their analytical
solutions and compute numerical solutions by employing different techniques in the
MATLAB/Simulink environment through scripts and building models. We evaluate
analytical solutions of ODEs via specific examples and demonstrate how to use the

6

CHAPTER 1 ANALYTICAL SOLUTIONS FOR ODES

built-in functions of the Symbolic Math Toolbox' and MuPAD? notebooks. We put more
emphasis on the Symbolic Math Toolbox’s command syntaxes rather than MuPAD
notebooks. The reason for this is that in future releases of MATLAB, a technical support
for MuPAD notebooks will removed.

There are a number of numerical methods, including Euler (forward, backward,
modified), Heun, the midpoint rule, Runge-Kutta, Runge-Kutta-Gill, Adams-Bashforth,
Milne, Adams-Moulton, Taylor series, and trapezoidal rule methods. Some of these
methods are explicit, and others are implicit. To demonstrate how to employ these
methods, we will first describe their formulations concisely, and then we will work
on their implementation algorithms for writing scripts (programs) explicitly. We do
not attempt to derive any of the formulations used in these numerical methods, and
there are many literature sources [2, 3, 4, 5] explaining the theoretical aspects of these
methods.

In solving an IVP with numerical methods, we first start from an initial point (initial
conditions) and then take a step (equal step size or varying step size) forward in time to
compute numerical solutions. Some of the previously named numerical methods (e.g.,
Euler’s methods) are single-step methods, and others (Runge-Kutta, Adams-Bashforth,
Milne, Adams-Moulton, Taylor series) are multistep methods. Single-step methods
refer to only one previous point and its derivative to determine the current value. Other
methods, such as Runge-Kutta methods, take some intermediate steps to obtain a
higher-order step and then drop off values before taking the next step. Unlike single-
step methods, multistep methods keep and use values from the previous steps instead
of discarding them. In this way, multistep methods link a few previously obtained
values (solutions) and derivative values. All of these methods, such as the single-step
and multistep methods, are assessed based on their accuracy and efficiency in terms
of computation time and resources (e.g., machine time) spent to compute numerical
solutions for specific types of IVPs of ODEs.

!Symbolic Math Toolbox is a registered trademark of The MathWorks Inc.
MuPAD is a registered trademark of The MathWorks Inc.

CHAPTER 1 ANALYTICAL SOLUTIONS FOR ODES

Analytical Solutions of ODEs

The Symbolic MATH Toolbox (or MuPAD notebooks) has several functions capable
of evaluating analytical solutions of many analytically solvable ODEs. There are two
commands (built-in functions)—dsolve() and ilaplace/laplace—with which
analytical solutions of some ODEs can be evaluated.

Note that in this section we demonstrate—via a few examples of first- and second-
order ODEs and systems of coupled differential equations—how to compute analytical
solutions of ODEs.

dsolve()

dsolve() is an ODE solver tool to compute an analytical (or general) solution of any
given ODE in MATLAB. dsolve() can be used with the following general syntaxes:

Solution = dsolve(equation)
Solution = dsolve(equation, conditions)
dsolve(equation, conditions, Name, Value)

Solution
[y1,...,yN]
[y1,...,yN]
[y1,...,yN]

dsolve(equations)
dsolve(equations, conditions)
dsolve(equations, conditions, Name, Value)

Example 4

Given an ODE, y+2fy* =0. Note that initial or boundary conditions are not specified.
Here is the command by which we can compute a general analytical solution of the given
example.

>> y_solution=dsolve('Dy=-2*y"2*t")

Y solution=-1/(C3-t"2)

Note that C3 is defined from the initial or boundary conditions of the given ODE.

There is an alternative command. The given problem with newer versions of
MATLAB (starting with MATLAB 2012) can be solved by using the following command
syntax:

CHAPTER 1 ANALYTICAL SOLUTIONS FOR ODES

>>syms y(t); y sol=dsolve(diff(y) == -2*y"2*t)
y sol =
0]
-1/(-t*2 + @3)

Example 5

Given an ODE, y +2ty® =0, with the initial condition y(0) = 0.5.

>> Solution=dsolve('Dy=-2*y*2*t', 'y(0)=0.5")
Solution =
1/(t"2 + 2)

Here is the alternative command syntax for newer versions of MATLAB:

>> syms y(t); Solution=dsolve(diff(y) == -2*y"2*t, y(0)==0.5)
Solution =
1/(t"2 + 2)

Here is another alternative syntax for newer versions of MATLAB:

>> syms y(t) t; Dy=diff(y, t); Equation = Dy ==-2*y*2*t; IC=y(0)==0.5;
Solution=dsolve(Equation, IC); pretty(Solution)

The resulting analytical solution is in a symbolic formulation and thus can be plotted
(Figure 1-2) with ezplot or the recommended fplot. (ezplot will not be supported in
future releases of MATLAB.)

>> fplot(Solution, [-5, 5], 'r--0'), grid on

>>title('Solution of: $$ \frac{dy}{dt}+2y*2t=0, y 0 = 0.5 $$',
"interpreter', 'latex")

>> xlabel('\it t'), ylabel '\it Solution, y(t)'

CHAPTER 1 ANALYTICAL SOLUTIONS FOR ODES

dy 2
— 4+ 2yt = =0.
at —i—my 0,90 = 0.5

05 T T T T /\V\ T T T T

Solution of:

0.45 | /

0.35

T
Sy
—
|

0.25 / \ .

02F ® Q i

Solution, y(t)

0.15 | %)) .
0.1F yet . 1

0.05(; 07,

Figure 1-2. Analytical solution of y+2ty*=0,y(0)=0.5

Numerical values of the resulting analytical solution (equation) can be computed
by vectorizing (parameterizing) the resulting symbolic formulation (solution), as shown
here:

>> ysol=vectorize(solution)

ysol =

1./(t."2 + 2)

>> t=(-5:.1:5); ysol values=eval(ysol);

10

CHAPTER 1 ANALYTICAL SOLUTIONS FOR ODES

An alternative way of computing numerical solution values is to use fplot, as shown
here:

[t, yt]=fplot(Solution, [-5, 5]);

Example 6

Given y+kty® =0, ¥(0)=0.5. Note that this exercise has one unspecified parameter, k.
>> syms k

>> solution=dsolve('Dy=-k*y*2*t', 'y(0)=0.5")

solution =

1/((k*t"2)/2 + 2)
Here is the alternative command syntax:

>> syms y(t) k; solution=dsolve(diff(y) == -k*y*2*t, y(0)==0.5)
solution =
1/((k*t*2)/2 + 2)

Example 7

Given y—|yle’ =2,y(0)=2. Let’s solve this exercise in a MuPAD note. Figure 1-3 shows
the commands used to compute an analytical solution for this exercise.

11

CHAPTER 1 ANALYTICAL SOLUTIONS FOR ODES

Y:=ode ({y' (t)-abs(y(t))*exp(t)=2, y(0)=2}, y(t))
ode({y(0) =2, y(t) - |y(0)| e =2}, y(0)

Ysolution:=solve (Y)

{-et (e 2Ei(1))-2e+2ni) +e* (2t +2Ei(1, -¢) -2)}
plot (¥Ysolution, #G, t=-2..5, #L)

P |

| = -expi-t)*(expit - exp(t)*(2*Ei(1) - 2%exp(1) + 2* |

Figure 1-3. MuPAD commands to solve y—|y|e' =2, y(0)=2 analytically

Note The options in dsolve() need to be set appropriately depending on
the problem type. For MATLAB 2008—2010 or earlier versions, you should set
IgnoreAnalyticConstraints to none to obtain all or any possible solutions.

Here’s an example:

solution=dsolve('Dy=-k*y"2*t', 'y(0)=0.5", ... 'IgnoreAnalyticConstraints’,
"none")

Note For MATLAB 2012 or newer versions, you should set
IgnoreAnalyticConstraints to false to get all the possible correct answers
for all the argument values. Otherwise, dsolve() may output an incorrect answer
because of its pre-algebraic simplifications.

12

