Die vorliegende Arbeit bezweckt, eine Übersicht über die Untersuchungen an radioaktiven Substanzen zu geben, die ich seit mehr als vier Jahren ausführe. Der Ausgangspunkt war eine Untersuchung der von Herrn Becquerel entdeckten Uranstrahlen. Die Resultate, zu welchen diese Arbeit mich führte, schienen eine so interessante Perspektive zu eröffnen, daß Herr Curie, unter Aufgabe seiner eigenen Arbeiten, sich mit mir vereinigte und wir gemeinsam auf das Ziel hinarbeiteten, die neuen radioaktiven Substanzen zu extrahiren und näher zu erforschen.
Von Anfang unserer Untersuchungen an hielten wir uns für verpflichtet, Proben der von uns entdeckten und hergestellten Substanzen an einige Physiker zu verleihen, vor allen Dingen an Herrn Becquerel, den Entdecker der Uranstrahlen. So haben wir selbst die Untersuchungen andrer über die radioaktiven Substanzen erleichtert. Bald nach unsren ersten Veröffentlichungen befaßte sich auch Herr Giesel in Deutschland mit der Herstellung dieser Substanzen und verlieh ebenfalls Proben davon an mehrere deutsche Physiker. Später wurden die Substanzen in Deutschland und Frankreich in den Handel gebracht und die immer mehr zunehmende Wichtigkeit des Gegenstandes wurde die Veranlassung zu einer wissenschaftlichen Bewegung, so daß zahlreiche Arbeiten über die radioaktiven Körper erschienen sind und noch fortwährend erscheinen, vor allem im Ausland. Die verschiedenen französischen und ausländischen Arbeiten führen natürlich zum Teil zu gleichen Resultaten, wie bei jedem neuen und in Bildung begriffenen Wissenszweig. Das Aussehen der Frage ändert sich sozusagen von Tag zu Tag.
Vom chemischen Standpunkt aus ist jedoch ein Punkt definitiv gesichert: Die Existenz eines neuen stark radioaktiven Elements, des Radiums. Die Herstellung des reinen Radiumchlorids und die Bestimmung des Atomgewichts des Radiums bilden den wichtigsten Teil meiner persönlichen Mitarbeit. Diese Arbeit fügt nicht nur den bisher bekannten einfachen Körpern mit Sicherheit einen neuen von sehr merkwürdigen Eigenschaften hinzu, sondern enthält auch die Darlegung und Rechtfertigung einer neuen Methode chemischer Untersuchungen. Diese auf der Radioaktivität, als einer dem Atom anhaftenden Eigenschaft, beruhende Methode ist es, die uns, Herrn Curie und mir, die Entdeckung des Radiums ermöglichte.
Während vom chemischen Standpunkte aus die ursprünglich gestellte Frage als gelöst betrachtet werden kann, ist die Untersuchung der physikalischen Eigenschaften der radioaktiven Substanzen in voller Entwicklung begriffen. Gewisse wichtige Punkte stehen zwar bereits fest, aber eine große Anzahl von Schlüssen ist noch provisorischer Natur. Dies ist durchaus erklärlich, wenn man die Komplicirtheit der mit der Radioaktivität zusammenhängenden Phänomene und die Unterschiede zwischen den verschiedenen radioaktiven Substanzen bedenkt. Die Untersuchungen verschiedener Physiker, die sich mit diesen Substanzen beschäftigen, begegnen und durchkreuzen sich fortwährend. Wenn ich auch versuchen werde, mich auf das eigentliche Ziel meiner Arbeit zu beschränken und vor allem meine eigenen Untersuchungen darzulegen, so muß ich doch gleichzeitig die Resultate andrer Arbeiten mitteilen, deren Kenntniß unerläßlich ist.
Außerdem hatte ich den Wunsch, diese Arbeit zu einer Übersicht des gegenwärtigen Standes der Frage zu gestalten.
Die Ausführung dieser Untersuchungen geschah in dem Laboratorium der »École de physique et de chimie industrielles de la ville de Paris«, mit Erlaubniß von Herrn Schützenberger, dem leider verstorbenen Direktor dieser Schule, und von Herrn Lauth, dem gegenwärtigen Direktor. Für die wohlwollende Gastfreundschaft, die ich an dieser Anstalt genossen habe, spreche ich hierdurch meinen besten Dank aus.
Die Entdeckung der Erscheinung der Radioaktivität steht in engem Zusammenhang mit den an die Entdeckung der Röntgenstrahlen sich anschließenden Untersuchungen über die photographischen Wirkungen der phosphorescirenden und fluorescirenden Substanzen.
Die ersten Röntgenröhren besaßen keine metallische Antikathode; die Quelle der Röntgenstrahlen befand sich auf der von den Kathodenstrahlen getroffenen Glaswand; gleichzeitig geriet diese Glaswand in den Zustand lebhafter Fluorescenz. Man konnte sich damals fragen, ob die Emission der Röntgenstrahlen nicht eine notwendige Begleiterscheinung der Fluorescenz wäre, unabhängig von der Ursache der letzteren. Diese Idee ist zuerst von Herrn H. Poincaré[1] ausgesprochen worden. Kurze Zeit darauf kündigte Herr Henry[2] an, daß er mit phosphorescirendem Zinksulfid photographische Wirkungen durch schwarzes Papier hindurch erhalten habe. Herr Niewenglowski[3] erhielt dieselbe Erscheinung mit belichtetem Calciumsulfid. Endlich erhielt Herr Troost[4] kräftige photographische Wirkungen mit künstlich hergestellter, phosphorescirender, hexagonaler Blende und zwar durch schwarzes Papier und dicken Carton hindurch.
Die soeben citirten Experimente konnten trotz zahlreicher darauf gerichteter Bemühungen nicht wiederholt werden. Man kann also durchaus noch nicht als ausgemacht ansehen, daß das Zinksulfid und Calciumsulfid die Eigenschaft haben, unter der Einwirkung des Lichts unsichtbare Strahlen auszusenden, die schwarzes Papier durchdringen und auf die photographische Platte wirken.
Herr Becquerel[5-10] machte ähnliche Versuche mit Uransalzen, von denen einige fluorescirend sind. Er erhielt starke photographische Wirkungen mit Urankaliumsulfat durch schwarzes Papier hindurch.
Becquerel glaubte zuerst, daß das fluorescirende Salz sich ähnlich verhalte wie das Zink- und Calciumsulfid in den Versuchen von Henry, Niewenglowski und Troost. Aber die weiteren Versuche zeigten, daß das beobachtete Phänomen mit der Fluorescenz nichts zu tun hatte. Das Salz braucht durchaus nicht belichtet zu sein; ferner wirken das Uran und alle seine Verbindungen, ob fluorescirend oder nicht, in gleicher Weise, und das metallische Uran am allerstärksten. Becquerel fand sodann, daß die Uranverbindungen, auch wenn man sie in vollkommener Dunkelheit aufbewahrt, jahrelang fortfahren, auf die photographische Platte durch schwarzes Papier hindurch zu wirken. Er nahm an, daß das Uran und seine Verbindungen besondere Strahlen aussenden: Die Uranstrahlen. Er stellte fest, daß diese Strahlen durch dünne Metallschirme hindurchgehen und elektrisirte Körper entladen. Er machte ferner Versuche, aus denen er schloß, daß die Uranstrahlen reflektirt, gebrochen und polarisirt werden können.
Die Arbeiten anderer Physiker (Elster und Geitel, Lord Kelvin, Schmidt, Rutherford, Beattie und Smoluchowski) haben die Resultate Becquerels bestätigt und erweitert, abgesehen von der Reflexion, der Brechung und Polarisation der Uranstrahlen, die sich in dieser Beziehung wie die Röntgenstrahlen verhalten; eine Tatsache, die zuerst von Rutherford und später von Becquerel selbst erkannt wurde.
Die von Herrn Becquerel entdeckten Uranstrahlen wirken auf gegen Licht geschützte photographische Platten; sie können alle festen, flüssigen und gasförmigen Körper durchdringen, vorausgesetzt, daß ihre Dicke genügend gering ist; die durchstrahlten Gase machen sie zu schwachen Leitern der Elektrizität[5-10].
Diese Eigenschaften der Uranverbindungen entspringen keiner bekannten erregenden Ursache. Die Strahlung scheint selbsttätig zu sein, ihre Intensität nimmt durchaus nicht ab, wenn man die Uranverbindungen jahrelang in völliger Dunkelheit aufbewahrt; es handelt sich also nicht etwa um eine besondere vom Licht verursachte Phosphorescenz. Die Selbständigkeit und Konstanz der Uranstrahlen stellen eine ganz außergewöhnliche physikalische Erscheinung dar. Herr Becquerel[11] hat jahrelang ein Stück Uran in der Dunkelheit aufbewahrt und festgestellt, daß die Wirkung auf die photographische Platte am Schlusse dieser Zeit nicht merklich verändert war. Die Herren Elster und Geitel[12] haben einen ähnlichen Versuch gemacht und in gleicher Weise die Konstanz der Wirkung gefunden.
Ich habe die Intensität der Uranstrahlen mittels der Leitfähigkeit der Luft gemessen. Die Methode der Messungen wird weiter unten auseinander gesetzt werden. Die erhaltenen Zahlen beweisen die Konstanz der Strahlung innerhalb der Genauigkeitsgrenzen der Versuche, d.h. auf 2 bis 3 Proz.[13]
Zu diesen Messungen wurde eine Metallplatte benutzt, die mit einer Schicht von Uranpulver bedeckt war. Die Platte wurde nicht in der Dunkelheit aufbewahrt, da dies nach den oben angeführten Beobachtungen ohne Einfluß ist. Die Zahl der mit dieser Platte ausgeführten Beobachtungen ist sehr groß und erstreckt sich gegenwärtig auf einen Zeitraum von fünf Jahren.
Ferner untersuchte ich, ob auch irgend welche andre Substanzen sich ebenso wie die Uranverbindungen verhalten. Herr Schmidt[14] veröffentlichte zuerst, daß das Thor und seine Verbindungen die gleiche Eigenschaft haben; eine analoge und gleichzeitige Arbeit von mir ergab dasselbe Resultat. Ich[15] habe diese Arbeit publicirt, noch bevor ich Kenntniß von der Schmidtschen Veröffentlichung hatte.
Das Uran, das Thor und ihre Verbindungen emittiren also Becquerelstrahlen. Ich habe die Substanzen, die eine derartige Strahlung aussenden, radioaktiv genannt[16], ein Name, der seitdem allgemein angenommen worden ist.
Durch ihre photographischen und elektrischen Wirkungen sind die Becquerelstrahlen den Röntgenstrahlen verwandt; sie haben auch, wie die letzteren, die Fähigkeit, alle Körper zu durchdringen, aber ihr Durchdringungsvermögen ist außerordentlich verschieden; die Uran- und Thorstrahlen werden von Millimetern eines festen Körpers aufgehalten und können sich in Luft nicht weiter als auf einige Centimeter fortpflanzen; wenigstens gilt dies für den größten Teil der Strahlung.
Die Arbeiten verschiedener Physiker, vor allem diejenigen von Herrn Rutherford[17], haben gezeigt, daß die Becquerelstrahlen einer regulären Reflexion, Brechung oder Polarisation nicht fähig sind.
Das schwache Durchdringungsvermögen der Uran- und Thorstrahlen konnte dazu führen, sie eher mit den sekundären Röntgenstrahlen, die von Sagnac[18-21] näher untersucht sind, als mit den Röntgenstrahlen selbst zu vergleichen. Andrerseits kann man versuchen, die Becquerelstrahlen den in Luft sich fortpflanzenden Kathodenstrahlen (Lenardstrahlen) zur Seite zu stellen. Man weiß heute, daß diese verschiedenen Vergleiche alle ihre Berechtigung haben.
Die benutzte Methode besteht in der Messung der Leitfähigkeit der Luft unter der Einwirkung der radioaktiven Substanzen. Diese Methode hat den Vorteil, schnell zu sein und vergleichbare Zahlen zu liefern. Der benutzte Apparat besteht im wesentlichen aus einem PlattenkondensatorAB (Fig.1). Die fein pulverisirte aktive Substanz ist auf der PlatteB ausgebreitet und macht die Luft zwischen den Platten leitend. Um diese Leitfähigkeit zu messen, bringt man die PlatteB auf ein hohes Potential, indem man sie mit dem einen Pol einer kleinen AkkumulatorenbatterieP verbindet, deren andrer Pol an Erde liegt. Da die PlatteA durch den DrahtGD an Erde gelegt ist, so entsteht ein elektrischer Strom zwischen den Platten. Das Potential der PlatteA wird durch ein ElektrometerE gemessen. Unterbricht man inC die Verbindung mit der Erde, so ladet sich die PlatteA und die Ladung bewirkt eine Ablenkung des Elektrometers. Die Geschwindigkeit der Ablenkung ist proportional der Stromintensität und kann zu ihrer Messung dienen.
Es ist jedoch vorzuziehen, bei Ausführung der Messung die Ladung der PlatteA zu kompensiren, so daß man das Elektrometer auf Null erhält. Die hier in Frage kommenden Ladungen sind außerordentlich schwach, sie können mit Hülfe eines piezoelektrischen QuarzesQ kompensirt werden, dessen eine Belegung mitA, die andre mit der Erde verbunden ist. Man unterwirft die Quarzplatte einer Zugkraft von bekannter
Größe durch Aufsetzen von Gewichten auf eine SchaleH: diese Zugkraft wird allmählich hervorgebracht und bewirkt eine allmähliche Entwicklung einer bekannten Elektrizitätsmenge während der Dauer der Messung. Der Vorgang kann derart regulirt werden, daß in jedem Augenblick eine Kompensation stattfindet zwischen der den Kondensator durchfließenden und der entgegengesetzten vom Quarz herrührenden Elektrizitätsmenge.1
Man kann so in absolutem Maße die während einer gegebenen Zeit den Kondensator durchfließende Elektrizitätsmenge, d.h. die Stromintensität, messen. Die Messung ist unabhängig von der Empfindlichkeit des Elektrometers.
Wenn man eine gewisse Anzahl derartiger Messungen ausführt, so sieht man, daß die Radioaktivität ein ziemlich genau meßbares Phänomen ist. Sie variirt wenig mit der Temperatur und wird kaum von den Schwankungen der Zimmertemperatur beeinflußt; auch eine Belichtung der aktiven Substanz ist ohne Einfluß. Die Stromintensität zwischen den Kondensatorplatten wächst mit deren Oberfläche; für einen gegebenen Kondensator und gegebene Substanz wächst der Strom mit der Potentialdifferenz zwischen den Platten, mit dem Druck des Gases, das den Kondensator erfüllt, und mit dem Abstand der Platten (vorausgesetzt, daß dieser Abstand nicht gar zu groß im Verhältniß zum Durchmesser ist). Jedoch strebt der Strom für sehr hohe Potentialdifferenz einem praktisch konstanten Grenzwert zu. Dies ist der Sättigungs- oder Grenzstrom. Ferner variirt von einem gewissen ziemlich großen Abstand der Platten ab der Strom kaum mehr mit dem Abstand. Der unter diesen Bedingungen erhaltene Strom ist es, der bei meinen Untersuchungen als Maß der Radioaktivität genommen wurde, wenn sich der Kondensator in Luft von Atmosphärendruck befand.
Ich gebe als Beispiel einige Kurven, die die Stromstärke als Funktion des mittleren Feldes zwischen den Platten für zwei verschiedene Plattenabstände darstellen. PlatteB war mit einer sehr dünnen Schicht pulverisirten Uranmetalls bedeckt; die mit dem Elektrometer verbundene PlatteA war mit einem Schutzring versehen.
Fig.2 zeigt, daß die Stromintensität für starke Potentialdifferenzen zwischen den Platten konstant wird. Fig.3 stellt dieselbe Kurve in einem anderen Maßstabe dar und enthält bloß die Resultate für schwache Potentialdifferenzen; der Quotient aus Stromstärke und Potentialdifferenz ist für schwache Spannungen konstant und stellt die Initialleitfähigkeit zwischen den Platten dar. Man kann also zwei wichtige charakteristische Konstanten dieses Phänomens unterscheiden: 1. Die Initialleitfähigkeit für schwache Potentialdifferenzen, 2. den Grenzstrom für starke Potentialdifferenzen. Dieser Grenzstrom ist es, der als Maß für die Radioaktivität angenommen wurde.
Außer der zwischen den Platten besonders hergestellten Potentialdifferenz existirt zwischen ihnen noch eine Kontaktkraft, und die Wirkungen dieser beiden Stromursachen addiren sich; infolgedessen ändert sich der Absolutwert des Stromes mit dem Vorzeichen der äußeren Potentialdifferenz. Jedoch ist für hohe Spannungen der Einfluß der Kontaktkraft zu vernachlässigen und die Stromstärke unabhängig von dem Vorzeichen des Feldes zwischen den Platten.
Die Leitfähigkeit der Luft und andrer Gase unter der Einwirkung der Becquerelstrahlen ist von mehreren Physikern studirt worden.[22-24] Eine sehr vollständige Untersuchung des Gegenstandes veröffentlichte Herr Rutherford.[17] Die Gesetze der in Gasen durch Becquerelstrahlen hervorgerufenen Leitfähigkeit sind dieselben wie die bei Röntgenstrahlung gefundenen. Der Mechanismus der Erscheinung scheint in beiden Fällen derselbe zu sein. Die Theorie der Ionisation der Gase unter der Wirkung der Röntgen- oder Becquerelstrahlung giebt sehr guten Aufschluß über die beobachteten Tatsachen. Diese Theorie soll hier nicht weiter erörtert werden; ich erinnere nur an die Resultate, zu denen sie führt:
Die Zahl der pro Sekunde im Gase producirten Ionen wird proportional gesetzt der im Gase absorbirten Strahlungsenergie.
Um den einer bestimmten Strahlung entsprechenden Grenzstrom zu erhalten, muß man einerseits diese Strahlung vom Gase vollständig absorbiren lassen, indem man einen genügend große absorbirende Masse benutzt; andrerseits muß man zur Hervorbringung des Stromes alle erzeugten Ionen benutzen, indem man ein so starkes Feld herstellt, daß die Zahl der sich wieder vereinigenden Ionen nur einen unwesentlichen Bruchteil der in derselben Zeit erzeugten Gesamtzahl von Ionen beträgt, und diese fast vollständig von dem Strom zu den Elektroden geführt werden. Das hierzu nötige elektrische Feld ist um so höher, je stärker die Ionisation.
Nach neueren Untersuchungen von Herrn Townsend[25] ist das Phänomen bei schwachem Gasdruck komplicirter. Der Strom scheint zuerst bei wachsender Potentialdifferenz einem konstanten Grenzwert zuzustreben, aber von einer gewissen Potentialdifferenz an beginnt der Strom wieder mit dem Felde zu wachsen und zwar äußerst schnell. Herr Townsend nimmt an, daß dieses Anwachsen von einer neuen Ionisation herrührt, die von den Ionen selbst erzeugt wird, wenn sie unter der Einwirkung des elektrischen Feldes eine genügend große Geschwindigkeit annehmen, damit ein Gasmolekül, wenn es von diesen Geschossen getroffen wird, zerbrochen und in die Ionen, aus denen es besteht, zerteilt wird. Ein starkes elektrisches Feld und schwacher Druck begünstigen diese Ionisation durch die schon vorhandenen Ionen, und sobald dies eintritt, wächst die Stromstärke dauernd mit dem mittleren Felde zwischen den Platten. Der Grenzstrom kann also nur erhalten werden, wenn die ionisirende Ursache einen gewissen Wert nicht überschreitet, so daß die Sättigung bereits bei Feldern erreicht wird, bei denen die Ionisation durch Ionenstoß noch nicht stattgefunden hat. Diese Bedingung ist bei meinen Versuchen erfüllt.
Die Größenordnung des Sättigungsstromes, den man mit Uranverbindungen erhält, beträgt etwa 10 − 11Ampère für einen Kondensator, dessen Platten 8cm Durchmesser und 3cm Abstand haben. Die Thoriumverbindungen geben Ströme von derselben Größenordnung und die Aktivitäten der Oxyde von Uran und Thor sind ganz analog.
Es folgen zunächst einige Zahlen, die ich mit verschiedenen Uranverbindungen erhalten habe; ibedeutet die Stromstärke in Ampère:
i ⋅ 1011 | |
---|---|
Metallisches Uran (etwas kohlehaltig) | 2,3 |
Schwarzes Uranoxyd, U2O5 | 2,6 |
Grünes Uranoxyd, U2O4 | 1,8 |
Uransäurehydrat | 0,6 |
Natriumuranat | 1,2 |
Kaliumuranat | 1,2 |
Ammoniumuranat | 1,3 |
Uranosulfat | 0,7 |
Urankaliumsulfat | 0,7 |
Uranylnitrat | 0,7 |
Urankupferphosphat | 0,9 |
Uranylsulfat | 1,2 |
Die Dicke der angewandten Schicht von Uranverbindungen hat wenig Einfluß, vorausgesetzt, daß die Schicht zusammenhängend ist. Einige Versuche hierüber ergaben:
Schichtdicke (mm) | i ⋅ 1011 | |
---|---|---|
Uranoxyd | 0,5 | 2,7 |
„ | 3,0 | 3,0 |
Ammoniumuranat | 0,5 | 1,3 |
„ | 3,0 | 3,0 |
Man kann hieraus schließen, daß die Absorption der Uranstrahlen durch die emittirende Substanz sehr stark ist, da die aus tieferen Schichten kommenden Strahlen keinen merklichen Effekt
hervorbringen.
Aus den Zahlen, die ich[15] mit Thorverbindungen erhalten habe, ergab sich folgendes:
Die Dicke der angewandten Schicht ist von beträchtlichem Einfluß, besonders beim Oxyd.
Das Phänomen ist nur dann regelmäßig, wenn man eine sehr dünne aktive Schicht benutzt (z.B. 0,25mm). Wenn man dagegen eine dicke Schicht (6mm) benutzt, so erhält man zwischen weiten Grenzen schwankende Zahlen, besonders im Falle des Oxyds:
Schichtdicke (mm) | i ⋅ 1011 | |
---|---|---|
Thoroxyd | 0,25 | 2,2 |
„ | 0,5 | 2,5 |
„ | 2,5 | 4,7 |
„ | 3,0 | 5,5 im Mittel |
„ | 6,0 | 5,5 „„ |
Thorsulfat | 0,25 | 0,8 |
Es ist hier also eine Ursache zu Unregelmäßigkeiten vorhanden, die bei den Uranverbindungen nicht existirt. Die mit einer Oxydschicht von 6mm erhaltenen Zahlen variiren zwischen 3,7 und7,3.
Die Untersuchungen, die ich über die Absorption der Uran- und Thorstrahlen angestellt habe, ergaben, daß die Thorstrahlen ein größeres Durchdringungsvermögen besitzen als die Uranstrahlen, und daß die vom Thoroxyd in dicker Schicht emittirten Strahlen durchdringender sind als diejenigen, die es in dünner Schicht emittirt. Es wurden z.B. folgende Zahlen für den Bruchteil der Strahlung erhalten, den ein Aluminiumblatt von 0,01mm Dicke hindurchläßt:
Strahlende Substanz | Vom Aluminium durchgelassener Bruchteil der Strahlung |
---|---|
Uran | 0,18 |
Uranoxyd, U2O5 | 0,20 |
Ammoniumuranat | 0,20 |
Urankupfersulfat | 0,21 |
Thoroxyd, 0,25 mm dick | 0,38 |
Thoroxyd, 0,5 mm dick | 0,47 |
Thoroxyd, 3,0 mm dick | 0,70 |
Thoroxyd, 6,0 mm dick | 0,70 |
Thorsulfat, 0,25 mm dick | 0,38 |
Bei den Uranverbindungen ist die Absorption dieselbe, welches auch immer die benutzte Verbindung sei, woraus der Schluß zu ziehen ist, daß die von den verschiedenen Verbindungen emittirten Strahlen von gleicher Art sind.
Die Eigentümlichkeiten der Thorstrahlung sind bereits Gegenstand sehr ausführlicher Untersuchungen gewesen. Herr Owens[26] hat gezeigt, daß man einen konstanten Strom in einem geschlossenen Apparat erst nach ziemlich langer Zeit erhält, und daß die Stromstärke sehr stark durch die Wirkung eines Luftstroms reducirt wird (was bei den Uranverbindungen nicht der Fall ist). Herr Rutherford[27] hat analoge Versuche gemacht und sie dahin interpretirt, daß das Thor und seine Verbindungen nicht bloß Becquerelstrahlen aussenden, sondern auch eine aus außerordentlich feinen Partikeln bestehende Emanation, die einige Zeit lang nach ihrer Emission radioaktiv bleibt und von einem Luftstrom mit fortbewegt werden kann.
Die Eigentümlichkeiten der Thorstrahlung, die sich auf die Schichtdicke und die Wirkung eines Luftstromes beziehen, sind eng verbunden mit der Erscheinung der inducirten Radioaktivität und ihrer Fortpflanzung von Schicht zu Schicht. Diese Erscheinung ist zuerst am Radium beobachtet worden und soll weiter unten beschrieben werden.
Die Radioaktivität der Uran- und Thorverbindungen stellt eine Eigenschaft der Atome dar. Herr Becquerel[10] beobachtete bereits, daß alle Verbindungen des Urans aktiv sind, und schloß daraus, daß ihre Aktivität durch die Gegenwart des Elements Uran bedingt sei; er zeigte ferner, daß das Uran stärker aktiv ist als seine Salze. Ich habe von diesem Gesichtspunkt aus die Uran- und Thorverbindungen untersucht und eine große Anzahl von Messungen ihrer Aktivität unter verschiedenen Bedingungen ausgeführt. Es folgt aus allen diesen Messungen, daß die Radioaktivität dieser Substanzen tatsächlich eine Eigenschaft des Atoms ist. Sie scheint hier eng verknüpft mit der Anwesenheit der Atome der beiden betrachteten Elemente und wird weder durch Änderung des physikalischen Zustandes, noch durch chemische Umwandlungen zerstört. Die chemischen Verbindungen und Mischungen, welche Uran und Thor enthalten, sind um so aktiver, je mehr sie von diesen Metallen enthalten, indem jede unaktive Substanz einerseits als träge Beimengung wirkt, andrerseits einen Teil der Strahlung absorbirt.
Wie bereits oben gesagt, habe ich danach gesucht, ob andre Substanzen außer den Uran- und Thorverbindungen aktiv wären. Ich ging bei diesen Untersuchungen von der Idee aus, daß es sehr wenig wahrscheinlich sei, daß die Radioaktivität als Eigenschaft der Atome betrachtet, nur einer bestimmten Art von Materie zukomme, unter Ausschluß aller übrigen. Die Messungen, die ich gemacht habe, erlaubten den Schluß, daß für die augenblicklich bekannten chemischen Elemente, incl.die allerseltensten und unsichersten, die von mir studirten Verbindungen wenigstens 100mal weniger aktiv in meinem Apparat wären als das metallische Uran. Von den bekannteren Elementen habe ich verschiedene Verbindungen untersucht, von den seltenen Körpern nur diejenigen Verbindungen, die ich mir gerade verschaffen konnte. Folgendes ist die Liste der Substanzen, die ich als Element oder in Verbindung untersucht habe:
Alle Metalle und Nichtmetalle, die leicht erhältlich sind, und einige seltenere in ziemlich reinem Zustand aus der Sammlung von Herrn Etard an der »École de physique et de chimie industrielles de la ville de Paris«.
Die folgenden seltenen Körper: Gallium, Germanium, Neodym, Praseodym, Niobium, Skandium, Gadolinium, Erbium, Samarium und Rubidium (von Herrn Demarçay geliehen); Yttrium, Ytterbium mit Neoerbium (von Herrn Urbain geliehen).2
Eine große Anzahl von Gesteinen und Mineralien.
Innerhalb der Empfindlichkeitsgrenze meines Apparates habe ich außer dem Uran und Thor keinen einfachen Körper gefunden, dessen Atome radioaktiv sind.3
[28]