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Introduction

A typical entry point into the field of (linear) partial differential equations is to consider
general polynomials P (∂) in ∂ := (∂0, . . . , ∂n) with (complex or real) matrix coefficients.
Here ∂k denotes the partial derivative with respect to the variable in the position labelled
with1 k ∈ {0, . . . , n}, n ∈ N. Even if we discuss solutions only in the whole Euclidean
space Rn+1 the solution theory for an equation of the form

P (∂) u = f

involving a general partial differential operator P (∂) is quite involved and one quickly
restricts attention to very specific polynomials. Indeed, the equations relevant to applica-
tions are not that varied. One commonly investigates three subclasses, loosely labelled as
elliptic, parabolic, and hyperbolic, to present specific solution methods for each of them.

However, when viewed from the right perspective there is a single subclass containing
these three types (and many more), which can be characterized conveniently and solved
with one and the same method. To explain the corresponding rigorous framework is the
objective of this text.

The theory we will present in this book is rooted in [57], with some first generalizations
to be found in [55,59]. We shall refer also to [63,79,83,87,88] for generalizations towards
nonlinear or non-autonomous setups. The interested reader will find a more detailed
survey in [68, 75]. In the present book, however, we shall present the core yet surprisingly
elementary solution theory for what we will call evolutionary equations.

The structure of this class of partial differential expressions can be formally described
by two matrices2 M0,M1 ∈ R

(N+1)×(N+1), N ∈ N. The partial differential operator

1Note that we usually prefer to start our numbering with 0. In particular, N denotes the set of non-
negative integers.
2Indeed, keeping in mind that a complex number x + iy can be understood as a (2× 2)-matrix of
the form (

x −y
y x

)
,

where x, y ∈ R, we may actually assume that M0 and M1 have only real entries.
v
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P (∂) will then be assumed to be of the form

P (∂) = ∂0M0 +M1 + A
(
∂̂
)
, (1)

where A
(
∂̂
)

denotes a polynomial in ∂̂ := (∂1, . . . , ∂n), that is, borrowing jargon from
applied fields, only in the “spatial” variables, if we consider ∂0 to be the derivative
with respect to “time”. In this terminology, if we focus on “relevant” partial differential
equations, we may focus on first-order-in-time systems. Moreover, in standard cases we
have structural features of P (∂) which narrow down the class of differential operators
even further. We assume3

A∗
(−∂̂ ) = −A ( ∂̂ )

and

M0 = M∗
0 and ReM1 := 1

2

(
M1 +M∗

1

) ≥ c0 > 0. (2)

In applications, the latter positive definiteness constraint is rarely satisfied. However, after
a simple formal transformation4 we get

∂0M0 + M̃1 + A
(
∂̂
) = exp (−�m0)

(
∂0M0 +M1 + A

(
∂̂
))

exp (�m0)

3With this, A
(
∂̂
)

becomes skew-selfadjoint in L2 (
R
n
)

and—by canonical extension to the time-

dependent case—in L2
(
R

1+n). If A
(
∂̂
) = ∑

α∈Nn Aα∂̂
α , then A

(
∂̂
)∗ = A∗

(−∂̂ ) :=∑
α∈Nn A∗α

(−∂̂ )α and this constraint means that the matrix coefficients Aα , α = (α1, . . . , αn),
are selfadjoint or skew-selfadjoint depending on the order |α| := ∑n

k=1 αk being even or odd,
respectively. Note that since A

(
∂̂
)

is a polynomial, only finitely many of the coefficients are non-
vanishing. In most cases, the maximal order is actually also just 1.
4This transformation shifts the rigorous functional analytical discussion from L2

(
R
n+1

)
to the

more appropriate setting in the Hilbert space H�,0

(
R;L2 (

R
n
))

, which is defined such that

exp (−�m0) : H�,0

(
R;L2 (

R
n
))→ L2

(
R;L2 (

R
n
)) = L2

(
R

1+n)
ϕ �→ exp (−�m0) ϕ

becomes a unitary mapping. Here the multiplication operator exp (−�m0) is defined via
(exp (−�m0) ϕ) (t) := exp (−�t) ϕ (t), t ∈ R. We will be more precise and detailed later.
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where

M̃1 := M1 − �M0.

Now, the constraints (2) translate to

M0 = M∗
0 and �M0 +ReM1 ≥ c0 > 0 (3)

and the latter strict positive definiteness constraint needs to hold only for all sufficiently
large � ∈ ]0,∞[. As we shall see later, the particular role of time is encoded in this bias
for positive values of parameter �.

To improve on the range of applicability, we will generalize the above problem class by
allowing M0 and M1 to be Hilbert space operators and A to be a general skew-selfadjoint
operator so that operators of the “space-time” form

∂0M0 +M1 + A (4)

can be treated. In the proper setting, ∂0 will be seen to be a continuously invertible

operator, which, among other things, allows us to consider the operator M
(
∂−1

0

)
:=

M0 + ∂−1
0 M1, which in application occurs when describing so-called material laws. We

therefore shall refer to M
(
∂−1

0

)
as well as to M0 and M1 as material law operators. This

setting essentially yields a new normal form for partial differential equations occurring in
numerous applications.

In the following, we shall rigorously develop the solution theory of these abstract
equations, which—due to their implied causality properties—we refer to as evolutionary
equations. We use the term evolutionary in a somewhat subtle attempt to distinguish them
from the classical concept of evolution equations, which are explicit first-order-in-time
equations.

Although this class can be readily generalized to include more complicated cases, such
as merely assuming that the numerical ranges ofA, A∗ are in the closed complex right half-

plane or allowing for more complicated material law operators M
(
∂−1

0

)
with the positive

definiteness constraint that for some c0 ∈ ]0,∞[ the numerical range of ∂0M
(
∂−1

0

)
− c0

is in the closed complex right half-plane (for all sufficiently large � ∈ ]0,∞[) (see again
e.g. [59, 75]), we shall focus here on the more easily accessible pure differential case.

Eventually, we aim at a solution theory with easy to check assumptions that lead to
well-posedness of a rather large class of partial differential equations. Indeed, we will see
that well-posedness of an evolutionary equation boils down to proving a numerical range
constraint for certain bounded operators only.

In Chap. 1, we develop the functional analytical setting and the basic solution theory.
Chapter 2 illustrates the theory for a number of model problems from mathematical
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physics. This concludes the book’s core material. Chapter 3 addresses some of the
issues that may arise when comparing our approach with some alternative, possibly more
mainstream ideas for dealing with problems of the same type. Two appendices complement
the book’s material by providing additional ideas for expanding on the applicability of the
approach, Appendix A, and collecting some background material from functional analysis
as a study resource, Appendix B.
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1The Solution Theory for a Basic Class of
Evolutionary Equations

1.1 The Time Derivative

We start out with the definition of the time derivative. We emphasize that all vector spaces
discussed in this exposition have the real numbers as underlying scalar field. This is a
simplifying assumption. If given a complex Hilbert space, restrict the underlying scalar
field to real multipliers and the scalar product to its real part. In this way the results
developed here apply to the complex Hilbert space case as well. Note that, however,
this reasoning can also be dispensed with and the complex Hilbert space case may be
addresses directly, see the original work [58] for this. The exposition roughly follows
[88, Chapter 1].

Definition 1.1.1 (Time Derivative) Let L2 (R) be the Hilbert space of (equivalence
classes of) square-integrable real-valued functions on R. For � ∈ R we define H�,0(R) :=
{f ∈ L2

loc(R); (t �→ exp(−�t)f (t)) ∈ L2(R)} as a Hilbert space equipped with the inner
product

〈u|v〉�,0 :=
∫
R

u(t)v(t) exp(−2�t) dt (u, v ∈ H�,0(R)).

We set

∂0,�|C̊1(R)
: C̊1(R) ⊆ H�,0(R)→ H�,0(R),

u �→ u′,

where C̊1(R) is the space of compactly supported continuously differentiable functions.

© Springer Nature Switzerland AG 2020
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2 1 The Solution Theory for a Basic Class of Evolutionary Equations

Clearly, for all � ∈ R, the operator ∂0,�|C̊1(R)
is densely defined. The operator is also

closable:

Proposition 1.1.2 For all v ∈ C̊1(R) we have

(
∂0,�|C̊1(R)

)∗
v = −v′ + 2�v,

hence ∂0,�|C̊1(R)
is closable.

Proof We note here that it suffices to prove the asserted equality. For if the equality is
true, the adjoint of ∂0,�|C̊1(R)

is densely defined and thus ∂0,�|C̊1(R)
is closable. So, let

u, v ∈ C̊1(R). Then we compute with the help of integration by parts

〈∂0,�|C̊1(R)
u|v〉�,0 = 〈u′|v〉�,0

=
∫
R

u′(t)v(t) exp(−2�t)dt

= −
∫
R

(
u(t)v′(t) exp(−2�t)− 2�u(t)v(t) exp(−2�t)

)
dt

= 〈u| − v′〉�,0 + 〈u|2�v〉�,0.

This yields the assertion. �


We define

∂0,� := ∂0,�|C̊1(R)
.

A consequence of the latter proposition is

− ∂0,� + 2� ⊆ ∂∗0,�. (1.1.1)

Among other things we will show in the following that here equality is true. The strategy
of the proof is to consider the inverse of ∂0,� first. We define

L1
�(R) := {h ∈ L1

loc(R); (t �→ exp(−�t)h(t)) ∈ L1(R)}

for all � ∈ R and recall Young’s inequality.
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Proposition 1.1.3 (Young’s Inequality) Let � ∈ R, h ∈ L1
�(R), f ∈ C̊1(R). Then for all

t ∈ R

h ∗ f (t) :=
∫
R

h(t − s)f (s)ds

is well-defined and t �→ h ∗ f (t) ∈ H�,0(R) with

|h ∗ f |�,0 ≤ |h|L1
�
|f |�,0

holds. In particular, h∗ extends to a bounded linear operator on H�,0(R) with
‖h ∗ ‖ ≤ |h|L1

�
.

Proof Note that by a change of variables,

h ∗ f (t) =
∫
R

h(s)f (t − s)ds

for all t ∈ R. This implies the existence of the integral (and even the continuity of h ∗ f
by Lebesgue’s dominated convergence theorem). Next, we estimate using the Cauchy–
Schwarz inequality

‖h ∗ f ‖2
�,0 =

∫
R

∣∣∣∣
∫
R

h(t − s)f (s)ds

∣∣∣∣
2

exp(−2�t)dt

≤
∫
R

(∫
R

|h(t − s)| exp(−�(t − s)) |f (s)| exp(−�s)ds
)2

dt

=
∫
R

(∫
R

(|h(t − s)| exp(−�(t − s)))1/2+1/2 |f (s)| exp(−�s)ds
)2

dt

≤
∫
R

(∫
R

|h(t − s)| exp(−�(t − s))ds×

×
∫
R

∣∣h(t − s′)
∣∣ exp(−�(t − s′))

∣∣f (s′)∣∣2 exp(−2�s′)ds′
)
dt

= |h|L1
�

∫
R

∫
R

∣∣h(t − s′)
∣∣ exp(−�(t − s′))dt

∣∣f (s′)∣∣2 exp(−2�s′)ds′

= |h|2
L1
�
|f |2�,0,

yielding the assertion. �
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A particular application of the latter estimate concerns the following two cases

h = χ[0,∞[ ∈ L1
�(R) (1.1.2)

and

h = −χ]−∞,0] ∈ L1−�(R) (1.1.3)

for all � > 0. Note that in either case, we have |h|L1
�
= 1/|�| for � �= 0. Moreover, it is

easy to see that χ[t,∞)(·)f (·) ∈ L1
�(R) for all f ∈ H�,0(R), t ∈ R, � > 0, so that

t �→ h ∗ f (t) =
∫ t

−∞
f (s)ds

is well-defined and continuous (and analogously for � < 0).
With these settings at hand, we prove the bounded invertibility of ∂0,�, � �= 0:

Theorem 1.1.4 Let � �= 0. Then the operator ∂0,� is continuously invertible, ∂−1
0,� = h∗

with h respective of the sign of � as in (1.1.2) or (1.1.3) and

‖∂−1
0,�‖ ≤

1

|�| .

Proof We only prove the case � > 0, the case � < 0 being analogous. Let f ∈ C̊1(R)

and let ϕ ∈ C̊1(R) be such that 0 ≤ ϕ ≤ 1, ϕ = 1 on [−1, 1]. For n ∈ N>0 we denote
ϕn := ϕ

( ·
n

)
. Then, by the fundamental theorem of calculus, we get

∂0,�(ϕn(h ∗ f )) = ∂0,�|C̊1(R)
(ϕn (h ∗ f ))

= (ϕn(h ∗ f ))′
= ϕ′n (h ∗ f )+ ϕnf

= 1

n
ϕ′
( ·
n

)
(h ∗ f )+ ϕnf.

Letting n→∞, we deduce h ∗ f ∈ dom(∂0,�) and ∂0,�(h ∗ f ) = f . Indeed, this follows
from ϕn(h ∗ f )→ h ∗ f and 1

n
ϕ′
( ·
n

)
(h ∗ f )+ ϕnf → f in H�,0(R) and the closedness

of ∂0,�. Next, for f ∈ H�,0(R) there exists a sequence (fn)n in C̊1(R) such that fn → f

in H�,0(R). By Proposition 1.1.3, we deduce that h ∗ fn → h ∗ f in H�,0(R). And so,
from ∂0,�h ∗ fn = fn we deduce that h ∗ f ∈ dom(∂0,�) and ∂0,�(h ∗ f ) = f.

Next, let f ∈ dom(∂0,�) and g := ∂0,�f . There exists a sequence (fn)n in C̊1(R) with
the property that fn → f and gn := ∂0,�fn = f ′n → g as n → ∞ in H�,0(R), by
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definition of ∂0,�. Thus, by Proposition 1.1.3 and the fundamental theorem of calculus

h ∗ ∂0,�f = h ∗ g
= lim

n→∞ h ∗ gn
= lim

n→∞ h ∗ f ′n
= lim

n→∞ fn = f,

which yields the assertion. �


Corollary 1.1.5 Let � ∈ R. Then

∂∗0,� = −∂0,� + 2�.

Proof Consider the unitary mapping

exp(−�m) : H�,0(R)→ L2(R)

u �→ (t �→ exp(−�t)u(t))

and its adjoint/inverse

exp(−�m)∗ : L2(R)→ H�,0(R)

v �→ (t �→ exp(�t)v(t)) .

Then an easy computation shows

∂0,� = exp(−�m)∗
(
∂0,0 + �

)
exp(−�m). (1.1.4)

Indeed, the result is clear for elements in C̊1(R) and by taking closures, the equality
follows. In particular, we see that the operators

∂0,0 ± 1

are boundedly invertible on L2(R) since both are unitarily equivalent to the invertible
operators ∂0,±1, respectively. Since by (1.1.1) we have that

∂0,0 + 1 ⊆ −∂∗0,0 + 1 = −(∂0,0 − 1)∗
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we derive equality, because the operator on the left-hand side is onto and the operator on
the right-hand side is one-to-one (using Theorem B.4.8). Summarizing, we have shown

∂0,0 = −∂∗0,0.

According to (1.1.4) this, however, implies

∂∗0,� = exp(−�m)∗
(
∂0,0 + �

)∗ exp(−�m)

= exp(−�m)∗
(−∂0,0 + �

)
exp(−�m)

= −∂0,� + 2�,

which shows the claim. �


We remark here that another consequence of the equality in Corollary 1.1.5 is that C̊1(R) is
an operator core not only for ∂0,� but also for ∂∗0,�. Moreover, we obtain that dom(∂0,�) =
dom(∂∗0,�). Note that the results obtained in this section carry over almost verbatim to the
case of H -valued H�,0-functions, that is, to functions in the space

H�,0(R;H) := {f ∈ L2
loc(R;H); (t �→ exp(−�t)f (t)) ∈ L2(R;H)}.

We summarize this in the following theorem, which for simplicity we only formulate for
the case � > 0.

Theorem 1.1.6 Let � ∈ R>0, and let H be a Hilbert space. Define

∂0,�|C̊1(R;H)
: C̊1(R;H) ⊆ H�,0(R;H)→ H�,0(R;H), ϕ �→ ϕ′.

Then ∂0,�|C̊1(R;H)
is densely defined and closable; ∂0,� := ∂0,�|C̊1(R;H)

is continuously
invertible and for all f ∈ H�,0(R;H) we have

∂−1
0,�f (t) =

∫ t

−∞
f (s) ds (t ∈ R).

Furthermore, ‖∂−1
0,�‖ ≤ 1/|�| and ∂∗0,� = −∂0,� + 2�.

For � > 0, the formula for the inverse of ∂0,� reveals that the solution u of the equation
∂0,�u = f up to a certain time t ∈ R does not depend on the behavior of f from t ∈ R

onwards. This property is called causality and will be described by means of an estimate
in the following theorem. The additional linear operator M0 ∈ B(H) mentioned in the
following statement can be thought of being the identity operator on H on a first read.
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Moreover, when applied to elements in H�,0(R;H), the operator M0 is to be understood
in the point-wise sense, that is, (M0u) (t) := M0 (u(t)) for each u ∈ H�,0(R;H). We
note that the inequality will play a crucial role in our analysis of (evolutionary) partial
differential equations to follow.

Theorem 1.1.7 Let � ∈ R>0, let H be a Hilbert space, and let 0 ≤ M0 = M∗
0 ∈ L(H).

Then for all u ∈ dom(∂0,�) and a ∈ R we have

〈∂0,�M0u|χ]−∞,a]u〉�,0 ≥ �〈χ]−∞,a]M0u|χ]−∞,a]u〉�,0.

Proof By Theorem 1.1.6, it suffices to prove the inequality for u ∈ C̊1(R;H). We
compute for a ∈ R using integration by parts and the fact that M0u ∈ C̊1(R;H), by
the linearity, boundedness and selfadjointness of M0,

〈∂0,�M0u|χ]−∞,a]u〉�,0

=
∫ a

−∞
〈(M0u)

′(s)|u(s)〉 exp(−2�s)ds

= −
∫ a

−∞
〈M0u(s)|u′(s)〉 exp(−2�s)ds

+ 2�
∫ a

−∞
〈M0u(s)|u(s)〉 exp(−2�s)ds + 〈M0u(a)|u(a)〉 exp(−2�a)

≥ −
∫ a

−∞
〈u(s)|(M0u)

′(s)〉 exp(−2�s)ds + 2�
∫ a

−∞
〈M0u(s)|u(s)〉 exp(−2�s)ds.

Thus, we obtain

〈∂0,�M0u|χ]−∞,a]u〉�,0 + 〈χ]−∞,a]u|∂0,�M0u〉�,0
= 2〈∂0,�M0u|χ]−∞,a]u〉�,0 ≥ 2�〈χ]−∞,a]M0u|χ]−∞,a]u〉�,0. �


To simplify notation we shall write ∂0 instead of ∂0,� if � is clear from the context.
Although in the one-dimensional case the index 0 is not really needed, we use this notation
to underscore that ∂0 will serve as our realization of the time derivative. (We anticipate the
introduction of ‘spatial’ derivatives for which we shall use the indices starting with 1.)

A particular instance of Theorem 1.1.7 is M0 = 1: Then we have

〈
χ]−∞,a]u|∂0u

〉
�,0 =

〈
u|χ]−∞,a]∂0u

〉
�,0 ≥ �0

〈
χ]−∞,a]u|χ]−∞,a]u

〉
�,0

for all a ∈ R and all � ∈ [�0,∞[, which precisely underpins the property of causality
mentioned above: if f = ∂0u vanishes on an interval ]−∞, a] then so does ∂−1

0 f = u.
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This property can also be expressed in the form

χ]−∞,a]∂
−1
0

(
1− χ]−∞,a]

) = 0

or

χ]−∞,a]∂
−1
0 = χ]−∞,a]∂

−1
0 χ]−∞,a]

for all a ∈ R. Before we turn to partial differential equations, we will consider the
derivative just defined in the context of ordinary differential equations, see also [22, 75].
The following corollary however, while involving only the one derivative, is essential for
our analysis of partial differential equations.

Corollary 1.1.8 Let H Hilbert space, �, ε > 0. Then both 1 + ε∂0 and 1 + ε∂∗0 are
continuously invertible. The operator norm of the inverses are bounded by 1 and

(1+ ε∂0)
−1 ,

(
(1+ ε∂0)

−1
)∗ = (1+ ε∂∗0

)−1 → 1H�,0(R;H)

in the strong operator topology as ε → 0.

Proof Let u ∈ dom(∂0) = dom(∂∗0 ) (see Theorem 1.1.6). We compute with the help of
Theorem 1.1.7:

〈(1+ ε∂0) u|u〉�,0 = 〈u| (1+ ε∂∗0
)
u〉�,0 ≥ 〈u|u〉�,0 + ε�〈u|u〉�,0 ≥ 〈u|u〉�,0.

Furthermore, from (1+ ε∂0)
−1 u = u − ε (1+ ε∂0)

−1 ∂0u → u as ε → 0 for all u ∈
dom(∂0) and from supε>0 ‖ (1+ ε∂0)

−1 ‖ ≤ 1, we deduce the first convergence statement.
The second one is similar. �


Remark 1.1.9 This corollary is a special case of Lemma B.7.1. Indeed, it suffices to
observe that causality of ∂0,� (in the form of Theorem 1.1.7) particularly implies the
accretivity of ∂0,� and of its adjoint ∂∗0,�.
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1.2 A Hilbert Space Perspective on Ordinary Differential Equations

The above discussion suggests a Hilbert space theory for ordinary differential equations,
which we explore for a moment. A more detailed exposition can be found in [22, 75] for
the Hilbert space and [64] for the Banach space case.

Indeed, assuming henceforth the forward causal case of � ∈ ]0,∞[, we have (see
Theorem 1.1.4)1

∥∥∥∂−1
0

∥∥∥ ≤ 1

�
.

Remark 1.2.1 We note that the norm in H�,0 (R) is a Hilbert space variant of the
Morgenstern norm, [36]. Based on the knowledge of the fundamental solution h = χ[0,∞[

associated with ∂0 we have on L∞loc(R)-functions f with

sup {exp (−�t) |f (t)| ; t ∈ R} <∞,

that is, on L∞� (R) := {f ∈ L∞loc(R); sup {exp (−�t) |f (t)| ; t ∈ R} <∞}, that

∂−1
0 = χ[0,∞[ ∗ .

We recall that by Theorem 1.1.4 the same formula is true in H�,0(R). The continuity on
L∞� (R) can be confirmed easily by estimating

∣∣∣∣exp (−�t)
∫ t

−∞
f (s) ds

∣∣∣∣ ≤
∣∣∣∣exp (−�t)

∫ t

−∞
exp (�s) exp (−�s) |f (s)| ds

∣∣∣∣ ,
≤
∣∣∣∣exp (−�t)

∫ t

−∞
exp (�s) ds

∣∣∣∣ |f |L∞� (R) =
1

�
|f |L∞� (R)

for all t ∈ R and f ∈ L∞� (R) and recalling that

(
∂−1

0 f
)
(t) =

∫
R

χ[0,∞[ (t − s) f (s) ds

=
∫ t

−∞
f (s) ds.

1Indeed, one can even confirm that
∥∥∥∂−1

0,�

∥∥∥ = 1
� .


