Ulrich Hauptmanns

Process and Plant Safety 2nd Edition

Process and Plant Safety

Ulrich Hauptmanns

Process and Plant Safety

Second Edition

Ulrich Hauptmanns Schönebeck, Germany

Originally published Hauptmanns: Prozess- und Anlagensicherheit, Berlin, 2020, translated by the author

ISBN 978-3-662-61483-9 ISBN 978-3-662-61484-6 (eBook) https://doi.org/10.1007/978-3-662-61484-6

Springer Vieweg

© Springer-Verlag GmbH Germany, part of Springer Nature 2015, 2020 corrected Publikation 2020 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Alexander Gruen

This Springer Vieweg imprint is published by the registered company Springer-Verlag GmbH, DE part of Springer Nature.

The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany

To Uta and Anton

Preface to Second Edition

The second edition of the present book provided the opportunity to thoroughly revise the text and to make a number of corrections. New examples resulting from inquiries of practitioners were added. The chapter on "appropriate safety distances" was extended by including experiences from the author's consulting activities.

I would like to thank Prof. Dr. U. Stephan, Dr.-Ing. Arizal and Dipl-Ing. D. Möckel for their expert advice.

Schönebeck (Elbe), February 2020

Ulrich Hauptmanns

Preface to the German Edition

Quidquid agis prudenter agas, respice finem

Safety is a basic human need. That is why a modern society must ensure that industrial production is safe. The task of engineers dedicated to process and plant safety is to achieve this. They ensure that plants are designed for safety and built and operated safely and that people have safe workplaces. Only if this is fulfilled is the operation of industrial plants ethically acceptable.

Safety means that hazards are kept small. However, there is no possibility to eliminate them completely; for whatever is possible will occur with a certain probability.

In order to make engineered systems safe, the probability of hazards must be reduced as far as possible. This requires a structured approach that is based on experience as well as experimental and theoretical findings. In this book, the approach for analyzing and designing safe process plants is described. Starting points are possible hazards from material properties and operating conditions. The focus is placed on the qualitative and quantitative modelling of technical systems and the simulation of physical and chemical processes during operation and accidents. The material presented is extended and complemented by a number of examples and case studies, which refer to real plants or events.

A characteristic of analyses of process and plant safety is that the interdependencies within the engineered system, the influence of its components on one another and human interventions must be accounted for. A further characteristic is the stochastic nature of the processes to be analyzed, which renders it, for example, impossible to predict the moment of occurrence of an accident. These aspects are duly addressed.

Process and plant safety is interdisciplinary. Just as for building and operating a plant process, mechanical, electrical, and civil engineering as well as informatics have to be combined, plant safety needs these disciplines, too. This makes the selection of topics difficult and shows that experts for safety, who cannot possibly have a command of all these areas of knowledge, should address safety tasks in cooperation with specialists of the areas mentioned.

The selection of topics follows that of the model curriculum "Process and Plant Safety" of ProcessNet. My gratitude goes to my colleagues, Profs. A. Schönbucher, H. W. Brenig, H. U. Moritz, and J. Schmidt as well as to Dr. O. Klais for instructive and vivid discussions when elaborating the curriculum and deciding on unavoidable omissions.

Safety needs foresight. It should not derive from trial and error as it did in the earliest days of engineering. An important tool is the elaboration of scenarios, i.e. potential developments of the future. This requires thought experiments to be performed, which must be based on a broad background of knowledge in engineering and natural sciences as well as of experimental results and the simulations of accidents.

The book provides students and practitioners with the necessary tools for analyzing processes and plants and designing them for safety. It makes use of knowledge in mathematics, physics, chemistry, as well as of thermal and fluid dynamics, as taught during the first semesters of engineering courses.

The text is based on courses that I have been offering for more than a decade and a half at the Otto-von-Guericke-Universität Magdeburg. Discussions with collaborators and students have contributed to it. I thank them for their dedication.

I gratefully acknowledge the expert advice of Professors U. Stephan and Y. Ding, and Drs. J. F. Bremen, V. Schröder, D. Jablonski, and Arizal, as well as that of Dipl.-Ing. P. Guterl and Dipl.-Stat. J. Peschke. To Dr. Arizal I am also obliged for the implementation of a large part of the figures. My profound gratitude is expressed to all the experts from industry who granted me access to their plants and shared their knowledge of industrial practice with me.

My thanks go to the Springer Verlag for the good cooperation and fine presentation of the book.

The author hopes that the book enables students and practitioners to acquire knowledge of modern methods of safety analysis and to contribute to the safety of processes and plants by using them. In doing so they should follow the advice from classical antiquity that I have placed in front "Whatever you do, do it with intelligence and with the outcome in mind."

Schönebeck (Elbe), Spring 2013

Ulrich Hauptmanns

Preface to the English Edition

The preparation of the translation gave me the opportunity to correct a number of minor mistakes and to occasionally formulate concepts in a somewhat clearer language. Wherever possible, German references were replaced by English ones. All of this should be of benefit to the reader.

Schönebeck (Elbe), Spring 2014

Ulrich Hauptmanns

Contents

Hazaı	rdous Pro	operties of Materials
2.1	Flamm	ability
	2.1.1	Safety Parameters for Flammable
		Gases and Vapours
2.2	Chemic	cally Unstable Materials: Decomposition and
	Polyme	erization
2.3	Flamm	able Liquids
	2.3.1	Flash Point
	2.3.2	Fire Point
2.4	Dusts .	
	2.4.1	Self-Ignition
	2.4.2	Glow Temperature
	2.4.3	Explosion Limits
	2.4.4	Minimum Ignition Energy
	2.4.5	Limiting Oxygen Concentration (LOC)
	2.4.6	Maximum Pressure and Maximum Rate of
		Pressure Rise
2.5	Explosi	ives
	2.5.1	Brisance
	2.5.2	Loading Density
	2.5.3	Oxygen Balance
	2.5.4	Maximum Pressure
	2.5.5	Explosion Energy
2.6	Toxic N	Aaterials
	2.6.1	Limiting Long-Term Exposure
	2.6.2	Limiting Short-Term Exposure
Refere	ences	

		3.2.1	Ideal Batch Reactor	65
		3.2.2	Continuous Stirred Tank Reactor	74
		3.2.3	Tubular Flow Reactor.	77
	3.3	Autocata	alytic Reactions	79
	3.4	Polymer	ization	83
	3.5	Extreme	Process Conditions	84
		3.5.1	High Pressures	84
		3.5.2	Low Pressures	85
		3.5.3	High Temperatures	86
		3.5.4	Low Temperatures	86
	3.6	Endother	rmic Processes	90
	Referen	nces		90
4	Safe D	esion and	Operation of Plants	91
÷.,	4.1	Procedur	re for Ensuring Safety in Planning, Building	1
		and Oper	rating Plants	92
		4.1.1	Process Design	92
		4.1.2	Planning, Construction and Commissioning	
			of Plants	92
		4.1.3	Operation	94
		4.1.4	Safety Management	94
		4.1.5	Quality Assurance	95
		4.1.6	Alarm and Hazard Defence Plans, Information	
			of the Public	96
	4.2	Principle	es of Plant Safety and Fundamental Concepts	96
		4.2.1	Inherent Safety Measures 1	101
		4.2.2	Passive Safety Measures 1	105
		4.2.3	Active Safety Measures 1	107
		4.2.4	Organizational Measures 1	111
		4.2.5	Design of Safety Systems 1	112
	4.3	External	Events 1	131
		4.3.1	Earthquakes 1	132
	4.4	Plant Lag	yout and Spacing 1	138
	4.5	Fire and	Explosion Protection 1	139
		4.5.1	Sources of Ignition 1	140
		4.5.2	Protective Measures Against Fires and Explosions 1	165
	Referen	nces		179
5	Person	al Safety	and Personal Protective Equipment	183
	5.1	Safe Des	sign and the Procurement of Safe Apparatuses and	
		Work Eq	juipment 1	184
	5.2	Apparati	uses, Machinery and Tools 1	185
	5.3	Hazard A	Assessment	186
	5.4	Personal	Protective Equipment 1	191
	5.5	Safe Har	ndling of Chemical Substances	192
	5.3 5.4 5.5	Hazard A Personal Safe Har	Assessment 1 Protective Equipment 1 ndling of Chemical Substances 1	186 191 192

		5.5.1	Filling, Draining and Conveying of Hazardous	1.
			Materials.	1
		5.5.2	Sampling	I
		5.5.3	Cleaning of Vessels and Other Equipment	1
	5.6	Work v	with Special Hazards: Permit-to-work System	1
	Refere	ences	•••••••••••••••••••••••••••••••••••••••	1
6	Safety	of Proc	ess Plants by Process Control	2
	6.1	Contro	l System Characteristics and P&I Diagrams	2
	6.2	Program	mmable Electronic Systems	2
		6.2.1	Components Close to the Process	2
	6.3	Integra	tion of PCE in the Safety Concept	2
		6.3.1	Normal Operation	2
		6.3.2	Monitoring Malfunctions	2
		6.3.3	Damage Avoidance	2
		6.3.4	Hazard Defence	2
		6.3.5	General Requirements	2
	6.4	Case S	tudy: Iron-Catalyzed Oxidation of Ethanol with	
		Hydrog	gen Peroxide	2
	Refere	nces	-	2
,	Protoc	otion of I	Fourinment (End_of_nine Technology)	2
	7 1	Safety	Valvas	2
	7.1	Burstin	a Disc Protection Device	2
	7.2	Combi	notion of Safety Value and Pursting Disa Protection	2
	1.5	Davias	liation of Safety valve and Bursting Disc Flotection	2
	74	Dimon	signing of Poliof Daviage	2
	7.4		Energy Delence for the Stationary Flow Process	2
		7.4.1	Liewide	2
		7.4.2		2
		1.4.5	Two Dhase Flow	2
		7.4.4	Iwo-Phase Flow.	2
		7.4.5	Mass Flow Rate to Be Discharged	2
		7.4.6	Relief and Retention Systems	2
	7.5	Constru	uctive Measures of Explosion Protection	2
		7.5.1	Deflagration and Detonation Arresters for Gases	2
		7.5.2	Use of Flame Arresters in Practice	2
		7.5.3	Safety Concept	2
		7.5.4	Flame Arresters for Dusts	2
	Refere	ences	••••••	2
3	Risk.			2
	8.1	Overvi	ew of Risk and Safety Analyses	2
	8.2	Risk Li	imits	2
		8.2.1	Individual Risk	2
		822	Collective Risk	2

8.3 Refe	Repres	entation of Risks
Invo	stigation	f Engineered Blant Systems
0 1	Fundar	n Eligineereu Flant Systems
<i>)</i> .1	0 1 1	Failures and Safety Factors
	9.1.1	Input Information and Methods of Analysis
92	Mather	natical Description of the Components of
.2	Engine	ered Systems
	9.2.1	Exponential Distribution
	922	Other Distribution Types
	923	Constant Failure Probabilities
9.3	Determ	ination of Reliability Data for Engineered
	Compo	pnents
	9.3.1	Models
	9.3.2	Confidence Intervals.
	9.3.3	Bayesian Evaluation of Reliability Data
	9.3.4	Treatment of Uncertainties.
	9.3.5	Transferability of Reliability Data
9.4	Boolea	n Variables and Their Application in Fault
	Tree A	nalysis
	9.4.1	Series System in the Sense of Reliability
	9.4.2	Parallel System in the Sense of Reliability
	9.4.3	System with Negation
	9.4.4	Voting System of the Type 2-out-of-3
	9.4.5	The Multilinear Form of the Structure
		Function and Determination of Reliability
		Parameters for Systems
9.5	Method	ds for Increasing the Survival Probability and
	Availat	pility
	9.5.1	Systems with Reserve Elements
	9.5.2	Maintenance Models
9.6	Depend	lent Failures
	9.6.1	Causes
	9.6.2	Countermeasures
	9.6.3	Secondary Failures
	9.6.4	Functional Dependencies
	9.6.5	Common Cause Failures
	9.6.6	Closing Remark
9.7	Human	Error
	9.7.1	Procedure for Analysing Human Actions.
	9.7.2	Important Factors of Influence on
		Human Reliability

	9.8	Examples and Case Studies for the Application of	
		Fault Tree Analysis 40)1
	Refere	nces	38
10	Conse	quences of Accidents	41
	10.1	Failure of Containment 44	45
		10.1.1 Frequencies of the Occurrence of a Loss of	
		Containment	45
		10.1.2 Leak Sizes	18
		10.1.3 Geometry of the Aperture	18
	10.2	Emission from Leaks	19
		10.2.1 Discharge of Liquids from Vessels 45	51
		10.2.2 Discharge of a Liquid from a Pipe Leak 45	57
		10.2.3 Discharge of Gases or Vapours from Vessels 46	51
		10.2.4 Discharge of Gases or Vapours from	
		Pipe Leaks	52
		10.2.5 Discharge of a Two-Phase Mixture from Vessels 46	52
	10.3	Free Jets	71
		10.3.1 Liquids 47	72
		10.3.2 Gases	74
		10.3.3 Two-Phase Flow and Flash Vaporization	78
	10.4	Pool Formation and Pool Vaporization48	33
	10.5	Atmospheric Dispersion. 48	39
		10.5.1 Airborne Dispersion. 49) 0
		10.5.2 Dense Gas Dispersion 50)1
		10.5.3 Impact of Atmospheric Dispersion 50)4
	10.6	Fires and Explosions 50)8
		10.6.1 Pool Fires)8
		10.6.2 Gases 51	15
		10.6.3 Explosions 52	26
	10.7	BLEVE	14
	10.8	Dust Explosion55	52
	10.9	Flight of Missiles 55	55
		10.9.1 Calculation of the Trajectory 55	55
		10.9.2 Determination of the Coefficients for the	
		Equations of the Flight Trajectory	57
	10.10	Scenarios and Probability Assignments	55
		10.10.1Probability of Immediate Ignition56	56
		10.10.2Probability of Delayed Ignition56	57
		10.10.3 Explosion 56	59
	10.11	Case Study: Risk Assessment for the Failure of a Natural	
		Gas High Pressure Pipeline57	71
		10.11.1 Expected Frequencies of Occurrence, Release	
		Processes and Relevant Accident Consequences 57	71
		10.11.2 Accident Consequences	72

		10.11.3	Determination of the Expected Frequencies for the Occurrence of the Scenarios and Representation of the Risk	
	Refere	nces		
11	Functi	onal Safe	ety (Safety Integrity Levels)	
	Refere	nces	• • • • • •	
12	Deterr	nination	of Appropriate Distances Between Industry and	
	Reside	ential Are	as	
	12.1	Introduc	tion	
	12.2	Risk-Ba	sed Approach	
		12.2.1	Initiating Events and Scenarios	
		12.2.2	Characteristics and Exposure	
		12.2.3	Consequences of Material Releases	
		12.2.4	Damage and Risk	
	12.3	Processi	ng of Random Variables	
	12.4	Risk Lin	nits and Distances on the Basis of Risk	
		Conside	rations	
		12.4.1	Risk Limits	
		12.4.2	Distances	
		12.4.3	Example for Land-Use Planning	
	12.5	Determi	nistic Procedure in Germany Based on the	
		Guidelin	nes of the Commission of Plant Safety (KAS)	
		12.5.1	Boundary Conditions for Calculating Scenarios	
			in Individual Cases	
		12.5.2	Land-Use Planning Cases	
		12.5.3	Concluding Remarks	
	Refere	nces		
Cori	rection	to: Cons	equences of Accidents	
App	endix A	GHS-	Globally Harmonized System of Classification	
and	Labelli	ing of Ch	emicals	
App	endix I	B Probit H	Relations, Reference and Limit Values	
App	endix (C Basics o	of Probability Calculations	
App	endix I) Coeffici	ents for the TNO Multienergy Model and	
tne I	551 M	oael		
Inde	X			

Introduction

Whoever demands absolute safety, ignores the law of life.

1.1 Introduction

The production of the process industry¹ often involves hazards. Their nature can be both physical and chemical. Physical hazards derive from operating conditions that may be extreme, such as very low or very high temperatures and pressures. Chemical hazards are those associated with the materials present in the process, which can be toxic, flammable, explosible, or release energy due to spontaneous² reactions. Indeed, it is the necessity to put the substances into a reactive state in order to enable one to produce the desired products that may lead to hazards.

A further complication stems from the fact that some of the properties of the substances can vary with changes of process parameters such as temperatures, pressures or concentrations, or that these changes may give rise to or favour unwanted side reactions, as was the case in the Seveso accident, where larger quantities of dioxin than usual were generated and released to the environment (cf. [1]).

In addition, dangerous properties, if not present under nominal operating conditions, may evolve upon contact of process media with auxiliary media such as coolants or lubricants. After release, reactions with substances present in the environment, e.g. the humidity of the air, may give rise to dangerous properties.

Nevertheless a concretization of the hazard potential is normally not to be expected, since the design, construction, erection, and operation of the plants are

Check for updates

1

¹The term "process industry" comprises firms from the chemical, petrochemical, pharmaceutical and food industries as well as the production of steel, cement and the like.

²"Without apparent reason" from the Latin word sponte "from its own accord".

[©] Springer-Verlag GmbH Germany, part of Springer Nature 2020

U. Hauptmanns, Process and Plant Safety,

https://doi.org/10.1007/978-3-662-61484-6_1

based on the state of technology, respectively safety technology³ (cf. [2]). Hence, they are supported by a broad base of experience, which, depending on the country, is reflected by the respective laws, rules, and regulations. A good overview of this topic is provided by the Guideline Plant Safety [3].

According to [3] the design of a plant has to be such that the containment of hazardous substances inside the plant, i.e. vessels, pipework, reactors etc. is ensured. This does not only result in demands on the mechanical resistance of the components of the plant, but requires safety systems to be introduced, which in case of undesired loads (mostly excessive temperatures and/or pressures) are to guarantee the integrity of the containment by pressure relief, emergency trips, emergency cooling etc.

If all components were to function with perfection and, in addition, the measures of safety management were perfect plants would be absolutely safe.

This is, however, not the case and cannot be achieved. Apart from the although remote—possibility of wrong dimensioning (e.g. walls too weak) components of engineered systems can fail, humans can commit errors in operating the engineered system or external threats such as flood, storm or lightening may lead to failures within the plant. Thus, temperature and pressure increases or other damaging events may be triggered. In addition, it is conceivable that safety systems are not available due to component failures. Probabilities for such events may be assessed. However, the instant in time of a component failure, human error or destructive external event cannot be predicted.

Hence, despite careful design, construction and operation of plants accidents cannot totally be avoided. Whatever may happen will happen with a certain probability. Therefore the probability of an accident⁴ can only be reduced by appropriate measures. To achieve this is the objective of risk management.

³State of safety technology: the state of development of advanced processes, installations and procedures that permit one to take for granted the practical aptitude of a measure for avoiding accidents or limiting their consequences. When determining the state of safety technology comparable processes, installations and procedures have to be considered that have been successfully applied in practice [4] (translated by the author).

⁴Accident: an event such as an emission, a fire or an explosion of major impact that leads to a disturbance of the specified operation* in a site or a plant subject to this ordinance (Author's remark: this refers to the Major Accident Ordinance [4]) that leads immediately or at a later stage to a serious hazard or material damage within or outside the site involving one or several hazard-ous substances as listed in annex VI part 1 para I no. 4.

^{*}Specified operation is the operation for which a plant is designed and appropriate. Operating regimes not covered by the valid license, posterior impositions or applicable legal requirements do not belong to the specified operation. The specified operation comprises the

normal operation including necessary human interventions such as the taking of samples and including the storage with filling, transfer and refilling procedures,

[·] plant commissioning and its start-up and shut-down,

[•] trial operation,

[·] maintenance, inspection, repair and cleaning work as well as

[•] periods of temporary stand-still [8] (translated by the author).

Yet, a risk remains, i.e. a probability (or more precisely an expected frequency) that a damage of a certain type and impact occurs. In a process plant this may be a fire, an explosion or a toxic release, which may affect both humans and the environment. It is the price to be paid for the desired product. The damage can affect employees, the population at large or both, as becomes evident from Table 1.1.

The protection of the employees is ensured by a number of laws, regulations and guidelines (cf. [5, 6]). The justified interest of the population in safety, the protection according to the Federal Pollution Control Act (BImSchG) [7], is guaranteed by the licensing procedure.

Two fundamental approaches in licensing are conceivable:

- (1) the license is granted solely on the basis of fulfilling the above mentioned requirements; risk is not assessed.
- (2) In addition to (1) statements on risk have to be made and certain risk criteria to be met.

The procedure according to (1) is used in the Federal Republic of Germany and that of (2), for example, in the Netherlands.

It has to be emphasized that the operating systems of a plant are dimensioned by the same procedure with both approaches. Requirements for the systems are specified, for example, the quantity of heat to be extracted from a reactor for an exothermic reaction. The corresponding calculations are performed using mathematical models reflecting the underlying laws of nature. Results in this case may be, for example, the power of the coolant pump, the necessary surface for heat transfer, or the pipe diameters. This procedure is called deterministic.

The safety design of a plant results from extensive analyses (cf. [2]) to be discussed later. The dimensioning of safety systems is also carried out deterministically. It is based on the concept of disturbances that have to be avoided,⁵ for example a cooling failure in a reactor for an exothermic reaction. This is the basis for determining the type and capacity of the safety system coping with it. Its quality and degree of redundancy may then be determined

- (1) by indeterminate legal terms in regulations (cf. [4]) such as "reliable measuring device" or
- (2) probabilistically⁶ based on risk criteria.

As mentioned before, the approach according to (1) is that used so far in Germany. However, in the meantime probabilistic requirements for safety systems are derived from risk considerations in fulfilment of the standards on functional safety [10–12]. This corresponds to (2).

⁵In the field of nuclear engineering this is referred to as "design-basis accident".

⁶Based on probability considerations derived from the Latin word probabilis: assumable, likely, credible.

Table 1.1 S	ome accidents in tl	he process industry [9]			
Date	Place	Event	Consequences		Comment
			Workforce	Population	
June 1st, 1974	Flixborough, U.K.	Explosion of a cloud of cyclohexane	28 killed, 36 gravely injured	53 gravely injured	All buildings in a radius of 600 m destroyed, presumably an unprofes- sional repair
July 10th, 1976	Seveso, Italy	Release of 2,3,7,8- Tetrachlorodibenzo-dioxin		220,000 persons exposed, 736 inhabitants evacuated, >250 cases of chloracne	2000 ha contaminated, 81,000 animals died or were forcedly slaughtered
December 2nd, 1984	Bhopal, India	Release of 23–42 t of methyl isocyanate; water used for cleaning initiated an exothermic reaction with temperature and pressure rise		16,000 persons killed, 170,000–600,000 poisoned	>4000 animals died
October 23rd, 1989	Pasadena, U.S.A	Explosion of a cloud of isobutene, eth- ylene, hexane, hydrogen released during maintenance of a polyethylene reactor	23 killed, 314 injured	Housing damage within a radius of 8 km	Earthquake intensity equivalent to 2,4 t TNT, magnitude 3,5 Richter
May 13th, 2000	Enschede, Netherlands	Explosion in a fireworks depot	20 killed, among them 4 firemen	400 houses destroyed, 1250 people homeless	Spreading of an initial fire of unclarified cause
September 21st, 2001	Toulouse, France	Explosion of 20–100 t of rejects of ammonia nitrate	22 killed	8 killed, 2450 injured, 26,000 houses damaged	Earthquake intensity equivalent to 20–40 t TNT, magnitude 3,4 Richter, perceived up to a distance of 75 km
June 20th, 2002	Kingsville, Canada	Fire in a plastics factory		2000 evacuated for three days, time after which the fire was extinguished	Recommendation not to allow children to play outdoors and not to consume garden vegetables

4

(Fortsetzung)

ber (-ortsetzung) Place Mestre, Italy	Event Overpressure failure of a vessel contain- ing a mixture of toluene and 2,6 diisocy- anate producing a fire	Consequences Workforce 4 translated by pressure wave, slightly affected	Population Cloud of fumes with negligible effect, bitu- minous emission from an outlet contaminating 8 km of beaches	Comment A similar vessel suffers a conse- quential explosion (Domino effect)
	Troisdorf, Germany	Pentrite explosion during maintenance work in an explosives factory	1 killed		
	Texas City, U.S.A.	Vapour cloud explosion in a refinery	15 killed, 170 injured	Deflagration noticed up to a distance of 8 km	Hydrocarbon release from a blow- down drum, ignition by a starting truck
	Buncefield, U.K.	Explosion (unexpectedly high overpressure) and fire in an oil storage terminal		43 injured	Overfilling of a tank from a pipe- line with a subsequent release of 300 t of petrol
	Cologne, Germany	Escape of ethylene followed by fire when maintaining a pipeline inside a process plant	None	None	Fire affects nearby acrylonitrile storage, 300 t of ethylene and 1200 t of acrylonitrile were burnt; 1180 fire fighters involved
	Bayamon, Puerto Rico	Fire and explosion in a fuel storage	Several per- sons injured including 3 rescue workers	Evacuation of 1500 per- sons from their homes	Petrol cloud of 600 m diameter formed before ignition, explosion causing an earthquake of 2.8 on the Richter scale, buildings damaged in a radius >1.6 km
	Paderno Dugagno, Italy	Explosion and violent fire in a storage of paints and spent solvents	3 killed, 4 injured	Population urged to stay indoors	Serious flaws in the safety systems
	Pardubice, Tcheque Republic	Explosion of nitroglycerine in a factory for explosives	4 presumably killed, 9 injured	Glass breakage within a radius of 4 km	Probably human error in mixing nitroglycerine and nitrocellulose

There is a recent tendency to measure the safety achievements by indicators (so-called key performance indicators) (cf. [13, 14]). These refer on the one hand to past performance ("lagging indicators") and on the other to future performance ("leading indicators").

In order to give an impression of standards achieved in the German process industry the following assessment is made. The accident statistics [15] shows that there was no fatal accident involving members of the public during 10 years of operation of the 7800 plants subject to the Major Accident Ordinance [14]. On this basis a Bayesian zero-event statistics leads to a coarse assessment of $6.4 \times 10^{-6} a^{-1}$ for a fatality outside a plant (vid. Example 9.4).

Figure 1.1 provides an impression of the safety performance concerning labour accidents comparing the chemical industry with figures for the industry at large.

Plant and process safety encompasses all the areas required for designing and building a process plant and implementing the corresponding processes (amongst them process, mechanical, and civil engineering). As a rule time-dependent processes have to be treated, since we are usually concerned with deviations from nominal operating conditions. The latter are considered as safe if a rigorous implementation of safety has accompanied the design and erection of a plant and is a permanent concern during its operation. The compliance with these assumptions should, of course, be checked in the context of a safety analysis.

Safety deals with stochastic events, for example the moment of occurrence of an accident, and stochastic boundary conditions (e.g. the weather at that moment). These together with lacks of knowledge about some of the phenomena to be described and imperfections in models and input data lead to uncertainties, which are normally compensated by safety factors and often lead to procedures based on conventions.

The treatment of uncertainties has substantially progressed in recent years (cf. [17–27]). However, their detailed theoretical treatment is beyond the scope of the present text, so that only procedures with particular relevance for practical applications are explained.

In what follows the physical and chemical phenomena causing the hazard potential of process plants are treated in Chaps. 2 and 3. Chapters 4, 5, 6 und 7 are dedicated to engineered and organizational measures that are devised to avoid that the hazard potential harms employees and the public at large. Chapters 8, 9 und 10 deal with the determination of engineering risks. In this context the methods of plant system analysis and models for assessing accident consequences are presented. They serve to identify hazard potentials and to develop concepts for coping with them. Hence, they influence the safety design of plants and their safe operation. An important aspect of the safe design of plants is the concept of "functional safety", which is treated in Chap. 11. Finally, Chap. 12 is devoted to the determination of appropriate safety distances between industrial installations and the surrounding population, which may be an additional safeguard for reducing the consequences of an accident.

References

- 1. Mannan S (ed) (2005) Lees' loss prevention in the process industries, hazard identification, assessment and control, 3rd edn. Elsevier, Amsterdam
- SFK (2002) Störfallkommission beim Bundesminister für Umwelt, Naturschutz und Reaktorsicherheit (Hrsg.), Schritte zur Ermittlung des Standes der Sicherheitstechnik, SFK-GS-33, Januar 2002
- 3. SFK (1995) Störfallkommission beim Bundesminister für Umwelt, Naturschutz und Reaktorsicherheit (Hrsg.): Leitfaden Anlagensicherheit, SFK-GS-06, November 1995
- 4. Zwölfte Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes BImSchV), "Störfall-Verordnung in der Fassung der (Störfall-Verordnung – 12. Bekanntmachung vom 15. März 2017 (BGBl. I S. 483), die zuletzt durch Artikel 1a der Verordnung vom 8. Dezember 2017 (BGBl. I S. 3882) geändert worden ist", Stand: Neugefasst durch Bek. v. 15.3.2017 I 483; Berichtigung vom 2.10.2017 I 3527 ist berücksichtigt, Stand: Zuletzt geändert durch Art. 1a V v. 8.12.2017 I 3882 (German implementation of the DIRECTIVE 2012/18/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 4 July 2012 on the control of major-accident hazards involving dangerous substances, amending and subsequently repealing Council Directive 96/82/EC/, Seveso III-Directive)
- Verordnung über Sicherheit und Gesundheitsschutz bei der Verwendung von Arbeitsmitteln (Betriebssicherheitsverordnung -BetrSichV), "Betriebssicherheitsverordnung vom 3. Februar 2015 (BGBl. I S. 49), die zuletzt durch Artikel 1 der Verordnungvom 30. April 2019 (BGBl. I S. 554) geändert worden ist"
- 6. Gesetz über die Bereitstellung von Produkten auf dem Markt (Produktsicherheitsgesetz ProdSG),"Produktsicherheitsgesetz vom 8. November 2011 (BGBI. I S. 2178, 2179; 2012 I S. 131), das durch Artikel 435 der Verordnung vom 31. August 2015 (BGBI. I S. 1474) geändert worden ist"
- Gesetz zum Schutz vor schädlichen Umwelteinwirkungen durch Luftverunreinigungen, Geräusche, Erschütterungen und ähnliche Vorgänge (Bundes-Immissionsschutzgesetz – BIMSchG), "Bundes-Immissionsschutzgesetz in der Fassung der Bekanntmachung vom 17. Mai 2013 (BGBI. I S. 1274), das zuletzt durch Artikel 1 des Gesetzes vom 8. April 2019 (BGBI. I S. 432) geändert worden ist" (Immission Act)
- StörfallVwV—Erste Allgemeine Verwaltungsvorschrift zur Störfall-Verordnung vom 20. September 1993 (GMBI. S. 582, ber. GMBI. 1994 S. 820)
- 9. http://www.aria.developpement-durable.gouv.fr/

- Functional safety Safety instrumented systems for the process industry sector Part 1: Framework, definitions, system, hardware and application programming Requirements (IEC 61511-1:2016 + COR1:2016 + A1:2017); German version EN 61511-1:2017 + A1:2017
- DIN EN 61511-2:2019-02; VDE 0810-2:2019-02, Functional safety Safety instrumented systems for the process industry sector – Part 2: Guidelines for the application of IEC 61511-1 (IEC 61511-2:2016); German version EN 61511-2:2017
- 12. DIN EN 61511-3:2019-02; VDE 0810-3:2019-02, Functional safety Safety instrumented systems for the process industry sector Part 3: Guidance for the determination of the required safety integrity levels (IEC 61511-3:2016); German version EN 61511-3:2017
- 13. Guidance on SAFETY PERFORMANCE INDICATORS—Guidance for Industry, Public Authorities and Communities for developing SPI Programmes related to Chemical Accident Prevention, Preparedness and Response, (Interim Publication scheduled to be tested in 2003– 2004 and revised in 2005), OECD Environment, Health and Safety Publications, Series on Chemical Accidents, No. 11
- Sugden C, Birkbeck D, Gadd S Major hazards industry performance indicators scoping study, HSL/2007/31
- 15. https://www.infosis.uba.de/index.php/de/zema/index.html
- 16. Lipka B (2009) Deutsche Gesetzliche Unfallversicherung (DGUV), personal communication October 2009
- 17. Morgan GM, Henrion M (1990) Uncertainty—a guide to dealing with uncertainty in quantitative risk and policy analysis. Cambridge University Press, New York
- Balakrishnan S, Georgopoulos P, Banerjee I, Ierapetriou M (2002) Uncertainty considerations for describing complex reaction systems. AIChE J 48(12):2875–2889
- Watanabe N, Nishimura Y, Matsubara M (1973) Optimal design of chemical processes involving parameter uncertainty. Chem Eng Sci 28:905–913
- Nishida N, Ichikawa A, Tazaki E (1974) Synthesis of optimal process systems with uncertainty. Ind Eng Chem Process Des Dev 13:209–214
- Knetsch T, Hauptmanns U (2005) Integration of stochastic effects and data uncertainties into the design of process equipment. Risk Anal 25(1):189–198
- Hauptmanns U (1997) Uncertainty and the calculation of safety-related parameters for chemical reactions. J Loss Prev Process Ind 10(4):243–247
- Hauptmanns U (2007) Boundary conditions for developing a safety concept for an exothermal reaction. J Hazard Mater 148:144–150
- Reagan MT, Naim HN, Pébay PP, Knio OM, Ghanem RG (2005) Quantifying uncertainty in chemical systems modelling. Int J Chem Kinet 37(6):368–382
- 25. Reagan MT, Naim HN, Debusschere BJ, Le Maître OP, Knio OM, Ghanem RG (2004) Spectral stochastic uncertainty quantification in chemical systems. Combust Theory Model 8(3):607–632
- 26. Hauptmanns U (2008) Comparative assessment of the dynamic behaviour of an exothermal chemical reaction including data uncertainties. Chem Eng J 140:278–286
- 27. Hauptmanns U (2012) Do we really want to calculate the wrong problem as exactly as possible? The relevance of initial and boundary conditions in treating the consequences of accidents. In: Schmidt J (ed) Safety technology—applying computational fluid dynamics. Wiley-VCH, Weinheim

Hazardous Properties of Materials

2.1 Flammability

A large number of the materials handled in the process industry are flammable. They react with oxygen releasing thermal energy. In general the oxygen stems from the air but other oxidants have to be considered as well, for example hydrogen peroxide or ammonium nitrate that easily release oxygen. Furthermore, substances like chlorine or fluorine can play the role of an oxidant.

In general combustion takes place if a flammable material enters into contact with an energy source, e.g. an electrical spark or a hot surface, and thus receives energy. If solid or liquid materials are concerned their temperature has to be raised first to such an extent that vapour is produced by vaporization or disintegration. These vapours can form flammable mixtures with air just as flammable gases. If the energy supply is sufficient a self-sustaining exothermic reaction occurs.

The conditions for a combustion process are shown in Fig. 2.1. It presents the so-called fire triangle, which comprises the necessary elements of a combustion process, namely "fuel", "oxidant" and "energy".

The consequence of a combustion process is either a fire or an explosion. Which of the possibilities occurs depends on the boundary conditions to be treated below. In general the approach is empirical. For example conditional probabilities (the condition is the preceding release) of 0.6 for a fire and 0.4 for an explosion after the release of a flammable gas or liquid are given in [1].

The safe handling of flammable materials requires the knowledge of their properties, which are normally described by safety parameters. These parameters are not, as a rule, constants of nature but values that are determined under fixed boundary conditions. This leads to the use of standardized measuring apparatuses (vid. [2–4]). When employing these parameters to judge real situations an eye must therefore be kept on the prevailing boundary conditions.

https://doi.org/10.1007/978-3-662-61484-6_2

2

Fig. 2.1 Fire triangle

Example 2.1 Empirical frequencies for fires and explosions

The ARIA-databbase indicates the following numbers of events as a consequence of hydrocarbon releases: a = 1,748 events "explosion or fire", b = 656events "explosion" and c = 1,554 events "fire".

Determine the conditional probabilities (the condition is the release whose probability of occurrence is assumed here to be equal to 1) for the different events.

Solution

The sum of the numbers of events with fires and explosions amounts to

$$g = c + b = 2,210$$

However, this includes events where fire and explosion occurred jointly. Their number is

$$d = g - a = 462$$

From this we have b - d = 194 events with an explosion only and c - d = 1,092 events with a fire only.

Hence we obtain the following conditional probabilities:

- Only fire: 1,092/1,748 = 0.625
- Only explosion: 194/1,748 = 0.111
- Fire and explosion: 462/1,748 = 0.264

If the explosion is considered to be the dominating event and the probability for "fire and explosion" is added to the probability for "only explosion" the result is in good agreement with that of [1]. \Box

2.1.1 Safety Parameters for Flammable Gases and Vapours

2.1.1.1 Explosion Limits

Combustion can occur only if the mixture of fuel and oxygen lies within a certain range. This is described by the lower and upper explosion limits (LEL and UEL). In older references theses limits are referred to as the lower and upper limits of flammability (LFL and UFL) (vid. [4]). They represent the volume ratio¹ of fuel vapour in air. Below the lower explosion limit the mixture is too lean, above the upper limit it is too rich for combustion to occur. The explosion limits are not fixed values. They depend on whether we deal with a mixture with air or with oxygen. Furthermore they are influenced by (vid. [4, 5]):

- pressure,
- temperature,
- direction of flame propagation,
- type and location of the source of ignition, in particular ignition energy,
- type and size of the space (closed, open, geometry),
- possibly the amount of inert gas in the mixture,
- flow regime of the gas,
- gravitational field.

Additionally they depend, as already mentioned, on the boundary conditions of their measurement, as illustrated by Table 2.1. In general the most flammable mixture is close to but not exactly equal to the stoichiometric one [5].

The explosion limits may be calculated approximately by (vid. [6])

$$LEL = 0.55 \cdot c_{st} \tag{2.1}$$

$$\text{UEL} = 3.50 \cdot c_{\text{st}} \tag{2.2}$$

In Eqs. (2.1) and (2.2) c_{st} is the stoichiometric concentration (volume percent of fuel in air). In case of a stoichiometric equation of combustion of the form

$$C_m H_x O_y + z \cdot O_2 \rightarrow m \cdot CO_2 + \frac{x}{2} \cdot H_2 O$$
 (2.3)

we have

$$z = m + \frac{x}{4} - \frac{y}{2}$$
(2.4)

and hence

$$c_{\rm st} = \frac{100}{1 + z/0.21} \tag{2.5}$$

¹Strictly speaking the indication of a volume ratio only makes sense at low pressures. At higher pressures the real gas behaviour must be taken into account; hence in that case often mass proportions (mol %) are used.

I	I		8				
Stoff	Nabert et al.	[7]	Mannan [5]		Coward and	l Jones [<mark>8</mark>]	
	Lower explosion limit in Vol%	Upper explosion limit in Vol%	Lower explo- sion limit in Vol%	Upper explosion limit in Vol%	Lower explosion limit in Vol%	Upper explosion limit in Vol%	
Acetone	2.5	14.3	2.6	13	3	11	
Acetylene	2.3	78–100	2.5	100	2.5	81	
Ammonia	15.4	33.6	15	28	15	28	
Benzene	1.2	8.6	1.4	8	1.4	7.1	
n-Butane	1.4	9.3	1.8	8.4	1.9	8.5	
Carbon monoxide	10.9	76	12.5	74	12.5	74	
Cyclohexane	1.1	8.3	1.3	7.8	1.3	8	
Ethane	2.5	15.5	3.0	12.4	3.0	12.5	
Ethylene	2.3	32.4	2.7	36	3.1	32	
Ethylene oxide	2.6	100	3	100	3.0	80	
Hydrogen	4.0	77	4.0	75	4.0	75	
Methane	4.4	17	5.0	15.0	5.3	14	
Propane	1.7	10.9	2.1	9.5	2.2	9.5	
Propylene	2.0	11.1	2.4	11	2.4	10.3	
Styrene	1.1	6.1	1.1	6.1	1.1	6.1	
Toluene	1.1	7.8	1.3	7.0	1.4	6.7	

Table 2.1 Upper and lower explosion limits according to different sources

However, Example 2.2 shows that the differences between calculated and measured values are considerable. Hence, whenever possible measured values are to be used.

This applies as well for the pressure dependence of the explosion limits. The following logarithmic relationship is given for the pressure dependence of the UEL (vid. [6])

$$UEL_{p} = UEL_{0.1 MPa} + 20.6 \cdot (\log p + 1)$$
(2.6)

In Eq. (2.6) p denotes the absolute pressure in MPa. The equation does not represent the measured values, as is evident from Table 2.2. The values for 1 bar agree because they are introduced into the equation as the reference value UEL_{0.1 MPa}.

According to [4] the lower explosion limit decreases slightly with increasing initial pressure whilst the upper limit increases strongly. Exceptions from this rule are the gases hydrogen and carbon monoxide. The lower explosion limit of hydrogen at first rises slightly with increasing initial pressure and then decreases with further pressure increase. In the case of carbon monoxide the range between the

Material	LEL in v	vol%		UEL in vo	UEL in vol%			
	1 bar	10 bar	100 bar	1 bar	10 bar	100 bar		
Hydrogen	4.3	4.9	5.8	78.5	72.4	74		
				78.5	99.1	119.7 ^a		
Carbon monoxide	13.1	15.6	17.0	75.9	69.4	68.0		
				75.9	96.5	117.1 ^a		
Methane	4.6	5.0	4.3	16.6	21.8	44.7		
				16.6	37.2	57.8		
Ethane	2.7	2.7	2.7	14.1	19.3	45.2 ^b		
				14.1	34.7	55.3		

Table 2.2 Dependence of the explosion limits on initial pressure (measured values from [4], calculated values (bold print) according to Eq. (2.6))

^asince 100% is the maximum, the value is merely a formal result ^bmeasured at an initial pressure of 50 bar

explosion limits narrows at first with increasing initial pressure and remains constant with a further increase.

With an increase in temperature the range between the lower and upper explosion limits widens for all flammable gases. The relative change of the lower and upper limits is similar for many flammable gases. Hence, it may well be approximated by the following linear relationship

$$\mathbf{x}_{\rm B}({\rm T}) = \mathbf{x}_{\rm B}({\rm T}_0) \cdot [1 \pm {\rm K}({\rm T} - {\rm T}_0)] \tag{2.7}$$

In Eq. (2.7) $x_B(T)$ denotes the volume ratio of the gas at temperature T and $x_B(T_0)$ that at the reference temperature T_0 , e.g. ambient temperature. The positive sign applies to the upper explosion limit, the negative sign to the lower limit (vid. [4]). Factors for K are given in Table 2.3, where K_L applies to the lower limit and K_U to the upper.

Flammable gas	$\frac{\rm K_L(LEL)}{\rm in\;K^{-1}}$	$\begin{array}{c} \mathrm{K}_{\mathrm{U}} \left(\mathrm{UEL} \right) \\ \mathrm{in} \ \mathrm{K}^{-1} \end{array}$	LEL (0 °C)* in mol%	UEL (0 °C)* in mol%
Methane ^a	0.00162	0.00111	4.60	15.64
Ethane ^b	0.00124	0.00098	2.48	14.02
Propane ^b	0.00128	0.00107	1.82	10.57
Isobutane ^b	0.00149	0.00064	1.48	9.18
Hydrogen ^a	0.00162	0.00042	4.18	74.75
Carbon monoxide ^a	0.00138	0.00035	12.07	76.37

Table 2.3 Temperature coefficients K_L and K_U for selected flammable gases (vid. [9])

*Calculated from experimental data for use in Eq. (2.7)

^aTemperatures up to 400 °C

^bTemperatures up to 250 °C

The above considerations apply to a mixture of a single flammable gas and air. If several gases, e.g. I, are involved that do not react with one another, the principle of Le Chatelier is invoked and we obtain

$$LEL = \frac{1}{\sum_{i=1}^{I} \frac{y_i}{LEL_i}}$$
(2.8)

$$UEL = \frac{1}{\sum_{i=1}^{I} \frac{y_i}{UEL_i}}$$
(2.9)

In Eqs. (2.8) and (2.9) y_i is the molar fraction of material i in the total mixture; LEL_i and UEL_i are the corresponding explosion limits.

Experience tells that this estimate agrees fairly well with the measured values of the lower explosion limit for "similar" flammable gases. The upper limit shows larger deviations. The equations should be applied with care to safety technological questions, since the deviations may lie on both the safe and the unsafe side [4].

Example 2.2 Uncertainties of the explosion limits taking propane as an example

The explosion limits of a material depend on numerous boundary conditions. Hence different measurements result in different values as shown in what follows taking the lower explosion limit of propane as an example. The following values in volumetric percent are given

x_n: 1.7; 2.1; 2.2; 2.1; 2.1; 1.7; 2.1.

Let us assume they represent N = 7 independent measurements (independence does often not apply since values from the same source are quoted in several references). Then the explosion limit may be assumed to be a random variable, i.e. a variable that adopts certain values with certain probabilities. Random variables are described by probability distributions (vid. Appendix C). In what follows the logarithmic normal (lognormal) distribution (vid. Sect. 9.3.4) is used to represent the values

As mean value of the logarithms of the values of x_n we have

$$\mu = \frac{1}{N} \cdot \sum_{n=1}^{N} \ln x_n = 0.6882$$

and as the corresponding standard deviation

$$s = \left[\frac{1}{N-1} \cdot \left(\sum_{n=1}^{N} (\ln x_n)^2 - N \cdot \mu^2\right)\right]^{\frac{1}{2}} = 0.1090$$

The pertinent probability distribution and probability density function, simply termed probability and probability density or pdf, are represented by Fig. 2.2.

The percentiles are to be interpreted such that the corresponding percentage of the lower explosion limit lies below the respective percentile value. \Box

Example 2.3 Determination of the lower and upper explosion limits

Determine the lower and upper explosion limits of acetylene, hydrogen and ammonia for a pressure of 1 bar.

Solution

The solution is based on Eqs. (2.1) to (2.5). The results are compiled in Table 2.4.

Comparison with the measured values from Table 2.1 shows that the results are merely approximations. This underlines that it is necessary from a safety point of view to use measured values. $\hfill \Box$

Example 2.4 Temperature dependence of explosion limits

The lower and upper explosion limits of methane are to be determined for the temperatures 100, 200, 300 and 400 $^{\circ}$ C.

Solution

Combination of Eq. (2.7) with Table 2.3 leads to the results of Table 2.5. They are in good agreement with the measured values, as is demonstrated in Fig. 2.3. \Box

Table 2.4 Calculation of the lower and upper explosion	Material	Molecular formula	z	c _{st} in vol%	LEL in vol%	UEL in vol%
limits for several materials	Acetylene	C ₂ H ₂	2.5	7.749	4.3	27.1
	Hydrogen	H ₂	0.5	29.577	16.3	100
	Methane	CH ₄	2	9.502	5.2	33.3