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Introduction

This book explains the concepts of time series from traditional to
bleeding-edge techniques with full-fledged examples.

The book begins by covering time-series fundamentals and their
characteristics, Structure & Components of time series data, preprocessing,
and ways of crafting features through data wrangling. Next, it covers
traditional time-series techniques such as the smoothing methods ARMA,
ARIMA, SARIMA, SARIMAX, VAR, and VARMA using trending frameworks
such as Statsmodels and Pmdarima.

Further covers how to leverage advanced deep learning-based
techniques such as ANN, CNN, RNN, LSTM, GRU, and Autoencoder to
solve time-series problems using Tensorflow. It concludes by explaining
how to use the popular framework fbprophet for modeling time-series
analysis.

After completion of the book, the reader will have thorough knowledge
of concepts and techniques to solve time-series problems. All the code
presented in this book is available in Jupyter Notebooks; this allows
readers to do hands-on experiments and enhance them in exciting ways.

xvii
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CHAPTER 1

Time-Series
Characteristics

A time series is a collection of data points that are stored with respect to
their time. Mathematical and statistical analysis performed on this kind
of data to find hidden patterns and meaningful insight is called time-
series analysis. Time-series modeling techniques are used to understand
past patterns from the data and try to forecast future horizons. These
techniques and methodologies have been evolving for decades.

Observations with continuous timestamps and target variables
are sometimes framed as straightforward regression problems by
decomposing dates into minutes, hours, days, weeks, months, years, and
so on, which is not the right way to handle such data because the results
obtained are poor. In this chapter, you will learn the right approach for
handling time-series data.

There are different kinds of data, such as structured, semistructured,
and unstructured, and each type should be handled in its own way to gain
maximum insight. In this book, we are going to be looking at time-series
data that is structured in manner such as data from the stock market,
weather, birth rates, traffic, bike-sharing apps, etc.

This chapter is a gentle introduction to the types of time-series data, its
components, and ways to decompose it.

© BV Vishwas and Ashish Patel 2020 1
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CHAPTER 1 TIME-SERIES CHARACTERISTICS

Types of Data

Time-series analysis is a statistical technique that measures a sequential set
of data points. This is a standard measure in terms of time that comes in
three types, as shown in Figure 1-1.

Data Types
Y
Time-Series Data Cross-Section Panel/Longitudinal
Data Data

Figure 1-1. Types of data

Time-Series Data

A time series contains data points that increase, decrease, or otherwise
change in chronological order over a period. A time series that
incorporates the records of a single feature or variable is called a univariate
time series. If the records incorporate more than one feature or variable,
the series is called a multivariate time series. In addition, a time series can
be designated in two ways: continuous or discrete.

In a continuous time series, data observation is carried out
continuously throughout the period, as with earthquake seismograph
magnitude data, speech data, etc. Figure 1-2 illustrates earthquake data
measured continuously from 1975 to 2015.
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EARTHQUAKE SEISMOGRAPHIC MAGNITUDE
1975 to 2015
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Figure 1-2. Forty years of earthquake seismograph magnitude data

Figure 1-3 Illustrates temperature behavior in India over a century and
clearly shows that temperature is increasing monotonically.

27
26.5
26
25.5
25
24.5
24
23.5

23
1880 1900 1920 1940 1960 1980 2000 2020 2040

YEARS

AVG TEMPRATURE

Figure 1-3. India’s temperature data from 1901 to 2017

In a discrete time series, data observation is carried out at a specific
time or equally spaced, as with temperature increases or decreases,
exchange rates of currencies, air pressure data, etc. Figure 1-2 illustrates
the analysis of the average temperature of India from 1901 to 2017, which
either increases or decreases with time. This data behavior is discrete.
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Cross-Section Data

Cross-section data is data gathered at a specific point of time for several
subjects such as closing prices of a particular group of stocks on a specific
date, opinion polls of elections, obesity level in population, etc. Cross-
section studies are utilized in many research areas such as medical,
economics, psychology, etc. For instance, high blood pressure is one of the
significant risk factors for cause of death in India according to a 2017 WHO
report. WHO has carried out the study of several risk factors (considered
various subjects), which reflects cross-section survey data. Figure 1-4
illustrates the cross-section data.

NUMBERS OF DEATH BY RISK FACTOR IN INDIA
WHO 2017 STUDY REPORT

1800000 1544920.203
1600000

1400000
1200000
1000000
800000
600000
400000
200000
0

DEATH COUNT

No access to...lll
Indoor air pollution.. N
Diet low in...lll
Unsafe sex (deaths) I

Air pollution.. NN

Outdoor air pollution.. IR

Discontinued...

Child wasting (deaths) [l
Iron deficiency...
Zinc deficiency...

Non-exclusive..]
Child stunting (deaths) |

High blood sugar... NN

High cholesterol...

Smoking (deaths) NN

Poor sanitation.. Il
Diet low in fruits... Il
Obesity (deaths) NN

Low birth weight...lll
Secondhand smoke...lll
Alcohol use (deaths) [N
High blood pressure... IR

Low bone mineral.. I

Unsafe water source... NN
Drug use (deaths) |

Low physical activity...ll
Vitamin-A deficiency..l

RISK FACTOR

Figure 1-4. Number of deaths by risk factor in India

Panel Data/Longitudinal Data

Panel data/longitudinal data contains observations of multiple
occurrences collected over various durations of time for the same
individuals. It is data that is determined periodically by the number of
observations in cross-sectional data units such as individuals, companies,

4
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or government agencies. Table 1-1 provides examples of data available for
multiple people over the course of a few years where the data gathered
comprises income, age, and sex.

Table 1-1. Example of Panel Data

Panel Data A

Name Year Income Age Sex
Allen 2016 42145 24 Female
Allen 2017 47797 21 Female
Allen 2018 41391 23 Female
Malissa 2016 41100 22 Male
Malissa 2017 25800 23 Male
Malissa 2018 34508 22 Male
Panel Data B

Name Year Income Age Sex
Malissa 2016 42688 27 Female
Malissa 2017 21219 25 Female
Allen 2016 46340 26 Male
Allen 2017 22715 22 Male
Allen 2018 34653 21 Male
Alicia 2017 31553 29 Female

In Table 1-1, datasets A and B (with the attributes income, age, and
sex) gathered throughout the years are for different people. Dataset A
is a depiction of two people, Allen and Malissa, who were subject to
observation over three years (2016, 2017, 2018); this is known as balanced
panel data. Dataset B is called unbalanced panel data because data does
not exist for every individual every year.
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Trend

A trend is a pattern that is observed over a period of time and represents
the mean rate of change with respect to time. A trend usually shows the
tendency of the data to increase/uptrend or decrease/downtrend during
the long run. It is not always necessary that the increase or decrease is in
the same direction throughout the given period of time. A trend line is also
drawn using candlestick charts.

For example, you may have heard about an increase or decrease in
different market commodities such as gold, silver, stock prices, gas, diesel,
etc., or about the rate of interest for banks or home loans increasing or
decreasing. These are all commodity market conditions, which may either

increase or decrease over time, that show a trend in data.

Detecting Trend Using a Hodrick-Prescott Filter

The Hodrick-Prescott (HP) filter has become a benchmark for getting
rid of trend movements in data. This method is broadly employed
for econometric methods in applied macroeconomics research. The
technique is nonparametric and is used to dissolve a time series into a
trend; it is a cyclical component unaided by economic theory or prior
trend specification. Like all nonparametric methods, the HP filter is
contingent significantly on a tuning parameter that controls the degree of
smoothing. This method is broadly employed in applied macroeconomics
utilized in central banks, international economics agencies, industry, and
government.

With the following example code, you can see how the EXINUS stock
changes over a period of time:

import pandas as pd
from statsmodels.tsa.filters.hp filter import hpfilter
df = pd.read _excel(r'\Data\India_Exchange Rate Dataset.xls',\
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index_col=0,parse dates=True)
EXINUS cycle,EXINUS trend = hpfilter(df['EXINUS'], lamb=1600)
EXINUS trend.plot(figsize=(15,6)).autoscale(axis="x",tight=True)

Figure 1-5 shows an upward trend over the period.
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Figure 1-5. EXINUS stock showing an upward trend

Detrending a Time Series

Detrending is the process of removing a trend from time-series data, or it
mentions a change in the mean over time. It is continuously increasing

or decreasing over the duration of time. Identification, modeling, and
even removing trend data from time-series datasets can be beneficial. The
following are methods to detrend time-series data:

» Pandas differencing
e SciPysignal

o HP filter



CHAPTER 1 TIME-SERIES CHARACTERISTICS

Detrending Using Pandas Differencing

The Pandas library has a built-in function to calculate the difference in a
dataset. This diff() function is used both for series and for DataFrames.
It can provide a period value to shift in order to form the difference. The
following code is an example of Pandas differencing.

o Warning is a built-in module of Python that handles the
warning messages.

e Pyplot is a submodule of Matplotlib that is used to
design the graphical representation of the data.

import pandas as pd

import matplotlib.pyplot as plt

import warnings

warnings.filterwarnings("ignore")

df = pd.read _excel(r'\Data\India Exchange Rate Dataset.xls',\
index_col=0,parse_dates=True)

diff = df.EXINUS.diff()

plt.figure(figsize=(15,6))

plt.plot(diff)

plt.title('Detrending using Differencing', fontsize=16)
plt.xlabel('Year")

plt.ylabel('EXINUS exchange rate')

plt.show()

Figure 1-6 shows the data without a trend by using Pandas
differencing.
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Detrending using Differencing
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Figure 1-6. Trend removal using differencing

Detrending Using a SciPy Signal

A signal is another form of time-series data. Every signal either increases or
decreases in a different order. Using the SciPy library, this can be removing
the linear trend from the signal data. The following code shows an example
of SciPy detrending.

o Signal.detrendis a submodule of SciPy that is used to
remove a linear trend along an axis from data.

import pandas as pd

import matplotlib.pyplot as plt

from scipy import signal

import warnings

warnings.filterwarnings("ignore")

df = pd.read _excel(r'\Data\India Exchange Rate Dataset.xls',\
index_col=0,parse dates=True)

detrended = signal.detrend(df.EXINUS.values)

plt.figure(figsize=(15,6))
plt.plot(detrended)
plt.xlabel('EXINUS")
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plt.ylabel('Frequency')
plt.title('Detrending using Scipy Signal', fontsize=16)
plt.show()

Figure 1-7 shows the detrended data using SciPy.

Detrending using Scipy Signal
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Figure 1-7. Removing a linear trend in a signal using SciPy

Detrend Using an HP Filter

An HP filter is also used to detrend a time series and smooth the data. It’s
used for removing short-term fluctuations. The following code shows an
example of HP filter detrending.

o Hpfilter is a submodule of Statmodels that is used to
remove a smooth trend.

import pandas as pd

import matplotlib.pyplot as plt
from statsmodels.tsa.filters.hp filter import hpfilter
import warnings
warnings.filterwarnings("ignore")

df = pd.read excel(r'\Data\India_Exchange Rate Dataset.xls',\

index_col=0,parse_dates=True)

10
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EXINUS_cycle,EXINUS trend = hpfilter(df['EXINUS'],
lamb=1600)
df[ "trend'] = EXINUS trend

detrended = df.EXINUS - df['trend']
plt.figure(figsize=(15,6))

plt.plot(detrended)

plt.title('Detrending using HP Filter', fontsize=16)
plt.xlabel('Year")

plt.ylabel('EXINUS exchange rate')

plteshow()

Figure 1-8 shows the data after removing a smooth trend.
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Figure 1-8. Trend removal using an HP filter

Seasonality

Seasonality is a periodical fluctuation where the same pattern occurs at a
regular interval of time. It is a characteristic of economics, weather, and
stock market time-series data; less often, it’s observed in scientific data.

In other industries, many phenomena are characterized by periodically
recurring seasonal effects. For example, retail sales tend to increase during

Christmas and decrease afterward.

11
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The following methods can be used to detect seasonality:
e Multiple box plots

e Autocorrelation plots

Multiple Box Plots

A box plot is an essential graph to depict data spread out over a range. It
is a standard approach to showing the minimum, first quartile, middle,
third quartile, and maximum. The following code shows an example of
detecting seasonality with the help of multiple box plots. See Figure 1-9.

e Seaborn is a graphical representation package similar
to Matplotlib.

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

import warnings

warnings.filterwarnings("ignore")

df=pd.read _excel(r'\Data\India Exchange Rate Dataset.
x1s',\

parse_dates=True)

df['month'] = df['observation date'].dt.strftime('%b")
df['year'] = [d.year for d in df.observation date]
df['month'] = [destrftime('%b') for d in
df.observation date]

years = df['year'].unique()
plt.figure(figsize=(15,6))

sns.boxplot(x="month', y="EXINUS', data=df).set
title("Multi Month-wise Box Plot")

plte.show()

12
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Multi Month-wise Box Plot
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Figure 1-9. Multiple-box plot to identify seasonality
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Autocorrelation Plot

Autocorrelation is used to check randomness in data. It helps to identify
types of data where the period is not known. For instance, for the monthly
data, if there is a regular seasonal effect, we would hope to see massive
peak lags after every 12 months. Figure 1-10 demonstrates an example of
detecting seasonality with the help of an autocorrelation plot.

from pandas.plotting import autocorrelation plot

import pandas as pd

import matplotlib.pyplot as plt

df = pderead_excel(r'\Data\India_ Exchange Rate Dataset.xls',\
index_col=0,parse dates=True)
plt.rcParams.update({'figure.figsize':(15,6), 'figure.
dpi':220})

autocorrelation plot(df.EXINUS.tolist())
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Figure 1-10. Autocorrelation plot to identify seasonality

Note Sometimes identifying seasonality is not easy; in that case,
we need to evaluate other plots such as sequence or seasonal
subseries plots.

Deseasoning of Time-Series Data

Deseasoning means to remove seasonality from time-series data. It is
stripped of the pattern of seasonal effect to deseasonalize the impact.
Time-series data contains four main components.

o Level means the average value of the time-series data.

o Trend means an increasing or decreasing value in

time-series data.

o Seasonality means repeating the pattern of a cycle in
the time-series data.

¢« Noise means random variance in time-series data.

14
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Note An additive modelis when time-series data combines these
four components for linear trend and seasonality, and a multiplicative
model is when components are multiplied to gather for nonlinear
trends and seasonality.

Seasonal Decomposition

Decomposition is the process of understanding generalizations and
problems related to time-series forecasting. We can leverage seasonal
decomposition to remove seasonality from data and check the data only
with the trend, cyclic, and irregular variations. Figure 1-11 illustrates data
without seasonality.

import pandas as pd

import matplotlib.pyplot as plt

from statsmodels.tsa.seasonal import seasonal decompose
import warnings

warnings.filterwarnings("ignore")

df = pd.read_excel(r'\Data\India Exchange Rate Dataset.xls',
index_col=0,parse_dates=True)

result mul = seasonal decompose(df['EXINUS'],
model="multiplicative', extrapolate trend='freq')

deseason = df['EXINUS'] - result mul.seasonal

plt.figure(figsize=(15,6))

plt.plot(deseason)

plt.title('Deseasoning using seasonal decompose', fontsize=16)
plt.xlabel('Year")

plt.ylabel('EXINUS exchange rate')

plt.show()
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