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Preface

After two decades of research, and after one decade of ample clinical application, 
vibration exercise and vibration therapy have conquered their positions, both in the 
local gym and in highly specialized centres for rehabilitation medicine. Physically, 
vibration exercise differs from most other types of exercise because it transfers 
mechanical energy into the human body and also because it induces movements that 
are much faster, and also smaller than with other types of exercise. Moreover, vibra-
tion can be combined with many other types of traditional exercise. Realistically, 
the proven effects by the vibration are often not superior, or at least not much supe-
rior, than could be achieved with more traditional forms of exercise. In many cases, 
however, addition of vibration leads to faster and easier achievement of the thera-
peutic target (see Chap. 13 on warming up).

Thus, vibration has established itself as an option for people who do not want to 
do other types of physical exercise. Alternatively, vibration can yield additional 
therapeutic benefits that would be difficult to reap in other ways. This is foremost 
the case where the patients’ compliance is limited, because of physical or behav-
ioural limitations, and where ‘passive’ types of exercise are needed. For example, 
introduction of vibration into paediatric rehabilitation (see Chap. 21) has been a 
tremendous success. This is because it helps children, who can normally not move, 
to expose their bodily systems to challenges that would normally only arise when 
children run or play. Metaphorically speaking, action and reaction is reversed in 
these rehabilitated children, as the vibration machines are working ‘on the chil-
dren’. Likewise patients with depression (see Chap. 21) can benefit from such a 
reversal, highlighting the former tenet. Another, much more speculative field where 
vibration could have unique benefits would be to exploit the neurophysiological 
effects (Chaps. 6 and 8) in order to pre-condition for training or performance opti-
mization (Chap. 14)—readers are invited to study these chapters and to come up 
with their own ideas and trials!

However, general euphoria is out of place. Firstly, the evidence in support of 
vibration is still feeble in many areas. This is because many studies have been rather 
small, have tested only few endpoints that have not always been clinically relevant, 
and because of a lack of well-defined control groups in many studies. The reason for 
this lack of high-class studies is not only a lack of funding, but also a lack of knowl-
edge of the widespread effects of vibration on the human organism certainly has 
also played a role. The primary aim of this book, therefore, is to provide an 
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overarching platform of information for those who work with vibration. Thus, the 
book combines physical and biological principles of vibration with physiology and 
clinical application. Moreover, there is a specific chapter on the mechanical design 
principles of vibration exercisers (Chap. 3), which may help the reader understand 
what is possible in terms of machine design, and also what is available on the mar-
ket. Unfortunately, though, the representative of only one company has accepted the 
invitation to contribute to Chap. 3, although I have made quite an effort to also 
involve other key manufacturers on the market.

The second aim of the book is to sensitize readers to the importance of the physi-
cal parameters of vibration therapy, such as vibration frequency and amplitude, 
duration, etc. Although many studies have demonstrated effectiveness of vibration 
interventions, we are still ignorant of exact dose-response relationships. It is hoped, 
therefore, that the next generation of vibration studies will establish such dose- 
response relationships, and thereby increase the effectiveness of the physical 
intervention.

Thirdly, safety aspects have to date been only sporadically considered in the field 
of vibration exercise and vibration therapy. Although there are only extremely few 
reports on adverse events in the published literature, it must be suspected that some 
events have gone unreported. Hence, this book is also meant to encourage the 
awareness of safety aspects. Indeed, it is here proposed to proactively collect infor-
mation on occurrence and non-occurrence of adverse events.

I would like to end by saying thank you to all authors of this book, who have 
been extremely helpful and good to work with. Finally, I am also grateful for the 
unconditional support that I have received from my wonderful wife, Natia, and from 
my children whilst working on this book.

Cologne, Germany Jörn Rittweger 
February 2020

Preface



vii

Contents

Part I  The Fundamentals

 1   The Physics of Vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   3
Jörn Rittweger and Redha Taiar

 2   The Biology of Vibration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23
Eddy A. van der Zee

 3   Design Principles of Available Machines. . . . . . . . . . . . . . . . . . . . . . . . .  39
Rainer Rawer

 4   Safety and Contraindications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  55
Danny A. Riley and Jörn Rittweger

Part II  Physiological Responses

 5   Biomechanics of Vibration Exercise  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  69
Darryl Cochrane and Jörn Rittweger

 6   Cutaneous and Muscle Mechanoreceptors: Sensitivity  
to Mechanical Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87
Edith Ribot-Ciscar

 7   Electromyographical Recordings During Vibration . . . . . . . . . . . . . . . 109
Ramona Ritzmann, Ilhan Karacan, and Kemal S. Türker

 8   Supraspinal Responses and Spinal Reflexes . . . . . . . . . . . . . . . . . . . . . . 121
Ramona Ritzmann and Katya Mileva

 9   Assessing Reflex Latencies in Responses to Vibration:  
Evidence for the Involvement of More Than One Receptor . . . . . . . . . 135
Ilhan Karacan and Kemal S. Türker

 10   Metabolic Responses to Whole-Body Vibration Exercise . . . . . . . . . . . 143
Jörn Rittweger

 11   Circulation Effects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Darryl Cochrane and Jörn Rittweger



viii

 12   Hormonal Responses to Vibration Therapy . . . . . . . . . . . . . . . . . . . . . . 169
Eloá Moreira-Marconi, Danubia da Cunha de Sá-Caputo,  
Alessandro Sartorio, and Mario Bernardo-Filho

Part III  Use of Vibration for Training

 13   Warming-Up  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Darryl Cochrane

 14   Modulation of Neuromuscular Function  . . . . . . . . . . . . . . . . . . . . . . . . 203
Pedro J. Marín

 15   Application in Athletes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Darryl Cochrane

 16   Using Whole-Body Vibration for Countermeasure Exercise  . . . . . . . . 229
Patrick J. Owen, Daniel L. Belavy, and Jörn Rittweger

Part IV  Clinical Applications

 17   How to Design Exercise Sessions with Whole-Body  
Vibration Platforms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
Christina Stark and Jörn Rittweger

 18   Whole-Body Vibration in Geriatric Rehabilitation . . . . . . . . . . . . . . . . 255
Martin Runge and Jörn Rittweger

 19   Application of Vibration Training for Enhancing Bone Strength  . . . . 269
Debra Bemben

 20   Whole-Body Vibration Exercise as a Treatment Option for  
Chronic Lower Back Pain  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
Jörn Rittweger

 21   Pediatric Rehabilitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
Christina Stark, Ibrahim Duran, and Eckhard Schoenau

 22   Chronic Obstructive Pulmonary Disease (COPD) . . . . . . . . . . . . . . . . . 319
Rainer Gloeckl

 23   Urinary Incontinence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   329
Volker Viereck and Marianne Gamper

 24   Primary Muscle Disorders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
Ibrahim Duran, Christina Stark, and Eckhard Schoenau

 25   Application of Vibration Training in People with Common  
Neurological Disorders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
Feng Yang

Contents



ix

 26   Whole-Body Vibration Therapy in Patients with Pulmonary 
Hypertension and Right Heart Failure: Lessons from a Pilot Study . . 355
Felix Gerhardt and Stephan Rosenkranz

 27   Vibration Exercise and Vibration Therapy in Metabolic Syndrome . . 363
Laisa Liane Paineiras-Domingos, Danúbia da Cunha de Sá-Caputo, 
and Mario Bernardo-Filho

 28   Whole-Body Vibration Exercise in Cancer . . . . . . . . . . . . . . . . . . . . . . . 381
Patrícia Lopes-Souza, Danúbia da Cunha de Sá-Caputo,  
Redha Taiar, and Mario Bernardo-Filho

Contents



xi

List of Videos

Video 1.1 Excitation of a tuning fork, as an example of a natural oscillation
Video 1.2 Playground swing, as an example of a driven oscillation
Video 5.1 The suspended pendulum as a stable equilibrium
Video 5.2 The inverted pendulum as an un-stable equilibrium
Video 5.3  Ultrasound movies of the gastrocnemius muscle during vibration at 

4 Hz and 16 Hz
Video 17.1 Squatting exercise on a side-alternating vibration platform
Video 17.2 Deep squats on a side-alternating vibration platform
Video 17.3 Calf raises on a side-alternating vibration platform
Video 17.4 Pelvic twist on a side-alternating vibration platform

https://doi.org/10.1007/978-3-030-45332-9_1
https://doi.org/10.1007/978-3-030-45332-9_1
https://doi.org/10.1007/978-3-030-45332-9_5
https://doi.org/10.1007/978-3-030-45332-9_5
https://doi.org/10.1007/978-3-030-45332-9_5
https://doi.org/10.1007/978-3-030-45332-9_17
https://doi.org/10.1007/978-3-030-45332-9_17
https://doi.org/10.1007/978-3-030-45332-9_17
https://doi.org/10.1007/978-3-030-45332-9_17


Part I

The Fundamentals



3© Springer Nature Switzerland AG 2020
J. Rittweger (ed.), Manual of Vibration Exercise and Vibration Therapy, 
https://doi.org/10.1007/978-3-030-43985-9_1

J. Rittweger (*) 
Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany 

Department of Pediatrics and Adolescent Medicine, University of Cologne, 
Cologne, Germany
e-mail: Joern.Rittweger@dlr.de; jrittweg@uni-koeln.de 

R. Taiar 
Department of Physical Exercise, Université Reims Champagne-Ardennes, Reims, France
e-mail: redha.taiar@univ-reims.fr

1The Physics of Vibration

Jörn Rittweger and Redha Taiar

1.1  Introduction

Vibrations are mechanical oscillations, which are closely linked to the concept of 
waves [1]. For whatever reason, standard textbooks of biomechanics are devoid of 
chapters on oscillation, vibration or waves [2, 3], and so are text books of physio-
therapy. Hence, we anticipate that a good fraction of the readership will not be very 
familiar with the concept of oscillations. However, understanding them is very use-
ful for practically working in vibration exercise and vibration therapy. Hence, we 
will be starting the chapter with a more intuitive outline of the questions and con-
cepts, and we will be arriving at a more ‘mathematical’ level toward the end of this 
foundation chapter.
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org/10.1007/978-3-030-43985-9_1) contains supplementary material, which is available to autho-
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1.2  How Oscillations Emerge

Periodic movements are very common. Think, for example, of your legs during 
walking, a leaf shaking in the wind, or a child on a swing. Physicists refer to such 
periodic movements by the wider term of ‘oscillation’. When discussing how they 
emerge, we have to distinguish two different kinds of oscillations. Firstly, some-
thing can start oscillating by itself. This is called a natural oscillation, and a typical 
example would be a tuning fork (Fig. 1.1 left). Secondly, one thing can be driven to 
oscillate by another thing. This is then called a ‘driven oscillation’, and a typical 
example would be a playground swing (Fig. 1.1 right).

Natural oscillations emerge from an energy transferal that excites the oscillating 
system so that it starts to move. Within the oscillating system, there is a continuous 
transformation from one type of energy into another. In the case of the tuning fork, 
this elastic energy is periodically transferred to kinetic energy and vice versa. The 
rate of energy transferal, which is determined by the physical properties of the oscil-
lator, defines its natural frequency, which is also called the eigenfrequency. Other 
typical examples of natural oscillations can be found in musical instruments. For 
string instruments, the energy transferal can be either by a single impulse as in pick-
ing a guitar string, or it can be continuous as when a violin string is touched with a 
bow. Of course, a violin string can also be excited in picking (pizzicato), and it will 
produce a tone with the same pitch in either case. Some more examples of oscilla-
tions that occur during daily life are given in Table 1.1.

The situation is very different for driven oscillations: here, the frequency is 
imposed from an actuator onto a dynamic system. Often, the actuator is an engine, 
such as a car engine, or indeed a vibration platform. Whilst a vibration platform is 
purposefully built to operate at a given frequency, the vibration of a car engine is a 
by-product of its design. In the old days cars were much noisier, and truck seats 
were vibrating heavily until the 1980s to an extent that was even detrimental to 

Fig. 1.1 Natural oscillation vs. driven oscillation. Mechanically speaking, the tuning fork (left) is 
excited once by a finger snap (= energy transferal). The two tines of the fork then naturally start 
oscillating to produce a specific tone, the pitch of which is defined by the structural properties of 
the tines. By contrast, the oscillation of the swing (right) is driven by the human ‘operator’. When 
the operator repeatedly agitates the swing at the right time points (= phase), the excursions aug-
ment with each cycle, and the energy stored within the swing system can accumulate. Of note, the 
swing oscillates at a specific frequency only, and it is in this sense physically similar to the 
tuning fork

J. Rittweger and R. Taiar
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spinal health (see Chaps. 4 and 20). Modern cars are much more comfortable, sim-
ply because they are designed to reduce vibrations. So, why do vibrations emerge in 
cars at all, and how is it possible to reduce them?

Within any complex mechanical structure, there will be some elements that 
behave in a way that is comparable to some kind of pendulum (Table 1.1). Thus, 
parts will start to oscillate when energy is transferred to them. Whenever the eigen-
frequency of a given part matches the engine’s pace, this will lead to the phenome-
non of resonance.

Resonance is also the mechanism by which swings in children’s playgrounds 
work (Fig. 1.1): to augment the excursions, the child has to invest energy, and this 
energy investment has to be in a certain temporal relationship. Physically speaking, 
the periodic action of the actuator (e.g., child) and the resonator (swing)  occur 
in phase. In this way, energy storage within the system can accumulate over time. 
When car engineers aim at avoiding resonance, they have to shift the parts’ eigen-
frequencies away from the engine’s actuation frequency. Musical instruments, on 
the other hand, are purposefully designed to amplify certain frequencies. This is 
beautifully exemplified in a trumpet, where the natural oscillations of the lips get 
amplified by the resonating pipe.

It is of particular note within the context of this book that most side-synchronous 
vibration platforms rely on the principle of resonance. Accordingly, these systems 
can struggle to maintain identical vibration frequency and amplitude for persons 
with different weight. Due to their make-up, most side-alternating systems do not 
encounter that problem.

1.3  How to Describe Oscillations

Since periodic movements, or oscillations, are somehow monotonous, one can sim-
plify their description by a set of variables. The most useful descriptors are fre-
quency, amplitude and phase (see Box 1.1).

Table 1.1 Typical real-world examples of oscillators in our daily life

Real-world example Physical principle Important properties
Tuning fork Spring pendulum Stiffness and mass
String of a musical instrument Spring pendulum Stiffness and mass
Metronome Torsion pendulum Stiffness and moment of 

inertia
Balance spring (e.g., in mechanical 
clocks)

Torsion pendulum Stiffness and moment of 
inertia

Pan’s pipe Helmholtz-resonator Air density and tube 
dimensions

Trumpet Spring pendulum (lips)
Helmholtz-resonator 
(pipe)

Air density and tube 
dimensions

Transistor radio Oscillator circuit Capacitance and inductance
Swing Pendulum Suspension length and 

gravity

1 The Physics of Vibration
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When engineers speak about oscillations, they usually imply sinusoidal oscilla-
tions. This is because sinusoidal oscillations are more convenient to produce in 
machines than other types of oscillations, and also because the mathematical con-
cept of harmonic oscillation yields sine curves as a result. Moreover, sinusoidal 
functions are very convenient, as one can easily compute position, velocity and 
acceleration from each other when assuming a sinusoidal shape (Fig.  1.2). And, 
more complex wave forms can be generated, or simulated, by adding harmonics. 
These are oscillations with frequencies that are multiples of the fundamental fre-
quency (Fig. 1.3d). However, there are many other different types of periodic move-
ments and oscillations, in particular in biological systems. The heartbeat, hormonal 
cycles or nerve cell discharges may serve as well-known examples for this (see 
Fig. 1.2d). Still, we can describe such anharmonic oscillations in terms of frequency, 
amplitude and phase—it is just that they have a different shape.

Box 1.1
• The oscillation frequency (Fig. 1.2a) tells us how many cycles occur per 

unit time (a cycle being one full repetition of the movement). Sometimes, 
the periodicity or oscillation period is mentioned. It describes the time 
required for one cycle. Mathematically, it is therefore inversely related to 
the frequency. In other words, frequency and period convey the same 
information.

• The amplitude (Fig. 1.2b) tells us how large the movement is in each cycle. 
There is an important caveat: Whilst mathematically speaking the ampli-
tude describes the movement from equilibrium to the maximal excursion, 
the so-called peak-to-peak amplitude describes the distance between the 
two maxima on either side of the equilibrium. Obviously, the distinction 
between amplitude and peak-to-peak amplitude is crucial. Unfortunately, 
this distinction is not always made, even not in the scientific literature. 
Therefore, one needs to be very explicit when reporting the amplitude of 
vibrations [4].

• The phase information defines the timing of the movement (Fig.  1.2c). 
Although phase is at least as important as frequency and amplitude infor-
mation (or in some instances even more important [5]), it is often neglected. 
We will see further down how important phase information is, in particular 
when two oscillators interfere with each other.

• The shape of an oscillation is more difficult to define—it is more of an 
intuitive concept. The standard mathematical approach to oscillations is by 
so-called Fourier analysis, which regards sinus waves as basis of all oscil-
lations. It is important to realize, therefore that Fourier analysiscan misin-
terpret the shape factor of an oscillation. Accordingly, when an oscillation’s 
shape deviated significantly from a sine curve, we need to use more 
advanced techniques (e.g., wavelet analysis of pattern recognition algo-
rithms) in order to adequately quantify frequency, amplitude and phase in 
our signals.

J. Rittweger and R. Taiar
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1.4  Interference of Oscillations

The superposition of two oscillators is called interference. When two oscillations 
have identical frequency and phase, their amplitudes will add (Fig. 1.3a). That is 
called constructive interference, and the constructive effect is the greatest when 
both oscillations are fully in phase. When they get out of phase, an opposite phe-
nomenon may emerge: destructive interference (Table 1.2). Although both oscilla-
tions have identical frequency, the maxima of one oscillation coincide with the 
minima of another (Fig. 1.3b). They are antiphase and thus ‘destroy’ each other. 
When both oscillations have identical amplitudes, they can even cancel each other 
out entirely, which is the physical foundation of active noise cancellation.

Interesting phenomena may also arise when oscillations with different frequen-
cies are superposed. For example, their frequency ratios are integer numbers, i.e., 
when one oscillation is 2, 3 or n times faster than the lowest frequency. This lowest 
frequency is then called the fundamental frequency, and the higher ones are called 
harmonics (sometimes also formants). Harmonic oscillations in musical instru-
ments can emerge from simultaneous oscillations of strings at their full length and 

f = 1/1s = 1Hz

Frequencya b

c d

Amplitude

Phase Physiological Signals

f = 1/2s = 0.5Hz

φ=90º

φ=±180º

A=1/2

A = 1

0.0 0.5 1.0

Time [s]

1.5 2.0 0.0 0.5 1.0

Time [s]

1.5 2.0

Fig. 1.2 Illustration of the concepts of frequency, amplitude, phase and shape in oscillations. Whilst 
curves in (a–c) are mathematically constructed sine curves, the curve in (d) depicts genuine physio-
logical signals. (a) The red oscillation’s period is 1 s, and its frequency thus 1/s or 1 Hz. The blue 
oscillation’s frequency is half that of the red oscillation. (b) The blue oscillation’s amplitude is half 
as large as the amplitude of the red oscillation. (c) The blue curve lags behind the red curve, and the 
green curve is antiphase to the red curve. Thus, the blue and green curves are said to be in phase 
relationship of −π/2 and - π = −90° and 180°, respectively, with the red curve. (d) Arterial blood 
pressure (red) and electrocardiogram (blue) as physiological signals of oscillatory character

1 The Physics of Vibration
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Constructive Interference Destructive Interference

Phase Shift Harmonics

Beat Frequency Modulation

0.0 0.5 1.0

Time [s]

1.5 2.0 0.0 0.5 1.0

Time [s]

1.5 2.0

a b

c d

e f

Fig. 1.3 Interference of oscillations. (a) Constructive interference: As the blue and green oscilla-
tions are in phase, the resulting red oscillation has greater amplitude then the red or green oscilla-
tion; (b) Destructive interference: The blue and green curves have been shifted so that they are 
antiphase. This is resulting in a substantial reduction of the red curve’s amplitude; (c) Phase Shift: 
Phase lags between the blue and the green oscillations lead to a phase shift that results in the red 
oscillation; (d) Harmonics: Superposition of frequencies with integer ratio results in ‘interesting’ 
periodic oscillations. The red curve is, simply spoken, the sum of the first harmonic (also called 
mode or fundamental frequency, shown in yellow colour) and the 2nd and 3rd harmonics (yellow 
and blue, respectively). Note that the red and yellow curves are identical with regards to cycles per 
time, but obviously have a different shape. The more complex shape of the red curve almost resem-
bles physiological signals such as blood pressure (see Fig. 1.2d); (e) Beat frequency: Superposition 
of two oscillations with a similar frequency results in the red curve. The blue and green oscillations 
are in-phase at 0, 1 and s, but antiphase at 0.5 and 1.5. This causes a waxing and waning of the 
resultant red oscillation. Such a variation in air pressure can be  perceived by humans as a new tone 
with its own frequency (depicted by yellow line); (f) Modulation: Although the phenomenon of 
amplitude modulation resembles beat frequency, it is mathematically distinct. Frequency modula-
tion (blue) is technically advantageous over amplitude modulation (red)

J. Rittweger and R. Taiar
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at ½, 1/3 or 1/n of their length (Fig.  1.3d). In music, harmonic oscillations are 
always more pleasant to hear than a pure sinus tone, and harmonics constitute the 
‘acoustic color’ or ‘timbre’ of a given instrument. In human speech, harmonics or 
formants make up the difference between the different vowels and are thus an 
important source of information. Conversely, harmonics usually have undesirable 
effects in electric circuits, where they may emerge from some miss-behaving elec-
trical devices.

A very interesting phenomenon is the so-called beat-frequency (Fig.  1.3e). It 
emerges from oscillations with similar but different frequencies. As a result, the 
phase relationship is variable, and constructive interference alternates with destruc-
tive interference. This results in two different frequencies that emerge from this, a 
carrier frequency that is defined by the mean of the two foundation frequency, and 
the beat frequency, which is defined by their difference. One can use this phenom-
enon, for example, when tuning an instrument: two tones have identical frequency 
when the beat frequency has disappeared. Note that although the beat frequency 
may resemble amplitude modulation of a signal, the two are mathematically not 
identical (Fig. 1.3f), and that they can be distinguished by spectral analysis.

1.5  Resonance and Damping

Whilst the previous section dealt with the interference as a mere superposition of 
oscillations, we now have to discuss interactions by which two oscillators affect 
the action of each other. Consider an oscillating actuator (e.g., a vibration plat-
form) that drives a resonator. If the actuator’s excitation frequency matches the 
resonator’s eigenfrequency, and if the actuator and resonator are in phase, then this 
can lead to an accumulation of energy, even to an extent that is disruptive. This 
phenomenon is referred to as resonance catastrophe. To avoid this catastrophic 
event, soldiers (here: actuator) are required to march out-of-phase when crossing 
bridges (here: resonator). There are several ways to avoid resonance catastrophe. 
We have already discussed above that engineers can structurally design parts to 

Table 1.2 Overview of different types of superpositions by two or several oscillators

Phenomenon Frequency Phase Result
Constructive 
interference

Identical Identical Amplitude enhanced, phase unchanged

Destructive 
interference

Identical Opposed Amplitude reduced (up to 
cancellation), phase unchanged

Phase shift Identical Any 
other

Amplitude reduced, phase changed

Harmonic 
oscillation

Integer 
Relationship

Identical Enrichment of information content

Beat frequency Similar, but not 
identical

Variable Emergence of a new oscillation

Note that the oscillators themselves do not interact (example: two instruments played in the same 
room), but that the resulting signal does

1 The Physics of Vibration
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reduce or increase the resonator’s eigenfrequency. An alternative way is to intro-
duce damping elements. Dash-pots in the shock-absorbers of a car are an example 
(Fig. 1.4). Damping has two effects on the resonator: firstly, it withdraws a certain 
amount of energy from the oscillation. Second, damping reduces the eigenfre-
quency of the resonator. With regards to vibration exercise, it is important that 
muscles have such damping properties [7], and that they can act as shock absorbers 
in our body. However, any mechanical damping will lead to the absorption of 
energy and thus generate heat.

In order to practically assess whether resonance occurs in a given system, one 
can assess the presence of ‘amplitude amplification’. This test makes use of the fact 
that resonance enhances movements within the resonator (example: swinging child). 
Thus, if any part of the system oscillates with greater amplitude, or with greater 
acceleration than the actuator, then this is indicative of resonance. Of course, such 
resonance phenomena occur only at certain actuation frequencies, so one usually 
has to test a range of different frequencies. To test for resonance of the human body 
during whole body vibration, for example, one can affix accelerometers to the plat-
form and to the human body [8, 9]. Division of the acceleration signals (after sub-
tracting Earth’s gravity) will then yield the amount of amplitude amplification. 
However, most of the times, transmissibility of vibration signals is low, and ampli-
tude amplification does not occur. It is thus apparent that amplitude amplification 
can only occur if there is little damping. Moreover, not all amplitude amplification 
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Fig. 1.4 Resonance in a damped mass-spring oscillator (see inlet). The resonance frequency is 
defined by mass m, stiffness k and friction b. Now imagine the blue plate in the inlet to be driven 
by an actuator at variable frequencies. Transmissibility is defined as the ratio of amplitudes in the 
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Fig. 1.8) affects both transmissibility as well as resonance frequency. Amplitude amplification, i.e., 
transmissibility >1 occurs only when there is little damping. Figure reproduced from [6]
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causes resonance catastrophe, as this will happen only if the generated forces exceed 
the resonator’s structural strength. Nevertheless, resonance should be prevented in 
vibration exercise, e.g., by alteration of muscle stiffness and thus ω0 [7].

1.6  Waves

When parts of or body are vibrated, then the tissue deformations tend to spread out 
within our body. We therefore have to introduce the concept of waves. In physics 
there are three main categories of waves: gravitational waves, mechanical waves—
such as swell, seismic waves or sound waves—and electromagnetic waves—such 
as light.

A wave is defined as a periodic movement, which can normally be described by 
a sinusoidal function (Fig. 1.2a and Eq. 1.1). However, the propagation of the wave 
is not equivalent to transport of matter. In fact, the wave per se does not transport 
any matter. Each wave is characterized by different quantities that are specific to it. 
According to these quantities, we can understand the nature of the wave, its proper-
ties and its consequences.

Transversal propagation: During the passing of the wave deformation, the dif-
ferent points of the environment move perpendicular to the direction of propagation, 
and the deformation is a transversal signal (Fig. 1.5a).

Longitudinal propagation: During the passing of the wave deformation, the 
different points of the environment move in the direction of propagation, and the 
deformation is a longitudinal signal (Fig. 1.5b). Transverse and longitudinal waves 
can have different velocities.

The wave length is one of the characteristics specific to each wave, whatever its 
nature. It is noted using the Greek letter lambda (λ). It represents the spatial period-
icity of the oscillations, i.e., the distance between two maximum oscillations, for 

a

b

Fig. 1.5 (a) Transversal wave signal obtained when the different points move perpendicular to the 
direction of the propagation). In (b) a longitudinal wave signal results from the different points 
move in the direction of the propagation
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example. The wavelength is also the distance travelled by the wave during a period 
of oscillation. Thus, it is inversely proportional to frequency.

The wave length also depends on the speed at which the wave propagates in the 
environment. Thus, when a wave passes from one environment to another by chang-
ing velocity, its wave length will change, but the frequency remains the same. All 
this is described by the following relationship: λ = v* Td= v/f, where v corresponds 
to the wave velocity, Td to the oscillation period and f to its frequency.

Reflection of waves occurs when the wave hits a fixed obstacle. After the colli-
sion, the wave propagates in the same environment, but in a different direction. A 
wave that strikes an object or an obstacle or shows discontinuity in the environment 
is partially reflected. For instance, we consider the case of a disturbance propagating 
along a rope. When the pulse reaches the end of the rope at its support point 
(Fig. 1.6), it exerts an upward force and the support opposes a downward force. The 
force exerted by the support creates the reverse reflected pulse. The pulse inversion 
corresponds to a 180° phase change. However, waves are not necessarily reflected, 
but can also be absorbed by an object.

1.7  Some Mathematical Background

Sinusoidal oscillations can naturally emerge, mathematically speaking, in cases that 
are described by 2nd-order differential equations. Such a situation is given in the 
suspended pendulum (Fig. 1.7), where the restoring force is opposite and propor-
tional to the magnitude of the sideways deflection. Force is naturally related to 
acceleration, and acceleration is the 2nd derivative of deflection. Similar propor-
tionalities can be found for other natural oscillators (see Table 1.3). It is this propor-
tionality between deflection and its 2nd derivative that leads to the general solution 
by a sinusoidal function [1].

Reflected wave

Incident wave

Wall

Fig. 1.6 Illustration of the reflection of the wave. The reverse reflected pulse is represented by the 
blue curve and after striking the wall
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Table 1.3 Eigenfrequency of some natural oscillators

Eigenfrequency (f) Variables
Pendulum

f
g

L
= ´

1

2p

π = circular number (3.1415)
g = gravity (9.81 m/s on Earth)
L = length of the string [m]

Spring-mass

f
k

m
= ´

1

2p

π = circular number (3.1415)
k = stiffness of the spring [N/m]
m = mass of the spring [kg]

Instrument string

f
n

L

T
n = ´

2 m

n = number of harmonic (e.g., 1st, 2nd, etc)
T = tension of the string [N]
μ = mass per unit length [kg/m]
L = length of the string [m]

Note that these equations apply to idealized conditions, where there is complete conservation of 
energy. Note also that numerators (gravity, stiffness, tension) are positively associated with the 
eigenfrequency, whilst denominators (length, mass) are negatively associated. This is because the 
numerators foster the relative energy transferal, whilst denominators hamper it.

θ

Pivot

Equilibrium
Point

FR

S

Deflection

R
od of Length /

Fig. 1.7 Illustration of a suspended pendulum. Deflection of the pendulum away from the equi-
librium by angle θ leads to vertical displacement s, and thus potential energy. If let loose, the mass 
(red bob) will have transformed all of its potential energy into kinetic energy at the equilibrium 
point, and then continue to swing to the other side until all of the kinetic energy is transformed into 
potential energy. This transferal of energy is affected by rod length l (the greater l, the slower the 
transfer), and by gravity (a pendulum will swing slower on the moon), but independent of the bob’s 
mass. Mathematically speaking, the restoring force FR is proportional to deflection angle θ, at least 
for small deflections. Therefore, the pendulum can be described by a 2nd order differential equa-
tion (for more information, see text books on physics)
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The basic equation for sinusoidal oscillations is

 
y t A t( ) = ´ + ´( )sin j w  (1.1)

Where y is the displacement, A is the amplitude, φ is phase, and t is time. These 
variables have been illustrated in Fig. 1.2. The circular frequency ω is given as

 w p= 2 f  (1.2)

And the peak-to-peak amplitude Ap2p is defined as

 
A Ap p2 2= ×  (1.3)

It follows from Newton’s second axiom that the maximal force exerted on a rigid 
body scales with the maximal acceleration (amax), which can be collated as

 a Amax = ´w 2  (1.4)

which is usually given in multiples of acceleration on Earth (g). The first derivative 
of the sine function in Eq. (1.1) is a cosine function

 
¢( ) = ´ ´ + ´( )y t A tw j wcos  (1.5)

and the sine function corresponds to the cosine function through a phase shift by π

 
cos sin(t t( ) = ´ + æ

è
ç

ö
ø
÷

æ

è
ç

ö

ø
÷w

p
2  

(1.6)

Conversely, integration of a sine function yields a cosine function.
Finally, damped oscillations are described as

 
y t A t e t( ) = ´ + ´( )´ - ´sin j w d  (1.7)

where e is Euler’s number and δ is the damping constant. If the damping is constant, 
then it will only affect the amplitude of the oscillation. If the damping is propor-
tional to velocity (also called viscous damping), then it reduces the amplitude and 
frequency. The damping constant can be graphically determined from the logarith-
mic decrement λ (Fig. 1.8), which is related to δ and the oscillation period Td by

 l d= ´Td  (1.8)

0 1 2

Time [s]

Damped Oscillation

3

f = 1 Hz, δ = 0.2 Hz

4 5

y1 y2 y3
^^ ^

Fig. 1.8 In damped 
oscillations, the 
logarithmic decrement λ 
can be calculated by Eq. 
(1.8), or it can be 
graphically assessed as the 
ratio ˆ ˆ/y y1 2 , or equally 
by ˆ ˆ/y y2 3 , etc.

J. Rittweger and R. Taiar



15

1.8  Analysis of Periodic Signals

There are several ways possible by which we can analyze the oscillatory compo-
nents of signals with regards to their frequency, amplitude, phase and shape. Each 
of them has its specific strengths and weaknesses, and we can describe only a small 
selection here.

1.8.1  Spectral Analysis

This classical method is based on Fourier’s theorem, which states that any peri-
odic signal can be thought of as a composition of sine and cosine waves. When 
discussing the emergence of harmonics (Fig.  1.3d), we had already seen that 
superposition of sinusoidal waves can generate complex periodic patterns. The 
principle idea behind Fourier transforms is to back-trace harmonic superposition 
and to decompose empirical data into a hypothetical set of sinusoidal oscillations. 
Technically speaking, decomposition of N samples of a given time series yields 
N/2 frequency components as well as N/2 phase components. Thus, the entire 
information is conserved, which is a great strength of Fourier transforms. However, 
whilst interpretation of the amplitude information is straightforward (Fig. 1.9), 
humans typically struggle to comprehend the phase information, which is why 
this information is typically neglected. This can give rise to misinterpretations, 
namely when authors refer to ‘higher frequencies’ when in reality they speak of 
harmonics, i.e., the shape factors or formants. To avoid such confusion, the term 
‘frequency components’ should be used (rather than ‘higher frequencies’), and it 
should be understood that such higher frequency components typically result 
from deviations from the idealized sinusoidal curves, rather than by additional 
oscillations. For example, the vibration signals from riveting hammers and from 
other hand-held power tools are very rich in harmonics (Chap. 4), and they must 
surely not be confused with frequencies originating from other primary oscilla-
tions. Another example would be impacts that emerge from collisions with vibrat-
ing platforms, which can occur when affixment to the platform is insufficient (see 
Chap. 7). This is important, as higher frequency components are thought to be 
particularly provocative for vibration- related problems in occupational medicine 
(see Chap. 4).

Fourier transforms are not only useful for quantitative analysis of periodic sig-
nals, they also offer the mathematical foundation for frequency-selective filtering. 
This can often be useful in signal processing tasks.

1.8.2  Wavelet Transforms

To overcome the Fourier transform’s limitations in assessing phase and shape 
information, wavelet analysis has been introduced in the early 1980s. The idea is 
here to a priori define the shape of the periodic oscillations, and to the approximate 
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its occurrence in a given signal (time-frequency location). Mathematically, this 
works by generating a family of functions deduced from the same function (called 
mother wavelets) by translation and dilation operations (see Fig.  1.10). Thus, 
whilst Fourier transforms decompose a given signal into a set of sine waves that 
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Fig. 1.9 Spectral Analysis of sinusoidal signals (left column) and of physiological signals (right 
column). (a) A pure sine wave (red curve) and an oscillation curve with 2nd and 3rd harmonic 
(blue curve, identical with Fig. 1.3d); (b) amplitude spectrogram of the red curve in A, showing 
that only one oscillation is present at 1 Hz; (c) amplitude spectrogram of the blue curve in A, show-
ing peak at the fundamental frequency (1st harmonic, 1 Hz), as well as at the 2nd and 3rd harmonic 
(2 Hz and 3 Hz, respectively). (d) Blood pressure (red) and electrocardiogram (ECG, in blue) 
signals, which are identical with Fig. 1.2d; (e) amplitude spectrogram of the ECG in (d). Although 
the blood pressure curve looks quite similar to the red curve in (a), its harmonics have much 
greater amplitude. In the jargon of engineers, these are called ‘higher frequency components’, and 
they are often seen as shape factors. The greater the harmonic power, the ‘edgier’ is the oscillation; 
(f) amplitude spectrogram of the ECG signal. Here, the amplitude of the harmonics is even greater 
than the amplitude of the fundamental frequency. Note also that acceleration curves from riveting 
hammers (see Chap. 4) can look similar to an ECG
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extend over the entire signal, the wavelet approach is decomposing into wave ele-
ments that are limited in time. However, whilst the fundamental ideas behind 
wavelet transforms are promising, they have so far not become very popular among 
researchers.

1.8.3  Averaging Methods

Spectral analysis and wavelet analysis are extremely useful to analyze technical and 
physical signals. However, their strength is at decomposing signals, and not at rec-
ognizing patterns. Therefore, they are not so straightforward to use with physiologi-
cal signals (see Fig.  1.9f). Hitherto, averaging methods provide an easy-to-use, 
intuitive alternative.

The principle idea is to analyze signal sweeps in relation to a time signal. Often, 
the time signal is an external stimulus, e.g., a light flash, a sound or an electric 
stimulus that is given to a test subject at regular (or irregular) intervals. That stimu-
lus then serves as a timing event (ET), and sweeps from another physiological signal 
(S) are overlayed and averaged. This approach is routinely used in clinical neuro-
physiology, e.g., for visually evoked potentials (ET = light flash, S = electro- 
encephalogram (EEG)) or for brainstem auditory evoked potentials (BAEP, ET = 
sound, S = electro-encephalogram (EEG)).

In neurophysiology, a related technique called peri-stimulus time histogram 
(PSTH) uses external stimuli and the discharge of a given neurone signal. Obviously, 
neuronal discharge is better modelled as an event than as a continuous signal. Hence, 
PSTH uses counts per time bin for its display, which requires some smart reasoning 
about the width of the time bin [10].

Using averaging methods in other fields of physiological data processing is 
straightforward. Triggering an ECG, for example, is as easy as triggering neural 
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discharge (see Fig. 1.11). This can be used to get an averaged blood pressure, to 
check the accuracy of the ECG-triggering, and also to look at relationships between 
the cardiac rhythm and other oscillatory processes in the body. As illustrated by 
Fig. 1.11, the approach is very powerful in assessing the shape of an oscillatory 
process when the physiological signal does not follow any analytical mathematical 
function.

Averaging methods are also straightforward for the analysis of human vibration 
exercise. Either the position of the vibration platform or an accelerometric signal 
can be used for ET, and S could consist in signals as varied as perfusion, joint angle 
or muscle fascicle length [11].
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Fig. 1.11 Illustration of how averaging methods can help. Here, the ECG signal has been thresh-
olded at a value of 240 to yield a series of timing events ET. Next, sweeps of the blood pressure 
signal are overlayed such that they range from 0.15 s before (=negative lag) until 1.35 s after ET 
(=positive lag). The individual sweep data are displayed as grey curves in the resulting peri- 
stimulus plot. In this plot, all ET coincides with lag = 0 (indicated by yellow line), and the blue 
curve denotes the averaged blood pressure over the cardiac cycle. In this example, the 95% confi-
dence interval is indicated by red curves. Note from the upper figure that peri-stimulus plots can 
also be used to quickly judge the accuracy of the triggering process: Accuracies in the triggering 
reveal themselves by grey curves that do not follow the averaged curve
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1.9  How to Quantify Signal Amplitude and Magnitude

Finally, we need to shortly discuss the concept of amplitude in some more detail. 
This is important, as the different measures of amplitude are frequently confused in 
the literature [4]. All is simple if we are to deal with sine curves. Then the positive 
peak amplitude APeak is given by the displacement between ϕ = 0° and ϕ = 0° (see 
Eq. 1.1 and Fig. 1.12a). As the sine wave is symmetric, the peak-to-peak amplitude 

ARMS
APeak

AP2P

ARMS

APeak

APeak2

AP2P

0.0 0.5

Time [s]

1.0 1.5 2.0

b

a

ECG

Sine Curve

Fig. 1.12 Illustration of the different measures for signal amplitude. (a) sine curve. Peak ampli-
tude is defined as the difference between mean value and the extreme value, both positive as well 
as negative. In the case of the sine function, the excursions are symmetrical, and AP2P is simply 2 × 
APeak. The sinus function’s absolute value is displayed as grey area, and its average is referred to as 

ARMS (indicated in yellow), where RMS stands for root-mean-square ( RMS mean x= ( )2 ). RMS is 
mathematically equivalent to (mean(|x|)). This value is quite important, as it is directly related to 
the mechanical power of the vibration. (b) ECG signal. Because of the asymmetry of the signal, 
the positive and negative APeak have different extent, and AP2P cannot simply be calculated, but has 
to be processed from the data. For similar reasons, ARMS gets relatively smaller in relation to AP2P 
for ‘edgy’ signals such as ECG
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AP2P is simply 2 × APeak (Eq. 1.3). In addition, the averaged absolute amplitude ARMS 
can be calculated for sinusoidal functions as APeak / 2 . Thus, as long as we know 
at least one of the three (APeak, AP2P or ARMS), the other two can be calculated in the 
specific case of sinusoidal functions.

This changes dramatically when we deviate from sinusoidal oscillations and turn 
to real-world data. As can be seen from Fig. 1.12b, the negative and positive APeak 
may have different magnitude. As a result, we cannot simply compute AP2P, or ARMS 
from APeak, but rather have to assess those empirically. This can have a strong bear-
ing on comparisons between different vibration devices. For example, if one of the 
systems produces relatively more higher frequency components than the other, then 
it also has, for the same ARMS, a greater AP2P. Thus, the comparison of vibration 
amplitudes is not as straightforward as it may seem.

Another term that is often used in the field of vibration exercise is the so-called 
vibration magnitude [12], which is defined as the peak acceleration amax. For sinu-
soidal functions, it can be easily calculated (Eq. 1.4), and its importance consists in 
the fact that acceleration scales with the force that the body is exposed to. However, 
as for ARMS, amax strongly depends on the oscillation’s shape, and one can normally 
not rely on calculations from the vibration frequency and the targeted APeak.

In summary, the different descriptors APeak, AP2P, ARMS and amax must not be used 
interchangeably. Moreover, each of them has its specific implications for vibration 
exercise and therapy. Whilst APeak and AP2P indicate the range of motion, ARMS scales 
with the mechanical power, and aPeak is related to the peak force. Given that many 
vibration exercise devices generate vibrations that deviate substantially from the 
sinusoidal shape, it seems mandatory for scientific and medical publications to 
report at least AP2P, ARMS and amax.
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