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Foreword

As I review the material presented in the fourth edition of Bioinformatics I am moved in two
ways, related to both the past and the future.

Looking to the past, I am moved by the amazing evolution that has occurred in our field
since the first edition of this book appeared in 1998. Twenty-one years is a long, long time in
any scientific field, but especially so in the agile field of bioinformatics. To use the well-trodden
metaphor of the “biology moonshot,” the launchpad at the beginning of the twenty-first cen-
tury was the determination of the human genome. Discovery is not the right word for what
transpired — we knew it was there and what was needed. Synergy is perhaps a better word;
synergy of technological development, experiment, computation, and policy. A truly collabo-
rative effort to continuously share, in a reusable way, the collective efforts of many scientists.
Bioinformatics was born from this synergy and has continued to grow and flourish based on
these principles.

That growth is reflected in both the scope and depth of what is covered in these pages. These
attributes are a reflection of the increased complexity of the biological systems that we study
(moving from “simple” model organisms to the human condition) and the scales at which
those studies take place. As a community we have professed multiscale modeling without
much to show for it, but it would seem to be finally here. We now have the ability to connect the
dots from molecular interactions, through the pathways to which those molecules belong to
the cells they affect, to the interactions between those cells through to the effects they have on
individuals within a population. Tools and methodologies that were novel in earlier editions
of this book are now routine or obsolete, and newer, faster, and more accurate procedures are
now with us. This will continue, and as such this book provides a valuable snapshot of the
scope and depth of the field as it exists today.

Looking to the future, this book provides a foundation for what is to come. For me this is
a field more aptly referred to (and perhaps a new subtitle for the next edition) as Biomedi-
cal Data Science. Sitting as I do now, as Dean of a School of Data Science which collaborates
openly across all disciplines, I see rapid change akin to what happened to birth bioinformat-
ics 20 or more years ago. It will not take 20 years for other disciplines to catch up; I predict it
will take 2! The accomplishments outlined in this book can help define what other disciplines
will accomplish with their own data in the years to come. Statistical methods, cloud comput-
ing, data analytics, notably deep learning, the management of large data, visualization, ethics
policy, and the law surrounding data are generic. Bioinformatics has so much to offer, yet it
will also be influenced by other fields in a way that has not happened before. Forty-five years
in academia tells me that there is nothing to compare across campuses to what is happening
today. This is both an opportunity and a threat. The editors and authors of this edition should
be complimented for setting the stage for what is to come.

Philip E. Bourne, University of Virginia
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Preface

In putting together this textbook, we hope that students from a range of fields - including
biology, computer science, engineering, physics, mathematics, and statistics — benefit by hav-
ing a convenient starting point for learning most of the core concepts and many useful practical
skills in the field of bioinformatics, also known as computational biology.

Students interested in bioinformatics often ask about how should they acquire training in
such an interdisciplinary field as this one. In an ideal world, students would become experts
in all the fields mentioned above, but this is actually not necessary and realistically too much
to ask. All that is required is to combine their scientific interests with a foundation in biology
and any single quantitative field of their choosing. While the most common combination is
to mix biology with computer science, incredible discoveries have been made through finding
creative intersections with any number of quantitative fields. Indeed, many of these quantita-
tive fields typically overlap a great deal, especially given their foundational use of mathematics
and computer programming. These natural relationships between fields provide the founda-
tion for integrating diverse expertise and insights, especially when in the context of performing
bioinformatic analyses.

While bioinformatics is often considered an independent subfield of biology, it is likely that
the next generation of biologists will not consider bioinformatics as being separate and will
instead consider gaining bioinformatics and data science skills as naturally as they learn how to
use a pipette. They will learn how to program a computer, likely starting in elementary school.
Other data science knowledge areas, such as math, statistics, machine learning, data process-
ing, and data visualization will also be part of any core curriculum. Indeed, the children of one
of the editors recently learned how to construct bar plots and other data charts in kindergarten!
The same editor is teaching programming in R (an important data science programming
language) to all incoming biology graduate students at his university starting this year.

As bioinformatics and data science become more naturally integrated in biology, it is worth
noting that these fields actively espouse a culture of open science. This culture is motivated by
thinking about why we do science in the first place. We may be curious or like problem solving.
We could also be motivated by the benefits to humanity that scientific advances bring, such
as tangible health and economic benefits. Whatever the motivating factor, it is clear that the
most efficient way to solve hard problems is to work together as a team, in a complementary
fashion and without duplication of effort. The only way to make sure this works effectively
is to efficiently share knowledge and coordinate work across disciplines and research groups.
Presenting scientific results in a reproducible way, such as freely sharing the code and data
underlying the results, is also critical. Fortunately, there are an increasing number of resources
that can help facilitate these goals, including the bioRxiv preprint server, where papers can be
shared before the very long process of peer review is completed; GitHub, for sharing computer
code; and data science notebook technology that helps combine code, figures, and text in a way
that makes it easier to share reproducible and reusable results.

We hope this textbook helps catalyze this transition of biology to a quantitative, data
science-intensive field. As biological research advances become ever more built on interdisci-
plinary, open, and team science, progress will dramatically speed up, laying the groundwork
for fantastic new discoveries in the future.



x| Preface

We also deeply thank all of the chapter authors for contributing their knowledge and time
to help the many future readers of this book learn how to apply the myriad bioinformatic
techniques covered within these pages to their own research questions.

Andreas D. Baxevanis
Gary D. Bader
David S. Wishart
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Biological Sequence Databases
Andreas D. Baxevanis

Introduction

Over the past several decades, there has been a feverish push to understand, at the most
elementary of levels, what constitutes the basic “book of life.” Biologists (and scientists in gen-
eral) are driven to understand how the millions or billions of bases in an organism’s genome
contain all of the information needed for the cell to conduct the myriad metabolic processes
necessary for the organism’s survival - information that is propagated from generation to
generation. To have a basic understanding of how the collection of individual nucleotide
bases drives the engine of life, large amounts of sequence data must be collected and stored
in a way that these data can be searched and analyzed easily. To this end, much effort has
gone into the design and maintenance of biological sequence databases. These databases have
had a significant impact on the advancement of our understanding of biology not just from
a computational standpoint but also through their integrated use alongside studies being
performed at the bench.

The history of sequence databases began in the early 1960s, when Margaret Dayhoff and
colleagues (1965) at the National Biomedical Research Foundation (NBRF) collected all of the
protein sequences known at that time - all 65 of them - and published them in a book called
the Atlas of Protein Sequence and Structure. It is important to remember that, at this pointin the
history of biology, the focus was on sequencing proteins through traditional techniques such
as the Edman degradation rather than on sequencing DNA, hence the overall small number
of available sequences. By the late 1970s, when a significant number of nucleotide sequences
became available, those were also included in later editions of the Atlas. As this collection
evolved, it included text-based descriptions to accompany the protein sequences, as well as
information regarding the evolution of many protein families. This work, in essence, was the
first annotated sequence database, even though it was in printed form. Over time, the amount
of data contained in the Atlas became unwieldy and the need for it to be available in electronic
form became obvious. From the early 1970s to the late 1980s, the contents of the Atlas were
distributed electronically by NBRF (and later by the Protein Information Resource, or PIR) on
magnetic tape, and the distribution included some basic programs that could be used to search
and evaluate distant evolutionary relationships.

The next phase in the history of sequence databases was precipitated by the veritable explo-
sion in the amount of nucleotide sequence data available to researchers by the end of the
1970s. To address the need for more robust public sequence databases, the Los Alamos National
Laboratory (LANL) created the Los Alamos DNA Sequence Database in 1979, which became
known as GenBank in 1982 (Benson et al. 2018). Meanwhile, the European Molecular Biology
Laboratory (EMBL) created the EMBL Nucleotide Sequence Data Library in 1980. Throughout
the 1980s, EMBL (then based in Heidelberg, Germany), LANL, and (later) the National Center
for Biotechnology Information (NCBI, part of the National Library of Medicine at the National
Institutes of Health) jointly contributed DNA sequence data to these databases. This was done
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by having teams of curators manually transcribing and interpreting what was published in
print journals to an electronic format more appropriate for computational analyses. The DNA
Databank of Japan (DDBJ; Kodama et al. 2018) joined this DNA data-collecting collabora-
tion a few years later. By the late 1980s, the quantity of DNA sequence data being produced
was so overwhelming that print journals began asking scientists to electronically submit their
DNA sequences directly to these databases, rather than publishing them in printed journals
or papers. In 1988, after a meeting of these three groups (now referred to as the International
Nucleotide Sequence Database Collaboration, or INSDC; Karsch-Mizrachi et al. 2018), there
was an agreement to use a common data exchange format and to have each database update
only the records that were directly submitted to it. Thanks to this agreement, all three centers
(EMBL, DDBJ, and NCBI) now collect direct DNA sequence submissions and distribute them
so that each center has copies of all of the sequences, with each center acting as a primary distri-
bution center for these sequences. DDBJ/EMBL/GenBank records are updated automatically
every 24 hours at all three sites, meaning that all sequences can be found within DDBJ, the
European Nucleotide Archive (ENA; Silvester et al. 2018), and GenBank in short order. That
said, each database within the INSDC has the freedom to display and annotate the sequence
data as it sees fit.

In parallel with the early work being done on DNA sequence databases, the foundations
for the Swiss-Prot protein sequence database were also being laid in the early 1980s by Amos
Bairoch, recounting its history from an engaging perspective in a first-person review (Bairoch
2000). Bairoch converted PIR’s Atlas to a format similar to that used by EMBL for its nucleotide
database. In this initial release, called PIR+, additional information about each of the pro-
teins was added, increasing its value as a curated, well-annotated source of information on
proteins. In the summer of 1986, Bairoch began distributing PIR+ on the US BIONET (a pre-
cursor to the Internet), renaming it Swiss-Prot. At that time, it contained the grand sum of
3900 protein sequences. This was seen as an overwhelming amount of data, in stark contrast
to today’s standards. As Swiss-Prot and EMBL followed similar formats, a natural collaboration
developed between these two groups, and these collaborative efforts strengthened when both
EMBL’s and Swiss-Prot’s operations were moved to EMBL’s European Bioinformatics Insti-
tute (EBL; Cook et al. 2018) in Hinxton, UK. One of the first collaborative projects undertaken
by the Swiss-Prot and EMBL teams was to create a new and much larger protein sequence
database supplement to Swiss-Prot. As maintaining the high quality of Swiss-Prot entries was a
time-consuming process involving extensive sequence analysis and detailed curation by expert
annotators (Apweiler 2001), and to allow the quick release of protein data not yet annotated
to Swiss-Prot’s stringent standards, a new database called TTEMBL (for “translation of EMBL
nucleotide sequences”) was created. This supplement to Swiss-Prot initially consisted of com-
putationally annotated sequence entries derived from the translation of all coding sequences
(CDSs) found in INSDC databases. In 2002, a new effort involving the Swiss Institute of Bioin-
formatics, EMBL-EBI, and PIR was launched, called the UniProt consortium (UniProt Con-
sortium 2017). This effort gave rise to the UniProt Knowledgebase (UniProtKB), consisting
of Swiss-Prot, TTEMBL, and PIR. A similar effort also gave rise to the NCBI Protein Database,
bringing together data from numerous sources and described more fully in the text that follows.

The completion of human genome sequencing and the sequencing of numerous model
genomes, as well as the existence of a gargantuan number of sequences in general, provides
a golden opportunity for biological scientists, owing to the inherent value of these data. At
the same time, the sheer magnitude of data also presents a conundrum to the inexperienced
user, resulting not just from the size of the “sequence information space” but from the
fact that the information space continues to get larger by leaps and bounds. Indeed, the
sequencing landscape has changed significantly in recent years with the development of new
high-throughput technologies that generate more and more sequence data in a way that is
best described as “better, cheaper, faster,” with these advances feeding into the “insatiable
appetite” that scientists have for more and more sequence data (Green et al. 2017). Given the
inherent value of the data contained within these sequence databases, this chapter will focus
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on providing the reader with a solid understanding of these major public sequence databases,
as a first step toward being able to perform robust and accurate bioinformatic analyses.

Nucleotide Sequence Databases

As described above, the major sources of nucleotide sequence data are the databases involved
in INSDC - DDBJ, ENA, and GenBank - with new or updated data being shared between
these three entities once every 24 hours. This transfer is facilitated by the use of common data
formats for the kinds of information described in detail below.

The elementary format underlying the information held in sequence databases is a text file
called the flatfile. The correspondence between individual flatfile formats greatly facilitates the
daily exchange of data between each of these databases. In most cases, fields can be mapped
on a one-to-one basis from one flatfile format to the other. Over time, various file formats have
been adopted and have found continued widespread use; others have fallen to the wayside for
a variety of reasons. The success of a given format depends on its usefulness in a variety of
contexts, as well as its power in effectively containing and representing the types of biological
data that need to be archived and communicated to scientists.

In its simplest form, a sequence record can be represented as a string of nucleotides with
some basic tag or identifier. The most widely used of these simple formats is FASTA, origi-
nally introduced as part of the FASTA software suite developed by Lipman and Pearson (1985)
that is described in detail in Chapter 3. This inherently simple format provides an easy way of
handling primary data for both humans and computers, taking the following form.

>U54469.1

CGGTTGCTTGGGTTTTATAACATCAGTCAGTGACAGGCATTTCCAGAGTTGCCCTGTTCAACAATCGATA
GCTGCCTTTGGCCACCAAAATCCCAAACTTAATTAAAGAATTAAATAATTCGAATAATAATTAAGCCCAG
TAACCTACGCAGCTTGAGTGCGTAACCGATATCTAGTATACATTTCGATACATCGAAATCATGGTAGTGT
TGGAGACGGAGAAGGTAAGACGATGATAGACGGCGAGCCGCATGGGTTCGATTTGCGCTGAGCCGTGGCA
GGGAACAACAAAAACAGGGTTGTTGCACAAGAGGGGAGGCGATAGTCGAGCGGAAAAGAGTGCAGTTGGC

For brevity, only the first few lines of the sequence are shown. In the simplest incarna-
tion of the FASTA format, the “greater than” character (>) designates the beginning of a new
sequence record; this line is referred to as the definition line (commonly called the “def line”).
A unique identifier - in this case, the accession.version number (U54469.1) - is followed by the
nucleotide sequence, in either uppercase or lowercase letters, usually with 60 characters per
line. The accession number is the number that is always associated with this sequence (and
should be cited in publications), while the version number suffix allows users to easily deter-
mine whether they are looking at the most up-to-date record for a particular sequence. The
version number suffix is incremented by one each time the sequence is updated.

Additional information can be included on the definition line to make this simple format a
bit more informative, as follows.

>ENA|U54469|U54469.1 Drosophila melanogaster eukaryotic initiation factor 4E (eIF4E)
gene, complete cds, alternatively spliced.

This modified FASTA definition line now has information on the source database (ENA),
its accession.version number (U54469.1), and a short description of what biological entity is
represented by the sequence.

Nucleotide Sequence Flatfiles: A Dissection

As flatfiles represent the elementary unit of information within sequence databases and facil-
itate the interchange of information between these databases, it is important to understand
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what each individual field within the flatfile represents and what kinds of information can be
found in varying parts of the record. While there are minor differences in flatfile formats, they
can all be separated into three major parts: the header, containing information and descrip-
tors pertaining to the entire record; the feature table, which provides relevant annotations to
the sequence; and the sequence itself.

The Header

The header is the most database-specific part of the record. Here, we will use the ENA version
of the record for discussion (shown in its entirety in Appendix 1.1), with the corresponding
DDBIJ and GenBank versions of the header appearing in Appendix 1.2. The first line of the
record provides basic identifying information about the sequence contained in the record,
appropriately named the ID line; this corresponds to the LOCUS line in DDBJ/GenBank.

ID US4469; SV 1; linear; genomic DNA; STD; INV; 2881 BP.

The accession number is shown on the ID line, followed by its sequence version (here, the
first version, or SV 1). As this is SV 1, this is equivalent to writing U54469.1, as described above.
This is then followed by the topology of the DNA molecule (linear) and the molecule type
(genomic DNA). The next element represents the ENA data class for this sequence (STD,
denoting a “standard” annotated and assembled sequence). Data classes are used to group
sequence records within functional divisions, enabling users to query specific subsets of the
database. A description of these functional divisions can be found in Box 1.1. Finally, the ID
line presents the taxonomic division for the sequence of interest (INV, for invertebrate; see
Internet Resources) and its length (2881 base pairs). The accession number will also be shown
separately on the AC line that immediately follows the ID lines.

Box 1.1 Functional Divisions in Nucleotide Databases

The organization of nucleotide sequence records into discrete functional types provides
a way for users to query specific subsets of the records within these databases. In addi-
tion, knowledge that a particular sequence is from a given technique-oriented database
allows users to interpret the data from the proper biological point of view. Several of these
divisions are described below, and examples of each of these functional divisions (called
“data classes” by ENA) can be found by following the example links listed on the ENA Data
Formats page listed in the Internet Resources section of this chapter.

CON  Constructed (or “contigged”) records of chromosomes, genomes, and other long DNA
sequences resulting from whole -genome sequencing efforts. The records in this
division do not contain sequence data; rather, they contain instructions for the
assembly of sequence data found within multiple database records.

EST  Expressed Sequence Tags. These records contain short (300-500 bp) single reads
from mRNA (cDNA) that are usually produced in large numbers. ESTs represent a
snapshot of what is expressed in a given tissue or at a given developmental stage.
They represent tags — some coding, some not - of expression for a given cDNA Llibrary.

GSS  Genome Survey Sequences. Similar to the EST division, except that the sequences are
genomic in origin. The GSS division contains (but is not limited to) single-pass read
genome survey sequences, bacterial artificial chromosome (BAC) or yeast artificial
chromosome (YAC) ends, exon-trapped genomic sequences, and Alu polymerase chain
reaction (PCR) sequences.

HTG  High-Throughput Genome sequences. Unfinished DNA sequences generated by
high-throughput sequencing centers, made available in an expedited fashion to the
scientific community for homology and similarity searches. Entries in this division
contain keywords indicating its phase within the sequencing process. Once finished,
HTG sequences are moved into the appropriate database taxonomic division.
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STD A record containing a standard, annotated, and assembled sequence.

STS  Sequence-Tagged Sites. Short (200-500 bp) operationally unique sequences that
identify a combination of primer pairs used in a PCR assay, generating a reagent that
maps to a single position within the genome. The STS division is intended to facilitate
cross-comparison of STSs with sequences in other divisions for the purpose of
correlating map positions of anonymous sequences with known genes.

WGS Whole-Genome Shotgun sequences. Sequence data from projects using shotgun
approaches that generate large numbers of short sequence reads that can then be
assembled by computer algorithms into sequence contigs, higher -order scaffolds, and
sometimes into near-chromosome- or chromosome-length sequences.

Following the ID line are one or more date lines (denoted by DT), indicating when the entry
was first created or last updated. For our sequence of interest, the entry was originally created
on May 19, 1996 and was last updated in ENA on June 23, 2017:

DT 19-MAY-1996 (Rel. 47, Created)
DT 23-JUN-2017 (Rel. 133, Last updated, Version 5)

The release number in each line indicates the first quarterly release made after the entry
was created or last updated. The version number for the entry appears on the second line and
allows the user to determine easily whether they are looking at the most up-to-date record
for a particular sequence. Please note that this is different from the accession.version format
described above - while some element of the record may have changed, the sequence may have
remained the same, so these two different types of version numbers may not always correspond
to one another.

The next part of the header contains the definition lines, providing a succinct description
of the kinds of biological information contained within the record. The definition line (DE in
ENA, DEFINITION in DDBJ/GenBank) takes the following form.

DE Drosophila melanogaster eukaryotic initiation factor 4E (eIF4E) gene,
DE complete cds, alternatively spliced.

Much care is taken in the generation of these definition lines and, although many of them
can be generated automatically from other parts of the record, they are reviewed to ensure
that consistency and richness of information are maintained. Obviously, it is quite impossible
to capture all of the biology underlying a sequence in a single line of text, but that wealth of
information will follow soon enough in downstream parts of the same record.

Continuing down the flatfile record, one finds the full taxonomic information on the
sequence of interest. The OS line (or SOURCE line in DDBJ/GenBank) provides the preferred
scientific name from which the sequence was derived, followed by the common name of the
organism in parentheses. The OC lines (or ORGANISM lines in DDBJ/GenBank) contain
the complete taxonomic classification of the source organism. The classification is listed
top-down, as nodes in a taxonomic tree, with the most general grouping (Eukaryota) given
first.

oS Drosophila melanogaster (fruit fly)

oc Eukaryota; Metazoa; Ecdysozoa; Arthropoda; Hexapoda; Insecta; Pterygota;
ocC Neoptera; Holometabola; Diptera; Brachycera; Muscomorpha; Ephydroidea;
oc Drosophilidae; Drosophila; Sophophora.

Each record must have at least one reference or citation, noted within what are called refer-
ence blocks. These reference blocks offer scientific credit and set a context explaining why this
particular sequence was determined. The reference blocks take the following form.
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RN [1]

RP 1-2881

RX DOI; .1074/jbc.271.27.16393.

RX PUBMED; 8663200.

RA Lavoie C.A., Lachance P.E., Sonenberg N., Lasko P.;

RT "Alternatively spliced transcripts from the Drosophila eIF4E gene produce
RT two different Cap-binding proteins";

RL J Biol Chem 271(27):16393-16398(1996) .

XX

RN [2]

RP 1-2881

RA Lasko P.F.;

RT ;

RL Submitted (09-APR-1996) to the INSDC.

RL Paul F. Lasko, Biology, McGill University, 1205 Avenue Docteur Penfield,
RL Montreal, QC H3A 1B1, Canada

In this case, two references are shown, one referring to a published paper and the other
referring to the submission of the sequence record itself. In the example above, the second
block provides information on the senior author of the paper listed in the first block, as well
as the author’s postal address. While the date shown in the second block indicates when the
sequence (and accompanying information) was submitted to the database, it does not indicate
when the record was first made public, so no inferences or claims based on first public release
can be made based on this date. Additional submitter blocks may be added to the record each
time the sequence is updated.

Some headers may contain COMMENT (DDBJ/GenBank) or CC (ENA) lines. These lines
can include a great variety of notes and comments (descriptors) that refer to the entire
record. Often, genome centers will use these lines to provide contact information and to
confer acknowledgments. Comments also may include the history of the sequence. If the
sequence of a particular record is updated, the comment will contain a pointer to the previous
versions of the record. Alternatively, if an earlier version of the record is retrieved, the
comment will point forward to the newer version, as well as backwards, if there was a still
earlier version. Finally, there are database cross-reference lines (marked DR) that provide
links to allied databases containing information related to the sequence of interest. Here, a
cross-reference to FlyBase can be seen in the complete header for this record in Appendix 1.1.
Note that the corresponding DDBJ/GenBank header in Appendix 1.2 does not contain these
cross-references.

The Feature Table

Early on in the collaboration between INSDC partner organizations, an effort was made to
come up with a common way to represent the biological information found within a given
database record. This common representation is called the feature table, consisting of feature
keys (a single word or abbreviation indicating the described biological property), location infor-
mation denoting where the feature is located within the sequence, and additional qualifiers
providing additional descriptive information about the feature. The online INSDC feature table
documentation is extensive and describes in great detail what features are allowed and what
qualifiers can be used with each individual feature. Wording within the feature table uses com-
mon biological research terminology wherever possible and is consistent between DDBJ, ENA,
and GenBank entries.

Here, we will dissect the feature table for the eukaryotic transcription factor 4E gene from
Drosophila melanogaster, shown in its entirety in both Appendices 1.3 (in ENA format) and
1.4 (in DDBJ/GenBank format). This particular sequence is alternatively spliced, producing
two distinct gene products, 4E-I and 4E-II. The first block of information in the feature table is
always the source feature, indicating the biological source of the sequence and additional infor-
mation relating to the entire sequence. This feature must be present in all INSDC entries, as all
DNA or RNA sequences derive from some specific biological source, including synthetic DNA.
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FT source 1..2881

FT /organism="Drosophila melanogaster"
FT /chromosome="3"

FT /map="67A8-B2"

FT /mol_type="genomic DNA"

FT /db_xref="taxon:7227"

FT gene 80..2881

FT /gene="eIF4E"

In the first line of the source key, notice that the numbering scheme shows the range of
positions covered by this feature key as two numbers separated by two dots (1..2881). As
the source key pertains to the entire sequence, we can infer that the sequence described in
this entry is 2881 nucleotides in length. The various ways in which the location of any given
feature can be indicated are shown in Table 1.1, accounting for a wide range of biological
scenarios. The qualifiers then follow, each preceded by a slash. The full scientific name of
the organism is provided, as are specific mapping coordinates, indicating that this sequence
is at map location 67A8-B2 on chromosome 3. Also indicated is the type of molecule that
was sequenced (genomic DNA). Finally, the last line indicates a database cross-reference
(abbreviated as db_xref) to the NCBI taxonomy database, where taxon 7227 corresponds to
D. melanogaster. In general, these cross-references are controlled qualifiers that allow entries
to be connected to an external database, using an identifier that is unique to that external
database. Following the source block above is the gene feature, indicating that the gene
itself is a subset of the entire sequence in this entry, starting at position 80 and ending at
position 2881.

FT mRNA join(80..224,892..1458,1550..1920,1986..2085,2317..2404,
FT 2466..2881)

FT /gene="eIF4E"

FT /product="eukaryotic initiation factor 4E-I"

FT mRNA join(80..224,1550..1920,1986..2085,2317..2404,2466..2881)
FT /gene="eIF4E"

FT /product="eukaryotic initiation factor 4E-II"

Table 1.1 Indicating locations within the feature table.

345 Single position within the sequence

345..500 A continuous range of positions bounded by and including the
indicated positions

<345..500 A continuous range of positions, where the exact lower boundary
is not known; the feature begins somewhere prior to position 345
but ends at position 500

345..>500 A continuous range of positions, where the exact upper boundary
is not known; the feature begins at position 345 but ends
somewhere after position 500

<1..888 The feature starts before the first sequenced base and continues to
position 888
(102.110) Indicates that the exact location is unknown, but that it is one of

the positions between 102 and 110, inclusive

1237124
1237177

join(12..78,134..202)

complement (4918..5126)

J00194:100..202

Points to a site between positions 123 and 124

Points to a site between two adjacent nucleotides or amino acids
anywhere between positions 123 and 177

Regions 12-78 and 134-202 are joined to form one contiguous
sequence

The sequence complementary to that found from 4918 to 5126 in
the sequence record

Positions 100-202, inclusive, in the entry in this database having
accession number J00194
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The next feature in this example indicates which regions form the two mRNA transcripts for
this gene, the first for eukaryotic initiation factor 4E-I and the second for eukaryotic initiation
factor 4E-II. In the first case (shown above), the join line indicates that six distinct DNA
segments are transcribed to form the mature RNA transcript while, in the second case, the
second region is missing, with only five distinct DNA segments transcribed into the mature
RNA transcript — hence the two splice variants that are ultimately encoded by this molecule.

FT CDS join(201..224,1550..1920,1986..2085,2317..2404,2466..2629)
FT /codon_start=1

FT /gene="eIF4E"

FT /product="eukaryotic initiation factor 4E-II"

FT /note="Method: conceptual translation with partial peptide
FT sequencing"

FT /db_xref="GOA:P48598"

FT /db_xref:"InterPrO:IPR001040"

FT /db_xref="InterPro:IPR019770"

FT /db_xref="InterPro:IPR023398"

FT /db_xref="PDB:4AXG"

FT /db_xref="PDB:4UE8"

FT /db_xref="PDB:4UE9"

FT /db_xref: "PDB:4UEA"

FT /db_xref="PDB:4UEB"

FT /db_xref="PDB:4UEC"

FT /db_xref="PDB:5ABU"

FT /db_xref="PDB:5ABV"

FT /db_xref:"PDB:5T47"

FT /db_xref="PDB:5T48"

FT /db_xref="UniProtKB/Swiss-Prot:P48598"

FT /protein_id:"AAC03524.l"

FT /translation="MVVLETEKTSAPSTEQGRPEPPTSAAAPAEAKDVKPKEDPQETGE
FT PAGNTATTTAPAGDDAVRTEHLYKHPLMNVWTLWYLENDRSKSWEDMQNEITSFDTVED
FT FWSLYNHIKPPSEIKLGSDYSLFKKNIRPMWEDAANKQGGRWVITLNKSSKTDLDNLWL
FT DVLLCLIGEAFDHSDQICGAVINIRGKSNKISIWTADGNNEEAALEIGHKLRDALRLGR
FT NNSLQYQLHKDTMVKQGSNVKSIYTL"

Following the mRNA feature is the CDS feature shown above, describing the region that
ultimately encodes the protein product. Focusing just on eukaryotic initiation factor 4E-II, the
CDS feature also shows a join line with coordinates that are slightly different from those
shown in the mRNA feature, specifically at the beginning and end positions. The difference
lies in the fact that the 5’ and 3’ untranslated regions (UTRs) are included in the mRNA fea-
ture but not in the CDS feature. The CDS feature corresponds to the sequence of amino acids
found in the translated protein product whose sequence is shown in the /translationqual-
ifier above. The /codon_start qualifier indicates that the amino acid translation of the first
codon begins at the first position of this joined region, with no offset.

The /protein_id qualifier shows the accession number for the corresponding entry in
the protein databases (AAC03524.1) and is hyperlinked, enabling the user to go directly to
that entry. These unique identifiers use a “3 + 5” format - three letters, followed by five num-
bers. Versions are indicated by the decimal that follows; when the protein sequence in the
record changes, the version is incremented by one. The assignment of a gene product or pro-
tein name (via the /protein qualifier) often is subjective, sometimes being assigned via weak
similarities to other (and sometimes poorly annotated) sequences. Given the potential for the
transitive propagation of poor annotations (that is, bad data tend to beget more bad data),
users are advised to consult curated nucleotide and protein sequence databases for the most
up-to-date, accurate information regarding the putative function of a given sequence. Finally,
notice the extensive cross-referencing via the /db_xref qualifier to entries in InterPro, the



Nucleotide Sequence Flatfiles: A Dissection

Protein Data Bank (PDB), and UniProtKB/Swiss-Prot, as well as to a Gene Ontology annotation
(GOA; Gene Ontology Consortium 2017).

Implicit in the source feature and the organism that is assigned to it is the genetic code used
to translate the nucleic acid sequence into a protein sequence when a CDS feature is present
in the record. Also, the DNA-centric nature of these feature tables means that all features are
mapped through a DNA coordinate system, not that of amino acid reference points, as shown
in the examples in Appendices 1.3 and 1.4.

SQ  Sequence 2881 BP; 849 A; 699 C; 585 G; 748 T; 0 other;

cggttgcttg ggttttataa catcagtcag tgacaggcat ttccagagtt gcecctgttca 60
acaatcgata gctgcctttg gccaccaaaa tcccaaactt aattaaagaa ttaaataatt 120
cgaataataa ttaagcccag taacctacgc agcttgagtg cgtaaccgat atctagtata 180

. <truncated for brevity>

aaacggaacc ccctttgtta tcaaaaatcg gcataatata aaatctatcc gctttttgta 2820

gtcactgtca ataatggatt agacggaaaa gtatattaat aaaaacctac attaaaaccg 2880
g 2881

//

Finally, at the end of every nucleotide sequence record, one finds the actual nucleotide
sequence, with 60 bases per row. Note that, in the SQ line signaling the beginning of this section
of the record, not only is the overall length of the sequence provided, but a count of how many
of each individual type of nucleotide base is also provided, making it quite easy to compute the
GC content of this sequence.

Graphical Interfaces

Graphical interfaces have been developed to facilitate the interpretation of the data found
within text-based flatfiles, with an example of the graphical view of the ENA record for our
sequence of interest (U54469.1) shown in Figure 1.1. These graphical views are particularly
useful when there is a long list of documented biological features within the feature table,
enabling the user to visualize potential interactions or relationships between biological
features. An additional example of the use of graphical views to assist in the interpretation
of the information found within a database record is provided in the discussion of the NCBI
Entrez discovery pathway in Chapter 2, as well as later in this chapter.

RefSeq

As one might expect, especially given the breakneck speed at which DNA sequence data
are currently being produced, there is a significant amount of redundancy within the major
sequence databases, with a good number of sequences being represented more than once.
This is often problematic for the end user, who may find themselves confused as to which
sequence to use after performing a search that returns numerous results. To address this
issue, NCBI developed RefSeq, the goal of which is to provide a single reference sequence
for each molecule of the central dogma — DNA, RNA, and protein. The distinguishing
features of RefSeq go beyond its non-redundant nature, with individual entries including the
biological attributes of the gene, gene transcript, or protein. RefSeq entries encompass a wide
taxonomic range, and entries are updated and curated on an ongoing basis to reflect current
knowledge about the individual entries. Additional information on RefSeq can be found
in Box 1.2.
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Figure 1.1 The landing page for ENA record U54469.1, providing a graphical view of biological features found within the sequence of the
Drosophila melanogaster eukaryotic initiation factor 4E (e/F4E) gene. The tracks within the graphical view show the position of the gene,
mRNAs, and coding regions (marked CDS) within the 2881 bp sequence reported in this record.

Box 1.2 RefSeq

The first several chapters of this book describe a variety of ways in which sequence data
and sequence annotations find their way into public databases. While the combination of
data derived from systematic sequencing projects and individual investigators’ laborato-
ries yields a rich and highly valuable set of sequence data, some problems are apparent.
The most important issue is that a single biological entity may be represented by many
different entries in various databases. It also may not be clear whether a given sequence
has been experimentally determined or is simply the result of a computational prediction.

To address these issues, NCBI developed the RefSeq project, the major goal of which
is to provide a reference sequence for each molecule in the central dogma (DNA, mRNA,
and protein). As each biological entity is represented only once, RefSeq is, by definition,
non-redundant. Nucleotide and protein sequences in RefSeq are explicitly linked to one




