THE LIVER
BIOLOGY AND PATHOBIOLOGY
Sixth Edition
EDITED BY
IRWIN M. ARIAS
HARVEY J. ALTER
JAMES L. BOYER
DAVID E. COHEN
DAVID A. SHAFRITZ
SNORRI S. THORGEIRSSON
ALLAN W. WOLKOFF
WILEY Blackwell
The Liver
This book is dedicated to Win Arias, whose enthusiasm, insight, and scientific rigor have served as an inspiration to several generations of investigators, providing the essential foundation and tools for building bridges between basic and clinical hepatologists as they elucidate together the mysteries of liver function in health and disease.
Contents

List of Contributors
Preface
Acknowledgments

PART ONE: INTRODUCTION

1 Organizational Principles of the Liver
 Peter Nagy, Snorri S. Thorgeirsson, and Joe W. Grisham

2 Embryonic Development of the Liver
 Kenneth S. Zaret, Roque Bort, and Stephen A. Duncan

PART TWO: THE CELLS

SECTION A: CELL BIOLOGY OF THE LIVER

3 Cytoskeletal Motors: Structure and Function in Hepatocytes
 Mukesh Kumar, Arnab Gupta, and Roop Mallik

4 Hepatocyte Surface Polarity
 Anne Müsch and Irwin M. Arias

5 Primary Cilia
 Carolyn M. Ott

6 Endocytosis in Liver Function and Pathology
 Micah B. Schott, Barbara Schroeder, and Mark A. McNiven

7 The Hepatocellular Secretory Pathway
 Catherine L. Jackson and Mark A. McNiven

8 Mitochondrial Function, Dynamics, and Quality Control
 Marc Liesa, Ilian Benador, Nathanael Miller, and Orian S. Shirihai

9 Nuclear Pore Complex
 Michelle A. Veronin and Joseph S. Glavy

10 Protein Maturation and Processing at the Endoplasmic Reticulum
 Ramanujan S. Hegde
11 Protein Degradation and the Lysosomal System
 Susmita Kaushik and Ana Maria Cuervo 122
12 Peroxisome Assembly, Degradation, and Disease
 Rong Hua and Peter K. Kim 137
13 Organelle–Organelle Contacts: Origins and Functions
 Uri Manor 151
14 Gap and Tight Junctions in Liver: Structure, Function, and Pathology
 John W. Murray and David C. Spray 160
15 Ribosome Biogenesis and its Role in Cell Growth and Proliferation in the Liver
 Katherine I. Farley-Barnes and Susan J. Baserga 174
16 miRNAs and Hepatocellular Carcinoma
 Yusuke Yamamoto, Isaku Kohama, and Takahiro Ochiya 183
17 Hepatocyte Apoptosis: Mechanisms and Relevance in Liver Diseases
 Harmeen Malhi and Gregory J. Gores 195

SECTION B: THE HEPATOCYTE

18 Copper Metabolism and the Liver
 Cynthia Abou Zeid, Ling Yi, and Stephen G. Kaler 209
19 The Central Role of the Liver in Iron Storage and Regulation of Systemic Iron Homeostasis
 Tracey A. Rouault, Victor R. Gordeuk, and Gregory J. Anderson 215
20 Disorders of Bilirubin Metabolism
 Namita Roy Chowdhury, Yanfeng Li, and Jayanta Roy Chowdhury 229
21 Hepatic Lipid Droplets in Liver Function and Disease
 Douglas G. Mashek, Wenqi Cui, Linshan Shang, and Charles P. Najt 245
22 Lipoprotein Metabolism and Cholesterol Balance
 Mariana Acuña-Aravena and David E. Cohen 255

SECTION C: TRANSPORTERS, BILE ACIDS, AND CHOLESTASIS

23 Bile Acid Metabolism in Health and Disease: An Update
 Tiangang Li and John Y.L. Chiang 271
24 TGR5 (GPBAR1) in the Liver
 Verena Keitel, Christoph G.W. Gertzen, Lina Spomer, Holger Gohlke, and Dieter Häussinger 286
25 Bile Acids as Signaling Molecules
 Thierry Claudel and Michael Trauner 299
26 Hepatic Adenosine Triphosphate-Binding Cassette Transport Proteins and Their Role in Physiology
 Peter L.M. Jansen 313
27 Basolateral Plasma Membrane Organic Anion Transporters
 M. Sawkat Anwer and Allan W. Wolkoff 327
28 Hepatic Nuclear Receptors
 Raymond E. Soccio 337
29 Molecular Cholestasis
 Paul Gissen and Richard J. Thompson 351
30 Pathophysiologic Basis for Alternative Therapies for Cholestasis
 Claudia D. Fuchs, Eminha Halilbasic, and Michael Trauner 364
<table>
<thead>
<tr>
<th>PART FOUR: PATHOBIOLGY OF LIVER DISEASE</th>
<th>615</th>
</tr>
</thead>
<tbody>
<tr>
<td>48 Hepatic Encephalopathy</td>
<td>617</td>
</tr>
<tr>
<td>Roger F. Butterworth</td>
<td></td>
</tr>
<tr>
<td>49 The Kidney in Liver Disease</td>
<td>630</td>
</tr>
<tr>
<td>Moshe Levi, Shogo Takahashi, Xiaoxin X. Wang, and Marilyn E. Levi</td>
<td></td>
</tr>
<tr>
<td>50 α1-Antitrypsin Deficiency</td>
<td>645</td>
</tr>
<tr>
<td>David A. Rudnick and David H. Perlmutter</td>
<td></td>
</tr>
<tr>
<td>51 Pathophysiology of Portal Hypertension</td>
<td>659</td>
</tr>
<tr>
<td>Yasuko Iwakiri and Roberto J. Groszmann</td>
<td></td>
</tr>
<tr>
<td>52 Non-alcoholic Fatty Liver Disease: Mechanisms and Treatment</td>
<td>670</td>
</tr>
<tr>
<td>Yaron Rotman and Devika Kapuria</td>
<td></td>
</tr>
<tr>
<td>53 Alcoholic Liver Disease</td>
<td>682</td>
</tr>
<tr>
<td>Bin Gao, Xiaogang Xiang, Lorenzo Leggio, and George F. Koob</td>
<td></td>
</tr>
<tr>
<td>54 Drug-Induced Liver Injury</td>
<td>701</td>
</tr>
<tr>
<td>Lily Dara and Neil Kaplowitz</td>
<td></td>
</tr>
<tr>
<td>55 Oxidative Stress and Inflammation in the Liver</td>
<td>714</td>
</tr>
<tr>
<td>John J. Lemasters and Hartmut Jaeschke</td>
<td></td>
</tr>
<tr>
<td>56 The Role of Bile Acid-Mediated Inflammation in Cholestatic Liver Injury</td>
<td>728</td>
</tr>
<tr>
<td>Shi-Ying Cai, Man Li, and James L. Boyer</td>
<td></td>
</tr>
<tr>
<td>57 Toll-like Receptors in Liver Disease</td>
<td>737</td>
</tr>
<tr>
<td>So Yeon Kim and Ekihiro Seki</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PART FIVE: LIVER CANCER</th>
<th>747</th>
</tr>
</thead>
<tbody>
<tr>
<td>58 Experimental Models of Liver Cancer: Genomic Assessment of Experimental Models</td>
<td>749</td>
</tr>
<tr>
<td>Sun Young Yim, Jae-Jun Shim, Bo Hwa Sohn, and Ju-Seog Lee</td>
<td></td>
</tr>
<tr>
<td>59 Epidemiology of Hepatocellular Carcinoma</td>
<td>758</td>
</tr>
<tr>
<td>Hashem B. El-Serag</td>
<td></td>
</tr>
<tr>
<td>60 Mutations and Genomic Alterations in Liver Cancer</td>
<td>773</td>
</tr>
<tr>
<td>Jessica Zucman-Rossi and Jean-Charles Nault</td>
<td></td>
</tr>
<tr>
<td>61 Treatment of Liver Cancer</td>
<td>782</td>
</tr>
<tr>
<td>Tim F. Greten</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PART SIX: HEPATITIS</th>
<th>793</th>
</tr>
</thead>
<tbody>
<tr>
<td>62 Molecular Biology of Hepatitis Viruses</td>
<td>795</td>
</tr>
<tr>
<td>Christoph Seeger, William S. Mason, and Michael M.C. Lai</td>
<td></td>
</tr>
<tr>
<td>63 Immune Mechanisms of Viral Clearance and Disease Pathogenesis During Viral Hepatitis</td>
<td>821</td>
</tr>
<tr>
<td>Carlo Ferrari, Valeria Barili, Stefania Varchetta, and Mario U. Mondelli</td>
<td></td>
</tr>
<tr>
<td>64 Clinical Implications of the Molecular Biology of Hepatitis B Virus</td>
<td>851</td>
</tr>
<tr>
<td>Timothy M. Block, Ju-Tao Guo, and W. Thomas London</td>
<td></td>
</tr>
<tr>
<td>65 Viral Escape Mechanisms in Hepatitis C and the Clinical Consequences of Persistent Infection</td>
<td>868</td>
</tr>
<tr>
<td>Marc G. Ghany, Christopher M. Walker, and Patrizia Farci</td>
<td></td>
</tr>
<tr>
<td>66 Tracking Hepatitis C Virus Interactions with the Hepatic Lipid Metabolism: A Hitchhiker’s Guide to Solve Remaining Translational Research Challenges in Hepatitis C</td>
<td>889</td>
</tr>
<tr>
<td>Gabrielle Vieyres and Thomas Pietschmann</td>
<td></td>
</tr>
</tbody>
</table>
67 Nucleoside Antiviral Agents for HCV: What’s Left to Do? 906
Franck Amblard, Seema Mengshetti, Junxing Shi, Sijia Tao, Leda Bassit, and Raymond F. Schinazi

68 Hepatitis E Virus: An Emerging Zoonotic Virus Causing Acute and Chronic Liver Disease 915
Xiang-Jin Meng

69 Biological Principles and Clinical Issues Underlying Liver Transplantation for Viral-Induced End-Stage Liver Disease in the Era of Highly Effective Direct-Acting Antiviral Agents 926
Michael S. Kriss, James R. Burton, Jr., and Hugo R. Rosen

70 Time for the Elimination of Hepatitis C Virus as a Global Health Threat 935
John W. Ward, Alan R. Hinman, and Harvey J. Alter

PART SEVEN: HORIZONS 953

71 Genome Editing by Targeted Nucleases and the CRISPR/Cas Revolution 955
Shawn M. Burgess

72 Imaging Cellular Proteins and Structures: Smaller, Brighter, and Faster 965
Aubrey V. Weigel and Erik Lee Snapp

73 Liver-Directed Gene Therapy 979
Patrik Asp, Chandan Guha, Namita Roy Chowdhury, and Jayanta Roy Chowdhury

74 Telomeres and Telomerase in Liver Generation and Cirrhosis 992
Sonja C. Schätzlein and K. Lenhard Rudolph

75 Toxins and Biliary Atresia 1000
Michael Pack and Rebecca G. Wells

76 The Dual Role of ABC Transporters in Drug Metabolism and Resistance to Chemotherapy 1007
Jean-Pierre Gillet, Marielle Boonen, Michel Jadot, and Michael M. Gottesman

77 Stem Cell-Derived Liver Cells: From Model System to Therapy 1015
Helmuth Gehart and Hans Clevers

78 Extracellular Vesicles and Exosomes: Biology and Pathobiology 1022
Gyongyi Szabo and Fatemeh Momen-Heravi

79 Integrated Technologies for Liver Tissue Engineering 1028
Tiffany N. Vo, Amanda X. Chen, Quinton B. Smith, Arnav Chhabra and Sangeeta N. Bhatia

80 Pluripotent Stem Cells and Reprogramming: Promise for Therapy 1036
James A. Heslop and Stephen A. Duncan

81 Chromatin Regulation and Transcription Factor Cooperation in Liver Cells 1043
Ido Goldstein

82 Drug Interactions in the Liver 1050
Guruprasad P. Aithal and Gerd A. Kullak-Ublick

83 Metabolic Regulation of Hepatic Growth 1058
Wolfram Goessling

84 The Gut Microbiome and Liver Disease 1062
Lexing Yu, Jasmohan S. Bajaj, and Robert F. Schwabe

85 Lineage Tracing: Efficient Tools to Determine the Fate of Hepatic Cells in Health and Disease 1069
Frédéric Lemaigre

86 The Hepatocyte as a Household for Plasmodium Parasites 1075
Vanessa Zuzarte-Luis and Maria M. Mota

Index 1081
List of Contributors

Cynthia Abou Zeid
Section on Translational Neuroscience, Molecular Medicine Branch
Intramural Research Program, National Institutes of Health, Bethesda, MD, USA

Mariana Acuña‐Aravena
Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine
Weill Cornell Medical College
New York, NY, USA

Guruprasad P. Aithal
Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK;
NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK

Amanda Allen
Department of Cell Biology and Physiology
University of North Carolina School of Medicine
Chapel Hill, NC, USA

Harvey J. Alter
Department of Transfusion Medicine, Clinical Center
National Institutes of Health
Bethesda, MD, USA

Domenico Alvaro
Department of Medico‐Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
Department of Medicine and Medical Specialties
Sapienza University of Rome
Rome, Italy

Franck Amblard
Laboratory of Biochemical Pharmacology, Emory University
School of Medicine
Atlanta, GA, USA

Gregory J. Anderson
QIMR Berghofer Medical Research Institute
Brisbane, Queensland, Australia

M. Sawkat Anwer
Tufts Clinical and Translational Science Institute
Tufts University Cummings School of Veterinary Medicine
Department of Biomedical Sciences
North Grafton, MA, USA

Irwin M. Arias
National Institutes of Health
Bethesda, MD, USA

Patrik Asp
Marion Bessin Liver Research Center
Department of Surgery, Albert Einstein College of Medicine
Bronx, NY, USA

Jasmohan S. Bajaj
Virginia Commonwealth University and McGuire VA Medical Center
Richmond, VA, USA

Valeria Barili
Unit of Infectious Diseases and Hepatology
Department of Medicine and Surgery, University of Parma
Parma, Italy

Susan J. Baserga
Department of Molecular Biophysics & Biochemistry
Department of Genetics
Department of Therapeutic Radiology, Yale University School of Medicine
New Haven, CT, USA

Leda Bassit
Laboratory of Biochemical Pharmacology, Emory University
School of Medicine
Atlanta, GA, USA

Ilan Benador
Department of Medicine, Division of Endocrinology and Department of Molecular and Medical Pharmacology
David Geffen School of Medicine at UCLA
Los Angeles, CA, USA
Sangeeta N. Bhatia
Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA;
Harvard-MIT Department of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Boston, MA;
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA;
David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA;
Howard Hughes Medical Institute, Chevy Chase, MD, USA

Timothy M. Block
Baruch S. Blumberg Institute
Doylestown, PA, USA

Marielle Boonen
Laboratory of Intracellular Trafficking Biology, URPhyM,
Faculty of Medicine, University of Namur
Namur, Belgium

Roque Bort
Instituto de Investigación Sanitaria La Fe (IIS La Fe)
Unidad de Hepatología experimental
València, Spain

James L. Boyer
Department of Internal Medicine and Liver Center,
Yale University School of Medicine
New Haven, CT, USA

Shawn M. Burgess
National Human Genome Research Institute
National Institutes of Health
Bethesda, MD, USA

James R. Burton, Jr.
University of Colorado School of Medicine
Aurora, CO, USA

Roger F. Butterworth
Department of Medicine
University of Montreal
Montreal, QC, Canada

Massimiliano Cadamuro
Department of Molecular Medicine
University of Padua, Padova, Italy;
International Center for Digestive Health (ICDH)
University of Milan-Bicocca, Monza, Italy

Shi-Ying Cai
The Liver Center, Yale University School of Medicine
New Haven, CT, USA

Vincenzo Cardinale
Department of Medico-Surgical Sciences and Biotechnologies
Sapienza University of Rome
Latina, Italy

Guido Carpino
Department of Movement, Human and Health Sciences, Division of Health Sciences
University of Rome “Foro Italico”;
Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences
Sapienza University of Rome
Rome, Italy

Amanda X. Chen
Department of Biological Engineering, Massachusetts Institute of Technology
Cambridge, MA, USA

Arnav Chhabra
Harvard-MIT Department of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology
Boston, MA, USA

John Y.L. Chiang
Department of Integrative Medical Sciences
Northeast Ohio Medical University
Rootstown, OH, USA

Thierry Claudel
Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology Department of Internal Medicine III
Medical University of Vienna
Vienna, Austria

Hans Clevers
Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht;
Princess Máxima Centre for Paediatric Oncology
Utrecht, The Netherlands

Victoria C. Cogger
Centre for Education and Research on Ageing
University of Sydney and Concord RG Hospital
Sydney, NSW, Australia

David E. Cohen
Division of Gastroenterology and Hepatology,
Joan & Sanford I. Weill Department of Medicine
Weill Cornell Medical College
New York, NY, USA

Ana Maria Cuervo
Department of Developmental and Molecular Biology
Institute for Aging Research, Albert Einstein College of Medicine
Bronx, NY, USA

Wenqi Cui
Department of Biochemistry, Molecular Biology and Biophysics
University of Minnesota
Minneapolis, MN, USA
Lily Dara
Research Center for Liver Disease, Department of Medicine,
Division of Gastrointestinal and Liver Diseases
Keck School of Medicine, University of Southern California
Los Angeles, CA, USA

Evan R. Delgado
Department of Pathology
McGowan Institute for Regenerative Medicine, Pittsburgh
Liver Research Center
University of Pittsburgh
Pittsburgh, PA, USA

Anna Mae Diehl
School of Medicine, Duke University
Durham, NC, USA

Juan Dominguez-Bendala
Department of Medicine and Medical Specialties
Sapienza University of Rome
Rome, Italy;
Diabetes Research Institute, Miller School of Medicine
University of Miami
Miami, FL, USA

Andrew W. Duncan
Department of Pathology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh
Pittsburgh, PA, USA

Stephen A. Duncan
Department of Regenerative Medicine and Cell Biology
Medical University of South Carolina
Charleston, SC, USA

Hashem B. El-Serag
Department of Medicine
Baylor College of Medicine and Michael E. DeBakey Veterans Affairs Medical Center
Houston, TX, USA

Patrizia Farci
Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health
Bethesda, MD, USA

Katherine I. Farley-Barnes
Department of Molecular Biophysics & Biochemistry
Yale University School of Medicine
New Haven, CT, USA

Carlo Ferrari
Unit of Infectious Diseases and Hepatology
Department of Medicine and Surgery, University of Parma
Parma, Italy

Romina Fiorotto
International Center for Digestive Health (ICDH), University of Milan-Bicocca
Monza, Italy;

Liver Center and Section of Digestive Diseases, Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine
New Haven, CT, USA

Scott L. Friedman
Division of Liver Diseases
Icahn School of Medicine at Mount Sinai
New York, NY, USA

Claudia D. Fuchs
Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology Department of Internal Medicine III
Medical University of Vienna
Vienna, Austria

Bin Gao
Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism
National Institutes of Health
Bethesda, MD, USA

Daniel Garcia
Molecular and Cell Biology Laboratory
The Salk Institute for Biological Studies
La Jolla, CA, USA

Eugenio Gaudio
Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences
Sapienza University of Rome
Rome, Italy

Helmuth Gehart
Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) Utrecht
Utrecht, The Netherlands

David Gerber
Department of Surgery
University of North Carolina School of Medicine
Chapel Hill, NC, USA

Christoph G.W. Gertzen
Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany

Marc G. Ghany
Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases
National Institutes of Health
Bethesda, MD, USA

Jean-Pierre Gillet
Laboratory of Molecular Cancer Biology, URPhyM, NARILIS
Faculty of Medicine, University of Namur
Namur, Belgium

Paul Gissen
UCL Great Ormond Street Institute of Child Health and Great Ormond Street Hospital for Children, London, UK
Joseph S. Glavy
University of Texas at Tyler
Fisch College of Pharmacy
Tyler, TX, USA

Wolfram Goessling
Division of Gastroenterology
Massachusetts General Hospital
Harvard-MIT Division of Health Sciences and Technology
Harvard Medical School
Boston, MA, USA

Holger Gohlke
Institute of Pharmaceutical and Medicinal Chemistry,
Heinrich-Heine University Düsseldorf, Düsseldorf, Germany

Ido Goldstein
Institute of Biochemistry, Food Science and Nutrition
The Robert H. Smith Faculty of Agriculture, Food and Environment
The Hebrew University of Jerusalem
Rehovot, Israel

Victor R. Gordeuk
University of Illinois at Chicago
Chicago, IL, USA

Gregory J. Gores
College of Medicine, Division of Gastroenterology and Hepatology
Mayo Clinic
Rochester, MN, USA

Michael M. Gottesman
Laboratory of Cell Biology, Center for Cancer Research
National Cancer Institute, National Institutes of Health
Bethesda, MD, USA

Tim F. Greten
Thoracic and Gastrointestinal Malignancies Branch
Center for Cancer Research, National Cancer Institute
Bethesda, MD, USA

Joe W. Grisham
Department of Pathology and Laboratory Medicine
University of North Carolina
Chapel Hill, NC, USA

Markus Grompe
Papé Pediatric Research Institute
Oregon Health Sciences University
Portland, OR, USA

Roberto J. Groszman
Section of Digestive Diseases, Yale School of Medicine
New Haven, CT, USA

Mateus T. Guerra
Departments of Medicine and Cell Biology
Yale University School of Medicine
New Haven, CT, USA

Chandan Guha
Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY;
Departments of Radiation Oncology and Pathology, Albert Einstein College of Medicine
Bronx, NY, USA

Ju-Tao Guo
Baruch S. Blumberg Institute
Doylestown, PA, USA

Arnab Gupta
Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India

Emina Halilbasic
Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology Department of Internal Medicine III
Medical University of Vienna
Vienna, Austria

Homayoun Hani
Department of Cell Biology and Physiology
University of North Carolina School of Medicine
Chapel Hill, NC, USA

Dieter Häussinger
Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf Medical Faculty at Heinrich-Heine-University
Düsseldorf, Germany

Ramanujan S. Hegde
MRC Laboratory of Molecular Biology
Cambridge, UK

James A. Heslop
Department of Regenerative Medicine and Cell Biology
Medical University of South Carolina
Charleston, SC, USA

Alan R. Hinman
Task Force for Global Health
Decatur, GA, USA

Rong Hua
Cell Biology Program, Hospital for Sick Children
Toronto, ON, Canada

Nicholas J. Hunt
Centre for Education and Research on Ageing
University of Sydney and Concord RG Hospital
Sydney, NSW, Australia

Yasuko Iwakiri
Section of Digestive Diseases
Yale University School of Medicine
New Haven, CT, USA
Catherine L. Jackson
Institut Jacques Monod, UMR7592 CNRS Université Paris-Diderot, Sorbonne Paris Cité
Paris, France

Michel Jadot
Laboratory of Physiological Chemistry, URPhyM, NARILIS, Faculty of Medicine
University of Namur, Belgium

Hartmut Jaeschke
Department of Pharmacology, Toxicology and Therapeutics
University of Kansas Medical Center
Kansas City, KS, USA

Peter L.M. Jansen
Department of Hepatology and Gastroenterology
Academic Medical Center
Amsterdam, The Netherlands;
LiSyM research network
University of Freiburg
Freiburg, Germany

Stephen G. Kaler
Section on Translational Neuroscience, Molecular Medicine Branch
Intramural Research Program, National Institutes of Health
Bethesda, MD, USA

Neil Kaplowitz
Research Center for Liver Disease, Department of Medicine, Division of Gastrointestinal and Liver Diseases
Keck School of Medicine, University of Southern California
Los Angeles, CA, USA

Devika Kapuria
Liver Energy and Metabolism Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases
National Institutes of Health
Bethesda, MD, USA

Susmita Kaushik
Department of Developmental and Molecular Biology
Institute for Aging Research, Albert Einstein College of Medicine
Bronx, NY, USA

Verena Keitel
Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf Medical Faculty at Heinrich-Heine-University
Düsseldorf, Germany

Peter K. Kim
Cell Biology Program, The Hospital for Sick Children; Department of Biochemistry, University of Toronto
Toronto, ON, Canada

So Yeon Kim
Division of Digestive and Liver Diseases, Department of Medicine
Cedars-Sinai Medical Center
Los Angeles, CA, USA

Isaku Kohama
Division of Molecular and Cellular Medicine, National Cancer Center Research Institute
Tsukiji, Tokyo, Japan

George F. Koob
National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse
National Institutes of Health
Bethesda, MD, USA

Michael S. Kriss
Division of Gastroenterology & Hepatology
University of Colorado School of Medicine
Aurora, CO, USA

Gerd A. Kullak-Ublick
University Hospital Zurich and University of Zurich
Zurich, Zurich, Switzerland;
Mechanistic Safety, Chief Medical Office and Patient Safety, Novartis Global Drug Development
Basel, Switzerland

Mukesh Kumar
Department of Biological Sciences, Tata Institute of Fundamental Research, Navy Nagar, Colaba, Mumbai, India

Hyokjoon Kwon
Department of Medicine, Division of Endocrinology, Metabolism and Nutrition
Rutgers-Robert Wood Johnson Medical School
New Brunswick, NJ, USA

Michael M.C. Lai
China Medical University and China Medical University Hospital
Taichung, Taiwan

Frank Lammert
Department of Medicine II
Saarland University Medical Center
Homburg, Germany

Giacomo Lanzoni
Diabetes Research Institute, Miller School of Medicine
University of Miami
Miami, FL, USA

Nicholas LaRusso
Division of Gastroenterology and Hepatology
Mayo Clinic College of Medicine
Rochester, MN, USA

David G. Le Couteur
Centre for Education and Research on Ageing
University of Sydney and Concord RG Hospital
Sydney, NSW, Australia

Ju-Seog Lee
Department of Systems Biology
The University of Texas M.D. Anderson Cancer Center
Houston, TX, USA
Youngmin A. Lee
Department of Surgery, Vanderbilt University Medical Center
Nashville, TN, USA

Lorenzo Leggio
Section on Clinical Psychoneuroendocrinology and
Neuropsychopharmacology, National Institute on Alcohol
Abuse and Alcoholism and National Institute on Drug Abuse
National Institutes of Health
Bethesda, MD, USA

M. Fatima Leite
Department of Physiology and Biophysics
UFGM
Belo Horizonte, Brazil

Frédéric Lemaigre
Université catholique de Louvain, de Duve Institute
Brussels, Belgium

John J. Lemasters
Departments of Drug Discovery and Biomedical Sciences and
Biochemistry and Molecular Biology
Medical University of South Carolina
Charleston, SC, USA

Marilyn E. Levi
Department of Medicine, Division of Infectious Diseases,
University of Colorado
Aurora, CO, USA

Moshe Levi
Department of Biochemistry and Molecular and Cellular
Biology
Georgetown University
Washington, DC, USA

W. Thomas London (deceased)
Formerly, Fox Chase Cancer Center
Philadelphia, PA, USA

Man Li
The Liver Center, Yale University School of Medicine
New Haven, CT, USA

Tiangang Li
Department of Pharmacology, Toxicology and Therapeutics
University of Kansas Medical Center
Kansas City, KS, USA

Yanfeng Li
Departments of Medicine and Genetics and Marion Bessin
Liver Research Center
Albert Einstein College of Medicine, Bronx, NY, USA

Marc Liesa
Department of Medicine, Division of Endocrinology and
Department of Molecular and Medical Pharmacology
David Geffen School of Medicine at UCLA
Los Angeles, CA, USA

Mariana Verdelho Machado
Gastroenterology and Hepatology Department
Hospital de Santa Maria
CHLN, Lisbon;
Faculty of Medicine
Lisbon University
Lisbon, Portugal

Harmeet Malhi
College of Medicine, Division of Gastroenterology and Hepatology
Mayo Clinic
Rochester, MN, USA

Roop Mallik
Department of Biological Sciences, Tata Institute of
Fundamental Research, Navy Nagar, Colaba, Mumbai, India

Uri Manor
Waitt Advanced Biophotonics Center, Salk Institute for
Biological Studies
La Jolla, CA, USA

Douglas G. Mashek
Department of Biochemistry, Molecular Biology and
Biophysics and Department of Medicine, Division of Diabetes,
Endocrinology and Metabolism
University of Minnesota
Minneapolis, MN, USA

William S. Mason
Fox Chase Cancer Center
Philadelphia, PA, USA

Anatoliy Masyuk
Division of Gastroenterology and Hepatology
Mayo Clinic College of Medicine
Rochester, MN, USA

Tatyana Masyuk
Division of Gastroenterology and Hepatology
Mayo Clinic College of Medicine
Rochester, MN, USA

Mark A. McNiven
Department of Biochemistry and Molecular Biology, Division
of Gastroenterology and Hepatology, Mayo Clinic
Rochester, MN, USA

Xiang-Jin Meng
Department of Biochemical Pharmacology, Emory University
School of Medicine
Atlanta, GA, USA

Seema Mengshetti
Laboratory of Biochemical Pharmacology, Emory University
School of Medicine
Atlanta, GA, USA

George K. Michalopoulos
Department of Pathology
University of Pittsburgh School of Medicine
Pittsburgh, PA, USA
Maria M. Mihaylova
Molecular and Cell Biology Laboratory
The Salk Institute for Biological Studies
La Jolla, CA, USA

Nathanael Miller
Department of Medicine, Division of Endocrinology and
Department of Molecular and Medical Pharmacology
David Geffen School of Medicine at UCLA
Los Angeles, CA, USA

Fatemeh Momen-Heravi
Department of Medicine
University of Massachusetts Medical School
Worcester, MA, USA

Mario U. Mondelli
Division of Infectious Diseases and Immunology, Fondazione
IRCCS Policlinico S.Matteo, Pavia;
Department of Internal Medicine and Therapeutics
University of Pavia, Pavia, Italy

Satdarshan P.S. Monga
Pittsburgh Liver Research Center
University of Pittsburgh, School of Medicine and UPMC
Pittsburgh, PA, USA

Maria M. Mota
Instituto de Medicina Molecular João Lobo Antunes,
Faculty of Medicine, University of Lisbon, Lisbon,
Portugal

Anne Müsch
Department of Developmental & Molecular Biology
Albert Einstein College of Medicine
Bronx, NY, USA

John W. Murray
Marion Bessin Liver Research Center
Albert Einstein College of Medicine;
Department of Anatomy and Structural Biology, Albert
Einstein College of Medicine
Bronx, NY, USA

Peter Nagy
First Department of Pathology and Experimental Cancer
Research, Semmelweis University, Budapest, Hungary

Charles P. Najt
Department of Biochemistry, Molecular Biology and
Biophysics
University of Minnesota
Minneapolis, MN, USA

Michael H. Nathanson
Departments of Medicine and Cell Biology
Yale University School of Medicine
New Haven, CT, USA

Jean-Charles Nault
Centre de Recherche des Cordeliers, Sorbonne Université,
Inserm, Université de Paris, Functional Genomics of Solid
Tumors Laboratory, Paris, France

Liver Unit, Hôpital Jean Verdier, Hôpitaux Universitaires
Paris-Seine-Saint-Denis, Assistance-Publique Hôpitaux de
Paris, Bondy, France

Takahiro Ochiya
Division of Molecular and Cellular Medicine, National Cancer
Center Research Institute
Tsukiji, Tokyo
Institute of Medical Science, Tokyo Medical University
Shinjuku, Tokyo, Japan
Janelia Research Campus, Ashburn, VA, USA

Carolyn M. Ott
Janelia Research Campus
Ashburn, VA, USA

Michael Pack
Departments of Medicine (GI Division) and Cell and
Developmental Biology
Perelman School of Medicine, University of Pennsylvania
Philadelphia, PA, USA

David H. Perlmutter
Department of Pediatrics, Division of Gastroenterology,
Hepatology, and Nutrition and Department of
Developmental Biology, Washington University School
of Medicine in St. Louis, St. Louis Children’s Hospital,
St. Louis, MO, USA

Jeffrey E. Pessin
Albert Einstein-Mount Sinai Diabetes Research Center and
the Fleischer Institute for Diabetes and Metabolism, Albert
Einstein College of Medicine, Bronx, NY;
Department of Medicine and Department of Molecular
Pharmacology, Albert Einstein College of Medicine,
Bronx, NY, USA

Kitt Falk Petersen
Department of Internal Medicine, Section of Endocrinology
Yale University School of Medicine
New Haven, CT, USA

Max C. Petersen
Department of Internal Medicine, Section of Endocrinology,
and Department of Molecular and Cellular Physiology
Yale University School of Medicine
New Haven, CT, USA

Thomas Pietschmann
Institute of Experimental Virology, TWiNCORE,
Centre for Experimental and Clinical Infection Research,
Hannover;
German Centre for Infection Research (DZIF)
Braunschweig, Germany

Lola Reid
Department of Cell Biology and Physiology
Program in Molecular Biology and Biotechnology
University of North Carolina School of Medicine
Chapel Hill, NC, USA

Hugo R. Rosen
University of Southern California Keck School of Medicine
Los Angeles, CA, USA
Yaron Rotman
Liver Energy and Metabolism Section, Liver Diseases Branch,
National Institute of Diabetes and Digestive and Kidney Diseases
National Institutes of Health
Bethesda, MA, USA

Tracey A. Rouault
Eunice Kennedy Shriver National Institute of Child Health and Human Development
National Institutes of Health
Bethesda, MD, USA

Nairita Roy
Department of Pathology
McGowan Institute for Regenerative Medicine, Pittsburgh
Liver Research Center
University of Pittsburgh
Pittsburgh, PA, USA

Jayanta Roy Chowdhury
Departments of Medicine and Genetics and Marion Bessin Liver Research Center
Albert Einstein College of Medicine
Bronx, NY, USA

Namita Roy Chowdhury
Departments of Medicine and Genetics and Marion Bessin Liver Research Center
Albert Einstein College of Medicine
Bronx, NY, USA

David A. Rudnick
Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition and Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis Children’s Hospital St. Louis, MO, USA

K. Lenhard Rudolph
Research Group on Stem Cell Aging, Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)
Jena, Germany

Varman T. Samuel
Department of Internal Medicine, Section of Endocrinology
Yale University School of Medicine
New Haven;
Veterans Affairs Medical Center
West Haven, CT, USA

Sonja C. Schätzlein
Spark@FLI, Leibniz Institute on Aging – Fritz Lipmann Institute (FLI)
Jena, Germany

Raymond F. Schinazi
Laboratory of Biochemical Pharmacology, Emory University School of Medicine
Atlanta, GA, USA

Micah B. Schott
Department of Biochemistry and Molecular Biology, Division of Gastroenterology and Hepatology, Mayo Clinic
Rochester, MN, USA

Barbara Schroeder
Department of Biochemistry and Molecular Biology, Division of Gastroenterology and Hepatology, Mayo Clinic
Rochester, MN, USA

Robert F. Schwabe
Columbia University
New York, NY, USA

Christoph Seeger
Fox Chase Cancer Center
Philadelphia, PA, USA

Ekihiro Seki
Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA;
Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA

Praveen Sethupathy
Department of Genetics
University of North Carolina School of Medicine
Chapel Hill, NC;
Department of Biomedical Sciences
Cornell University
Ithaca, NY, USA

David A. Shafritz
Marion Bessin Liver Research Center
Albert Einstein College of Medicine
Bronx, NY, USA

Linshan Shang
Department of Biochemistry, Molecular Biology and Biophysics
University of Minnesota
Minneapolis, MN, USA

Reuben J. Shaw
Molecular and Cell Biology Laboratory
The Salk Institute for Biological Studies
La Jolla, CA, USA

Junxing Shi
Laboratory of Biochemical Pharmacology, Emory University School of Medicine
Atlanta, GA, USA

Jae-Jun Shim
Department of Internal Medicine, Kyung Hee University College of Medicine
Seoul, Korea

Orian S. Shirihai
Department of Medicine, Division of Endocrinology and Department of Molecular and Medical Pharmacology
David Geffen School of Medicine at UCLA
Los Angeles, CA, USA

Gerald I. Shulman
Department of Internal Medicine, Section of Endocrinology
Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute
Yale University School of Medicine
New Haven, CT, USA
Bård Smedsrød
Vascular Biology Research Group, Department of Medical Biology
UiT The Arctic University of Norway
Tromsø, Norway

Quinton B. Smith
Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA

Erik Lee Snapp
Janelia Research Campus of the Howard Hughes Medical Institute
Ashburn, VA, USA

Raymond E. Soccio
University of Pennsylvania
Perelman School of Medicine, Department of Medicine
Division of Endocrinology, Diabetes, and Metabolism
Institute for Diabetes, Obesity, and Metabolism
Philadelphia Crescenz VA Medical Center
Philadelphia, PA, USA

Bo Hwa Sohn
Department of Systems Biology
The University of Texas M.D. Anderson Cancer Center
Houston, TX, USA

Karen K. Sørensen
Vascular Biology Research Group, Department of Medical Biology
UiT The Arctic University of Norway
Tromsø, Norway

Lina Spomer
Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf Medical Faculty at Heinrich-Heine-University
Düsseldorf, Germany

David C. Spray
Marion Bessin Liver Research Center, Albert Einstein College of Medicine
Department of Neuroscience, Albert Einstein College of Medicine
Department of Medicine, Albert Einstein College of Medicine
Bronx, NY, USA

Elizabeth C. Stahl
Department of Pathology
McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center
University of Pittsburgh
Pittsburgh, PA, USA

Mario Strazzabosco
International Center for Digestive Health (ICDH), University of Milan-Bicocca, Monza, Italy;
Liver Center and Section of Digestive Diseases, Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA

Gyongyi Szabo
Beth Israel Deaconess Medical Center
Harvard Medical School
Boston, MA, USA

Shogo Takahashi
Department of Biochemistry and Molecular and Cellular Biology
Georgetown University
Washington, DC, USA

Sijia Tao
Laboratory of Biochemical Pharmacology, Emory University
School of Medicine
Atlanta, GA, USA

Richard J. Thompson
Institute of Liver Studies, King’s College London
London, UK

Snorri S. Thorgeirsson
Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA

Michael Trauner
Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology Department of Internal Medicine III
Medical University of Vienna
Vienna, Austria

Stefania Varchetta
Division of Infectious Diseases and Immunology, Fondazione IRCCS Policlinico S.Matteo, Pavia; Department of Internal Medicine and Therapeutics
University of Pavia, Italy

Michelle A. Veronin
University of Texas at Tyler
Fisch College of Pharmacy
Tyler, TX, USA

Gabrielle Vieyres
Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research
Hannover, Germany

Tiffany N. Vo
Institute for Medical Engineering and Science, Massachusetts Institute of Technology
Cambridge, MA, USA

Christopher M. Walker
Center for Vaccines and Immunity, The Research Institute at Nationwide Children’s Hospital, and College of Medicine, The Ohio State University
Columbus, OH, USA

Xiaoxin X. Wang
Department of Biochemistry and Molecular and Cellular Biology
Georgetown University
Washington, DC, USA
John W. Ward
Task Force for Global Health, Decatur, GA;
Centers for Disease Control and Prevention
Atlanta, GA, USA

Eliane Wauthier
Department of Cell Biology and Physiology
University of North Carolina School of Medicine
Chapel Hill, NC, USA

Aubrey V. Weigel
Janelia Research Campus of the Howard Hughes Medical Institute
Ashburn, VA, USA

Rebecca G. Wells
Departments of Medicine (GI Division) and Pathology and
Laboratory Medicine, Perelman School of Medicine, and
Biomedical Engineering, School of Engineering and Applied Sciences
University of Pennsylvania
Philadelphia, PA, USA

Patrick D. Wilkinson
Department of Pathology
McGowan Institute for Regenerative Medicine, Pittsburgh
Liver Research Center
University of Pittsburgh
Pittsburgh, PA, USA

Allan W. Wolkoff
Division of Gastroenterology and Liver Diseases
Marion Bessin Liver Research Center
Albert Einstein College of Medicine and Montefiore Medical Center
Bronx, NY, USA

Xiaogang Xiang
Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism
National Institutes of Health
Bethesda, MD, USA;
Department of Infectious Diseases, Ruijin Hospital, School of Medicine
Shanghai Jiao Tong University
Shanghai, China

Yusuke Yamamoto
Division of Molecular and Cellular Medicine, National Cancer Center Research Institute
Tsukiji, Tokyo, Japan

Ling Yi
Section on Translational Neuroscience, Molecular Medicine Branch
Intramural Research Program, National Institutes of Health
Bethesda, MD, USA

Xianwen Yi
Department of Surgery
University of North Carolina School of Medicine
Chapel Hill, NC, USA

Sun Young Yim
Department of Internal Medicine, Korea University College of Medicine
Seoul, Korea

Lexing Yu
Second Military Medical University
Shanghai, China

Kenneth S. Zaret
Institute for Regenerative Medicine, Department of Cell and Developmental Biology
Perelman School of Medicine, University of Pennsylvania
Philadelphia, PA, USA

Wencheng Zhang
Department of Cell Biology and Physiology
University of North Carolina School of Medicine
Chapel Hill, NC, USA

Jessica Zucman-Rossi
Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Functional Genomics of Solid Tumors Laboratory, Paris, France;
Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris
Paris, France

Vanessa Zuzarte-Luis
Instituto de Medicina Molecular João Lobo Antunes
Faculty of Medicine, University of Lisbon
Lisbon, Portugal
The pace of discoveries in basic biomedical sciences and engineering and their application to diagnosis and treatment of liver disease continues to exceed greatly the expectations expressed in the Preface to the previous editions published in 1982, 1988, 1994, 1999, and 2009. Concomitantly, the challenge addressed by this book has not changed since first appearing in the Preface to the first edition over 30 years ago:

The amazing advances in fundamental biology that have occurred within the past two decades have brought hepatology and other disciplines into new, uncharted and exciting waters. The dynamic changes in biology will profoundly influence our ability to diagnose, treat and prevent liver disease. How can a student of the liver and its diseases maintain a link to these exciting advances? Most physicians lack the time to take post-graduate courses in basic biology; most basic researchers lack an understanding of liver physiology and disease. This book strives to bridge the ever-Increasing gap between the advances in basic biology and their application to liver structure, function and disease.

Molecular biology was not the only great wave in contemporary science, nor is it surely the last. Remarkable advances in genetics and various omics are increasingly linked with dynamic super-resolution light microscopy, which permits the study of cellular, molecular, and organ-based physiology at nano-levels. The expanding worlds of RNA structure and function, CRISPR-type gene editing, and chromatin biology coupled with single-cell and single-molecule genomic analyses are facilitating discoveries with great importance in organ physiology and medicine, including personalized diagnosis and treatment. Unexpected discoveries are certain to emerge from the ongoing bridge-building between chemical and physical structural analysis, engineered drug design, signaling networks, immune mechanisms and tolerance, the brain, and metabolic/digestive functions. Discoveries in these disciplines have already facilitated diagnosis, treatment, and improved clinical outcome of many liver diseases. Much more is undoubtedly yet to come.

This sixth edition contains new chapters that present major progress that has been achieved in research laboratories and clinics around the world. All other chapters have been completely revised and updated. Following the death of our colleague Nelson Fausto, Snorri Thorgeirsson became an Associate Editor. Previous editions included a section called “Horizons,” devoted to extraordinary advances in areas of potentially major importance to the liver. Virtually all of these fields have rapidly expanded and become topics for later chapters. Sixteen new “Horizons” chapters are presented in this edition. One may safely predict that their impact on the field of hepatology will be considerable. As stated in the Preface to previous editions:

The amazing advance in science proceeds at an ever-Increasing pace. The implications for students of liver disease are considerable. The authors and editors will have achieved our goals if the reader finds within this volume glimpses into the current state and future direction of our discipline and perspectives that lead to better understanding of liver function and disease.
We thank the distinguished authors for their expertise, enthusiastic participation, and patience in responding to editorial suggestions. Appreciation is also extended to the staff of Wiley Blackwell and also to the freelance project manager Gillian Whitley.
PART ONE:

INTRODUCTION
PRINCIPLES OF LIVER STRUCTURE AND FUNCTION

The liver is the largest organ of the mammalian body and has a highly versatile and complex function. Its specialized role is shown by the fact that, despite intense efforts, the activity of the liver cannot be replaced by artificial equipment. The liver participates in the maintenance of the organism’s homeostasis as an active, bidirectional biofilter. It is classed as bidirectional because it filters the portal blood that transports nutritional and toxic compounds from the environment through the gastrointestinal tract and also filters the systemic blood (the body’s own products, e.g. bilirubin), providing the only channel of the body, the biliary system, through which non-water-soluble substances can be removed. It is classed as an active filter because it rapidly metabolizes most nutritional compounds and neutralizes and prepares for removal toxic exogenous (xenobiotics) and endogenous (worn out) materials. Because of these major functions the liver is constantly exposed to intense microbiological and antigenic stimuli which require function of the innate and adaptive immune systems. These diversified functions are executed by a structurally complex, multicellular tissue with a unique angioarchitecture, and by the combined and integrated activities of the participants.

There are only two unique cell types in the liver – hepatocytes and biliary cells (or cholangiocytes). The hepatocytes are “the most valuable” parenchymal cells of the hepatic tissue. They do not constitute a homogeneous cell population. They are highly polarized cells (i.e. molecular specializations of the various surface membranes, including receptors, pumps, transport channels and carrier proteins) and their functions and to a certain extent morphology depend on their location in the parenchyma. This polarization makes the hepatocytes the logical center of the liver. In addition, they perform the most complex metabolic tasks of the mammalian organism.

The cholangiocytes form the channels that constitute the biliary system, which drains the parenchyma and guarantees the permanent flow of the bile, a highly toxic solution. Cholangiocytes also modify the composition of the bile and, in case of adverse conditions, can participate in repair mechanisms. These liver cells could not carry out their specific functions, of course, without the support of several “communal” cell types, which are highly adapted to the special function and architecture of the liver. The endothelial cells of the parenchyma have a unique fenestrated structure and various different subpopulations can be distinguished. There are several subpopulations of hepatic myofibroblasts as well. In addition to their mechanical functions the myofibroblasts can store special substances (e.g. vitamin A in stellate cells) and are a major source of growth factors and cytokines. The Kupffer cells are the resident macrophages in the liver. In addition to filtering the blood, they perform their traditional immunoregulatory function. The presence of almost all subtypes of lymphocytes and dendritic cells makes the liver the largest organ of the immune system. The mesothelial cells of the Glisson capsule are, beside their mechanical function, an important source of lymph production and can contribute to the generation of other hepatic cell types. The features of the hepatic extracellular matrix are unique. The components of the basement membrane are present around the sinusoids in an “unstructured” fashion, and cannot be detected by electron microscope, yet they can perform certain functions.

Another fundamental feature of liver organization is its unique vascular pattern. Two afferent vessels supply blood to the liver: the portal vein and the hepatic artery. The blood of the portal vein, having already “drained” the stomach, gut, pancreas, and spleen, is reduced in oxygen and pressure, and is
enriched in nutrients and toxic materials absorbed from the alimentary tract and in viscerally generated hormones and growth factors. The arterial blood of the hepatic artery has systemic levels of oxygen, pressure, and composition. The major function of the hepatic artery is to supply the peribiliary vascular plexus, the portal tract interstitium, the hepatic capsule, and the vasa vasorum of major vessels. In some species, the hepatic artery forms anastomosis with the branches of the portal vein, but even then this blood also ends up in the sinusoids. The blood of the liver is collected by one efferent draining system, the hepatic or “central” veins, which reach the systemic circulation via the inferior vena cava. The sinusoids form a very special vascular system, which is interposed between the afferent and efferent vessels. The large number and capacity of the sinusoids and the special arrangement of the supplying vessels provide a large volume of blood at a high flow rate via the large vessels with high compliance and capacity. At the same time the sinusoids are perfused with blood at low pressure and flow rate. These arrangements (i.e. low flow, specifically fenestrated (perforated) endothelial cells, and the lack of the structured basement membrane) provide an especially efficient communication between the blood and hepatocytes. This is well illustrated by the pathologic condition of liver cirrhosis, when the changes in hemodynamic condition (i.e. the “capillarization” of the sinusoids) disrupts this communication, resulting in severe dysfunction of the liver.

Bile acids and their enterohepatic circulation are another good example of the cumulating functions. The bile acids are synthesized in the hepatocytes by a complex biochemical process that requires 16 different enzymes, which are further modified by the gut microbiota. The primary physiological function of the bile acids is to convert lipid bilayers into micelles. This makes possible the excretion of important waste products from the blood. The bile acids also emulsify elements of the food in the gut and aid their absorption. In addition, bile acids act as signaling molecules, synchronizing the cooperation of the liver and gut.

The different types of cells and vessels mentioned above can operate only if they are organized in a well “designed” structure. The most widely studied and analyzed morphological and functional unit or module of the liver is the hepatic lobule. The popularity of this structure for studies can be partly explained by the fact that lobules are outlined nicely in some species (pig, camel, bear) by connective tissue septa, and can therefore be easily recognized on the two-dimensional histological sections commonly used in structural studies. The idealized lobule has a polygonal (usually hexagonal) shape. The terminal branch of the hepatic vein (central vein) is in the center of the lobule while the corners are occupied by the “portal triads.” The components of the triad are the interlobular bile ducts and the terminal branches of the portal vein and hepatic artery. The blood carried by these afferent vessels is distributed by the inlet venules and arteries along the virtual “vascular septa.” This vascular frame is filled up columns (or sheets in three-dimensional space) of the hepatocytes constructed as “plates” arranged in a radial fashion. The hepatic plates are separated by the similarly distributed sinusoids. The blood runs in a centripetal direction from the vascular septa to the central vein. The vascular septa secure the mixing of the portal venous and arterial blood and the more-or-less equal supply to the sinuses. The bile produced by the hepatocytes runs in a centrifugal direction in the bile canalicules formed by neighboring hepatocytes and is collected by the interlobular bile ducts of the portal triads. There is thus a countercurrent between the flow of the blood and bile at lobular level.

FUNCTIONAL ANATOMY OF THE LIVER

Macroanatomy

The liver is a continuous sponge-like parenchymal mass penetrated by tunnels (lacunae) that contain the interdigitating networks of afferent and efferent vessels [1]. The adult human liver weighs from 1300 to 1700 g, depending on sex and body size. It is relatively small compared to other species (2% of the body weight) – in rat and mouse the liver is 4–5% of the body.

In most mammalian species the liver is multilobed, the individual lobes reflecting the distribution of the major branches of afferent and efferent blood vessels. In contrast, the human liver parenchyma is fused into a continuous parenchymal mass with two major lobes, right and left, delineated only by being supplied and drained by separate first- and second-order branches of the portal and hepatic veins. Right and left lobes are topographically separated by the remnants of the embryonic umbilical vein (the falciform ligament), but this landmark does not locate the true anatomic division. Anatomically, the medial segment of the left lobe is located to the right side of the falciform ligament, centered on the anterior branches of the left portal vein. Interdigitation of first- and second-order branches of the portal and hepatic veins produces eight macrovascular parenchymal segments centered on large portal veins and separated by large hepatic veins [2]. Hemodynamic watersheds or fissures separating afferent and efferent macrovascular segments permit the surgical resection of individual or adjacent segments.

Liver transplantation and surgery has reached such a complexity, however, that the traditional eight-segment scheme is no longer sufficient. Detailed histological and imaging investigations have revealed that the number of second-order branches given off by the left and right portal veins is much higher, and the mean of their number is 20, leading to the “1–2–20” concept of portal venous segmentation [3]. The recognition of the watershed septa between the variable actual segments is helped by intraoperative imaging techniques in real operative situations.

Microanatomy

Normal liver function requires the unique arrangement of basic components of hepatic tissue: portal vein, hepatic artery, bile duct, hepatic vein, and hepatocytes. These form in two-dimensional sheets the above-mentioned hepatic (classical of Kiernan’s) lobules. Profiles of portal tracts and hepatic veins of various sizes are a prominent feature of liver histology [4–6]. Smaller branches of the afferent and efferent vessels (together with their stromal components) predominate in tissue sections taken from peripheral, subcapsular locations, whereas tissue sections taken from more proximal areas nearer to the hilum contain larger vascular structures [6]. These vascular/stromal elements are contained in tunnels (lacunae) that penetrate the
parenchymal mass [4]. The hepatocytes arranged in plates fill in the space between the portal tracts and hepatic veins (Figure 1.1). The hepatic plates form brick-like walls (muralia) of hepatocytes one cell (one brick) thick. The first hepatocytes of the hepatic plates form a virtual barrier between the periportal connective tissue and the liver parenchyma called a limiting plate.

The blood vessels and their investments of connective tissue provide the soft, spongy liver with its major structural support, or “skeleton.” Larger afferent vessels, portal veins, and hepatic arteries are contained together with bile ducts in connective tissue – the portal tracts – which are continuous with the mesenchymal components of the liver’s mesothelium-covered surface capsule (Glisson’s capsule). Portal tracts also contain lymphatic vessels, nerves, and varying populations of other types of cells, such as macrophages, immunocytes, myofibroblasts, and possibly hematopoietic stem cells (see [7] and references therein). The collagenous investment of the efferent vessels is less robust and lacks large numbers of adventitious cells.

The hepatic artery is distributed to the tissues of portal tracts, the liver capsule, and the walls of large vessels [4–6]. In portal tracts arterial branches form a capillary network (the peribiliary plexus) arborized around bile ducts [8, 9]. Efferent twigs from the peribiliary plexus empty into adjacent portal veins in rat and mouse but not in human and hamster [10]. The portal vein supplies blood to the parenchymal mass through the so-called inlet venules [9, 11].

In histological sections of mammalian liver, afferent and efferent vessels interdigitate regularly in an approximate ratio of 5–6 portal tracts for each profile of a hepatic vein, to form a pattern of cross-sections of portal tracts and hepatic veins separated by parenchyma [5, 6]. Most of the cross-sectioned portal tracts contain preterminal hepatic venules. These vessels represent the seventh- to tenth-order branches from the hilar portal vein in large mammals, such as humans. These small portal tracts and hepatic (central) veins penetrate the parenchyma in nearly parallel orientations about 0.5–1.0 mm apart. The portal inlet venules are very short vessels with no smooth muscle in their walls. They branch from preterminal and terminal venules at points on the circumference of the lobules at about 120 radial degrees (triradial branching) and penetrate the parenchyma together with terminal arteriolar branches approximately perpendicular to and midway between two adjacent terminal hepatic venules [5, 6]. During their course through the parenchyma portal inlet venules break up completely into sinusoids, which are oriented more or less perpendicularly to the veins. Because they are hardly larger than sinusoids, the inlet venules are not conspicuous in humans and other mammals that lack a definite connective sheath around them. However, in adult swine their course through the parenchyma is clearly marked by connective tissue.

Capillary-size sinusoids occupy the smallest and most numerous tunnels (lacunae) in the parenchymal mass [4]. Unlike capillaries elsewhere, liver sinusoids are composed of endothelial cells that are penetrated by holes (fenestrae) and lack a structured basal membrane [12], features that allow free egress of the fluid components and solutes of the perfusing blood. For example, tagged albumin has access to a space in the liver that is about 48% larger than the sinusoidal volume, in contrast to other tissues in which capillary space and albumin space are nearly the same [13]. In favorably oriented histological sections, more or less parallel, longitudinal profiles of sinusoids alternate with hepatic plates [14]. A narrow cleft, called the space of Disse, separates sinusoids from hepatocytes located in adjacent hepatic plates [12, 15]. At their proximal (portal venous) ends, sinusoids are narrow and somewhat tortuous, whereas their middle and distal (hepatic venous) portions are larger and straighter [9, 16, 17]. Sinusoids and hepatic plates are disposed radially around the draining hepatic veins and extend directly to the supplying inlet venules [17].

Three-dimensional reconstruction of the interlobular zone revealed the existence of a small vessel in this plane, the vascular septum, that serves as a starting pool for intralobular sinusoids. This is a hemodynamic barrier, a “watershed” between the two neighboring lobules. This “interlobular” septum contains connective tissue matrix in pig, camel, bear, etc. and outlines the lobules nicely; it also exists in a rudimentary form in human liver [18].

The bile – the excretion product of the hepatocytes – is collected and transported in bile canaliculi, which are formed by the apical sides of two adjacent hepatocytes in the hepatic plate. The network of canaliculi is drained into the interlobular bile ducts through interface structures called canals of Hering. These are intermediary structures constructed partly by hepatocytes or cholangiocytes (Figure 1.2). Since these structures are the primary candidates to harbor the hepatic stem cell compartment, they are the subject of intensive investigations [19]. The distribution of canals of Hering shows variation among different species. They are characterized by a distinct (EMA-/CD56+/CD133+) immunophenotype in humans, leave the periportal space and connect to hepatocytes of the limiting plate. The arterioles anastomose with the portal system at higher level as well. Courtesy of Sandor Paku, Semmelweis University, Budapest, Hungary.
The interlobular bile ducts are lined by a single layer of cuboidal cholangiocytes (Figure 1.3). They anastomose and unite larger septal and hilar branches. The connective tissue around the largest biliary branches contain peribiliary glands which also secrete into the biliary tract (Figure 1.3).

Teutsch and coworkers [20, 21] analyzed serial sections of rat and human livers to reconstruct the three-dimensional structure of hepatic tissue. Although there were differences between the two species, the basic arrangement was similar. The reconstruction revealed primary “modules,” which constructed a more complex “secondary” module. The integration was based on a common drainage by branches of the hepatic veins and supplying portal veins, and the modules were covered by continuous vascular septa. The primary modules correspond to the two-dimensional hepatic lobules. Quite a substantial variation in the shape and size of the modules was found, which provides morphogenetic plasticity to construct the whole organ. This modular arrangement can improve the interpretation of lesions, especially in pathologically altered livers, but it is certainly not easy to transform the two-dimensional observations into three-dimensional space.

Functional unit of the liver

The concept of the primary functional unit of the liver has been the subject of debate for more than 350 years since its description by Wepfler in 1664 [22]. The first and most widely accepted traditional unit of the liver is “Kiernan’s lobule” [23], as described earlier. This is the efferent microvascular segment, being the smallest unit of parenchyma that is drained of blood by a single efferent (terminal hepatic or central) vein. It is quite easy to identify it, especially in species where they are outlined by connective tissue. The major criticism of the concept is that the terminal afferent vessels through the vascular septa contribute to the blood supply of adjacent lobules, and therefore the lobule cannot be a “basic functional unit.” Rappaport defined the basic unit as the compartment of the hepatic parenchyma supplied with blood by a single terminal portal vein and called this unit the “liver acinus” [24]. Now we know that this unit is also supplied by a single terminal branch of the hepatic artery. The simple acinus is a parenchymal mass around a portal tract and it is drained by more hepatic venules. The acinus is subdivided into three zones, based on the distance from the portal vein. The distribution of these areas fits to the functional zonality of the hepatic parenchyma. Pathological lesions (e.g. steatosis or necrosis) also often follow this zonal pattern, which made this unit attractive. However, this zonality did not correspond perfectly to the distribution of enzyme activities and the hepatic modules described by Teutsch [20, 21] were also not compatible with the concept of the acinus.

Matsumoto and his colleagues [6] investigated the angioarchitecture of the human liver on thousands of serial sections, distinguishing conducting and parenchymal portions of the portal venous tree. A cone-shaped parenchymal portion (primary lobe) was defined which was supplied by a terminal portal venule.