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xv

This book is divided into two parts. Part I presents evolution and development of 
power converters from the original converter. Hundreds of power converter topol-
ogies have been developed over past one century by many researchers. However, 
there is no single systematic approach to developing the converters. Inspired by 
Charles Darwin who published the book entitled The Origin of Species and based 
on the principle of resonance, we identify the original converter, on which we 
develop the mechanisms of evolution, decoding, and synthesizing processes, to 
derive PWM power converters systematically. With the decoding process, the 
input‐to‐output transfer codes (ratios) are decoded into code configurations in 
terms of the transfer codes derived from the original converter. With the synthe-
sizing process, we have developed the graft and layer schemes, which are used in 
growing plants, along with circuit fundamentals to synthesize the code configura-
tions into converters. With these two processes, illustrations of the existing and 
newly developed hard‐switching and soft‐switching PWM converters, including 
the well‐known z‐source converters, Vienna converters, modular multilevel 
 converters, switched‐inductor/switched‐capacitor converters, etc., are presented 
in detail. Additionally, determination of converters’ switch‐voltage stresses based 
on their transfer codes is addressed. Moreover, based on the principle of  resonance, 
the well‐known six PWM converters are reconfigured, and analogy of PWM 
 converters to DNA is presented, from which mutation and replication of PWM 
converters are discussed.

Part II presents modeling and applications of power converters based on the 
original converter and the developed graft and layer schemes. The six PWM con-
verters can be modeled into families represented in two‐port networks. Therefore, 
relationships among the converters can be identified and the modeling processes 
can be simplified. In addition, single‐stage converters to fulfill multiple functions 
are derived and modeled, on which two application examples are presented and 
verified with experimental results.

Preface
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Since Charles Darwin in 1859 initiated an evolution principle, through around 
one hundred years and many researchers’ study, Gregor J. Mendel developed the 
laws of inheritance in 1866, Boveri‐Sutton developed chromosome  theory in 1902, 
and James D. Watson discovered the double‐helix structure of DNA in 1953, 
affecting significantly the followed genetic engineering innovations. Like Charles 
Darwin, we initiate an evolution of power converters, and we do expect other 
researchers can follow this stepstone to go further. This does not conclude the 
work, but just gets started.

Tsai‐Fu Wu
National Tsing Hua University, Taiwan, ROC

Yu‐Kai Chen
National Formosa University, Taiwan, ROC
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Electrical energy has been widely applied, and its growth rate has been increas-
ing dramatically over the past two decades. In particular, renewable energy com-
ing to play has driven electricity utilization and processing needs to reach 
another growth peak. Additionally, machine electrification and factory automa-
tion have also increased the demand of electricity. With increasing use of sophis-
ticated equipment and instruments, high power quality becomes just essential. 
To supply sufficient, of high quality, and stable electrical power in desired volt-
age or current forms, power processing systems are indispensable. Meanwhile, 
they also play an important role in supporting continuous growth of human 
beings’ civilization, environmental conservation, and energy harvesting. In 
designing a power processing system, the first step needs to select a power con-
verter topology since the converter topology mainly governs the fundamental 
properties, such as step‐up, step‐down, bipolar operation, component stresses, 
etc. Converters come out with very diversified configurations. How to derive or 
develop them systematically without trial and error is an interesting topic. Thus, 
many researchers have  devoted in developing power converter topologies for 
various types of applications.

In this chapter, configuration of a power processing system is first addressed. 
Fundamental two types of power converter classifications, general pulse‐width 
modulated (PWM) converters and non‐PWM ones, are presented. Then, the 
well‐known PWM converters are introduced for later comparison and illustra-
tion. In literature, there are many approaches to developing power converters, 
and their fundamental principles will be described briefly. In addition, an evolu-
tion concept is presented for illustrating later converter derivation. A section 
introducing the overall organization of this book will be included in the end of 
this chapter.

1

Introduction
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1.1  Power Processing Systems

Configuration of a power processing system can be illustrated in Figure 1.1, which 
mainly includes input filter, power converter, feedback/feedforward circuits, con-
troller, gate driver, and protection circuit. The input source can be obtained from 
utility outlet/grid or renewable energy generators, such as photovoltaic panel, 
wind turbine, geothermal heat pump, etc. Its voltages and currents can be any 
form, and their amplitudes might vary with time or fluctuate frequently. At the 
output side, the load may require various voltage and current forms, too. Thus, a 
proper power converter topology along with a promising controller is usually 
required to realize a power processing system.

Conventionally, the conceptual block diagram of a power processing system 
shown in Figure 1.1 can be realized by the circuit shown in Figure 1.2, which, as 
an example, is a linear regulator. In the circuit, semiconductor switch QN is oper-
ated in linear region to act as a variable resistor, which can absorb the voltage 
difference between input voltage Vi and output voltage Vo and in turn regulate Vo 
under load variation. The primary merits of a linear regulator include low output 
voltage ripple and low noise interference. However, it has many drawbacks, such 

Figure 1.1 Configuration of a power processing system.

Figure 1.2 Block diagram of a linear regulator.
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as the transformer with low operating frequency results in bulky size and heavy 
weight, semiconductor QN operating in linear region results in high power loss 
and low efficiency, and the low efficiency requires a large, heavy heat sink and 
even needs forced ventilation. These drawbacks have limited its wide applications 
to compact electronic products, renewable power generators, and energy harvest-
ers, where efficiency and size are the essential concerns.

To improve efficiency and release the aforementioned limitations, switching 
power regulators were developed. A typical configuration of the switching regula-
tors is shown in Figure 1.3, where in the power converter, switch M1 is operated in 
saturation region (if using BJT as a switch) or in ohmic region (if using MOSFET 
as a switch), reducing conduction loss dramatically. At the input side, the corner 
frequency of the filter is close to switching frequency, and its size and weight can 
be also reduced significantly. If isolation is required, high frequency transformer 
will be introduced to the converter, and its size and weight are relatively small as 
compared with a low‐frequency one (operating at 50/60 Hz). In general, a switch-
ing regulator has the merits of high power density, small volume, low weight, 
improved efficiency, and cost and component reduction. There still exist several 
limitations, such as resulting in high switching noise, increasing analysis and 
design complexity, and requiring sophisticated control. Although switching regu-
lators have the limitations, thanks to recent advances in high efficiency and high 
frequency component development, nanoscale integrated circuit (IC) fabrication 
technique, and analysis tool, they have been widely applied to electronic products, 
energy harvesting, and power quality improvement. For further discussion, we 
will focus on switching regulators only.

For a switching regulator or a more general term, switching power converter, 
the input source can be either AC or DC form, and the output load can be also 
supplied by either AC or DC form. Thus, there are four types of combinational 
forms in classifying power converter topologies, which are AC to DC, AC to AC, 
DC to AC, and DC to DC. In Figure 1.3, the rectifier converts AC to DC, and the 
power converter converts DC to DC. Typically, a power processing system may 

Figure 1.3 Block diagram of a switching regulator.
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need multiple power converters to collaborate each other, but they might be 
integrated into a single power stage for certain applications, such as a notebook 
adapter consisting of a rectifier (AC to DC), a power factor corrector (DC to DC), 
and an isolated regulator (DC to DC), which can be integrated into a bridgeless 
isolated regulator. A power converter requires at least a control gear or switch to 
control power flow between source and load, and it might need some buffers or 
filters to smooth and hold up voltage and current, which can be illustrated in 
Figure 1.4. The switch can be realized with BJT, MOSFET, IGBT, GTO, etc. along 
with freewheeling diodes. It is worth noting that recent advances in wide‐band-
gap switching device development, such as SiC and GaN, have merited to 
switching power converters because their switching losses have been reduced 
significantly. The buffer or filter is realized with capacitor alone or capacitor–
inductor pair. If it requires galvanic isolation, a transformer is introduced into 
the converter. Additionally, the transformer provides another degree of freedom 
in tuning input‐to‐output voltage ratio and can implement multiple outputs 
readily. To fulfill multiple functions or increase power capacity, converters 
can be connected in series or parallel, which will complicate analysis, design, 
and control.

As shown in Figure  1.4, connecting switch(es) and capacitors/inductors to 
form a power converter sounds simple. However, how to configure a power con-
verter to achieve step‐up, step‐down, and step‐up/step‐down DC output, AC 
output, PWM control, variable frequency control, etc. is not an easy task. Even 
with the same step‐up/step‐down transfer ratio, there exist different converter 
topologies, and they might have different dynamic performances and different 
component stresses. Among the four types of power converter topologies is the 
DC to DC, simplified to DC/DC, converter type relatively popular. In the follow-
ing, we will first present how to figure out the derivation of DC/DC converter 
topologies, on which the rest of converter types will be discussed. Exploring 
systematic approaches to developing power converter topologies is the unique 
feature of this book.

Figure 1.4 Possible components in a power converter.
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1.2  Non-PWM Converters Versus PWM Converters

In power converters, when switch turns on with infinite current through or 
 infinite voltage across components, this is because there is no current‐limiting or 
voltage‐blocking components in the conduction path, resulting in severe electro-
magnetic interference (EMI) problems. This type of power converter cannot be 
controlled with PWM and is called a non‐PWM converter. On the contrary, there 
exist current‐limiting and voltage‐blocking components in the conduction path of 
a power converter, and it can be controlled with PWM, which is called a PWM 
converter. This claim will be presented and illustrated with some power converter 
examples, as follows.

1.2.1 Non-PWM Converters

The major concern of a power converter is its input–output conversion efficiency. 
In practice, there is no resistor allowed in a converter configuration. A qualified 
converter includes only ideal switch(es) and capacitor(s)/inductor(s). However, 
even with these components only, there might still exist loss during power trans-
fer, such as the converters shown in Figure 1.5a and b. Figure 1.5a shows power 
transfer between two capacitors, and it is controlled by switch S1. Assuming 
capacitor C1 is associated with an initial voltage of Vo and C2 is with zero voltage, 
and capacitance C1 = C2, it can be shown that there is an electrical energy loss, 
( / )1 4 1

2C Vo , which is half the initially stored energy in C1. Moreover, when switch 
S1 is turned on, an inrush current flows from C1 to C2 and through S1 in almost no 
time, which may damage the components and cause EMI problems. For this type 
of circuit configuration, the only current limiter is the equivalent inductance and 
resistance of the components and the circuit path. It can be said that there is no 
control on the capacitor currents and voltages, and the voltages of both capacitors 
C1 and C2 will be always balanced at (1/2)Vo. This type of power converter con-
figuration is classified as a non‐PWM converter.

Similarly, the conceptual inductor–inductor–switch configuration shown in 
Figure 1.5b has the same limitations. If, initially, inductor L1 carries a current of Io 

(a) (b) (c)

Figure 1.5 (a) Capacitor–capacitor–switch, (b) inductor–inductor–switch, and 
(c) capacitor–inductor–switch networks.
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but there is no current in L2, after turning on switch S1, there will be an extremely 
high impulse voltage across the inductors and the switch, causing EMI problems 
and damage to the components. Again, there is half electrical energy loss ( / )1 4 1

2L Io  
if L1 = L2, and there is no control on the inductor voltages and currents at all. It is 
also a non‐PWM converter.

In summary, non‐PWM converters come out high inrush current or high 
impulse voltage, resulting in high EMI, as well as high component stress, and they 
could yield low conversion efficiency even with ideal components. In particular, 
under large initial voltage difference, the maximum electrical energy loss can be 
as high as 50%.

Other examples adopting the configuration shown in Figure 1.5a are shown in 
Figure 1.6. Figure 1.6a shows a two‐lift converter. When switches S1 and S2 are 
turned on, capacitor C1 will charge C2 directly. On the other hand, when switch S3 
and S4 are turned on, capacitors C1 and C2 are connected in series to charge capac-
itor C3 and lift the output voltage Vo to be twice the input voltage Vi. It can be seen 

(a) (b)

(c)

Figure 1.6 Non-PWM converters: (a) two lift, (b) KY, and (c) re-lift circuit.
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that during capacitor charging, there is no current limiter, resulting in high inrush 
current. Figure 1.6b shows the KY converter. When switch S2 is turned on, input 
voltage Vi will charge capacitor C1 through diode D1 but again without current 
limiter. When switch S2 is turned off and S1 is turned on, input voltage Vi together 
with capacitor voltage VC will magnetize inductor L1 through the output path. 
This path of power flow is with the current limiter of inductor L1. Figure 1.6c 
shows a re‐lift converter. When switch S1 is turned on, there are two capacitor 
charging paths without current limiter, Vi‐S1‐D2‐C3‐D3‐Vi and Vi‐S1‐D21‐C12‐D11‐Vi. 
When switch S1 is turned off, the energy stored in capacitors C3 and C12 will be 
released to the output through the inductors and capacitors, which are the current 
limiters.

With a non‐PWM converter, the processed power level is usually pretty low 
because of high inrush current or high pulse voltage. It can be used for supplying 
integrated circuits, which require low power consumption, of which the low cur-
rent rating switches have high conduction resistance and act as current limiters. 
For high power processing, we need PWM power converters.

1.2.2 PWM Power Converters

Power transfer between a capacitor and an inductor can be modulated by a switch, 
as shown in Figure 1.5c, and their total electrical energy is always conserved to 
their initially stored energy. In the network, capacitor C1 limits the slew rate of 
voltage variation, inductor L1 limits that of current variation, and switch S1 
 controls the time interval of power transfer, i.e., pulse‐width modulation. Thus, 
component stresses can be properly controlled, and high conversion efficiency 
can be insured. Additionally, EMI level can be also reduced significantly. Power 
converter configurations based on this type of network are called PWM power 
converters. Note that it requires an additional freewheeling path when switch S1 
is turned off, which will be discussed in later section. For simplicity while without 
confusion in power electronics area, the short‐form PWM converters or convert-
ers will be used to represent the PWM power converters. They have been widely 
applied to various types of power conversion for their controllable power transfer, 
theoretically no loss, and finite component stresses.

The minimum‐order network of a PWM converter is a second‐order LC  network, 
and it must at least include a switch to control power flow. The order of network 
can be increased to third, fourth, and even higher. For a valid PWM converter, the 
network must be always in resonant manner at either switch turn‐on or turn‐off.

Over the past century, PWM converters have been well developed and have 
diversified configurations, such as buck, boost, buck‐boost, Ćuk, sepic, Zeta, fly-
back, forward, push‐pull, half‐bridge, full‐bridge, Z‐source, neutral‐point clamped 
(NPC), modular multilevel, quasi‐resonant, and LLC resonant converters. They 
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can be classified into non‐isolated and isolated configurations. Typically, the iso-
lated versions can be derived from the non‐isolated ones by inserting a DC trans-
former or an AC transformer to a proper location of the converter. Thus, we will 
first introduce non‐isolated converters, which can lay out a firm foundation for 
later discussions on isolated converters.

1.3  Well-Known PWM Converters

Almost all people entering power electronics field know about buck, boost, and 
buck‐boost converters, as shown in Figure  1.7. To my best knowledge, it is 
unknown that who invented the buck converter and when it was invented. Since 
electricity started to be used frequently between the late nineteenth century and 
the early twentieth century, the invention of the buck converter was designated as 
year 1900. The boost converter was invented during World War II, which was used 
to boost voltage for transmitting radio signals across Atlantic Ocean. The buck‐
boost converter was invented around 1950.

Analyzing their operational principles will realize that the buck, boost, and 
buck‐boost converters can achieve step‐down, step‐up, and step‐down/step‐up 
input‐to‐output voltage conversions, respectively. They all have a second‐order LC 
network and a pair of active–passive switches but have different circuit 
configurations.

If we explore further, there are another three famous converters, and each of 
which has a fourth‐order LC network and a pair of active–passive switches, as 
shown in Figure 1.8, in which they have different circuit configurations, but they 
all can fulfill the same step‐down/step‐up voltage conversion. Ćuk converter was 

(a) (b)

(c)

Figure 1.7 Power converters with a second-order L  network and a pair of active–
passive switches: (a) buck converter, (b) boost converter, and (c) buck-boost converter.


