POLYMERS COATINGS TECHNOLOGY MAPPLICATIONS

Edited by Inamuddin, Rajender Boddula, Mohd Imran Ahamed, & Abdullah M. Asiri

WILEY

Polymer Coatings

Scrivener Publishing

100 Cummings Center, Suite 541J Beverly, MA 01915-6106

Publishers at Scrivener Martin Scrivener (martin@scrivenerpublishing.com) Phillip Carmical (pcarmical@scrivenerpublishing.com)

Polymer Coatings

Technology and Applications

Edited by Inamuddin, Rajender Boddula, Mohd Imran Ahamed and Abdullah M. Asiri

This edition first published 2020 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA © 2020 Scrivener Publishing LLC

For more information about Scrivener publications please visit www.scrivenerpublishing.com.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

Wiley Global Headquarters

111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials, or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read.

Library of Congress Cataloging-in-Publication Data

ISBN 978-1-119-65499-5

Cover image: Pixabay.Com Cover design by Russell Richardson

Set in size of 11pt and Minion Pro by Manila Typesetting Company, Makati, Philippines

Printed in the USA

10 9 8 7 6 5 4 3 2 1

Contents

Pr	efac	e			xvii	
1	Fab	ricatio	n Method	s for Polymer Coatings	1	
	Hüsnügül Yilmaz Atay					
	1.1	Intro	duction	1	1	
		1.1.1	Starting	Liquid Types	2	
			1.1.1.1	Polymer Solutions	2	
			1.1.1.2	Liquid Monomers	3	
			1.1.1.3	Polymer Latex	4	
		1.1.2	Polymer	Coating Methods	5	
			1.1.2.1	Blade Coating	6	
			1.1.2.2	Spray Coating	6	
			1.1.2.3	Thermal Spray Coating	7	
			1.1.2.4	Pulsed Laser Deposition	9	
			1.1.2.5	Plasma Polymerization	9	
			1.1.2.6	Flow Coating	10	
			1.1.2.7	Spin Coating	11	
			1.1.2.8	Sol-Gel	13	
			1.1.2.9	Dip Coating	15	
			1.1.2.10	Grafting	16	
		Refer	ences	-	17	
2	Fab	ricatio	n Method	s of Organic/Inorganic Nanocomposite		
	Coa	atings			21	
	And	indraj 1	Mohan Ki	umar, Rajasekar Rathanasamy,		
	Goł	oinath V	Velu Kaliy	annan, Moganapriya Chinnasamy		
	and	l Sathis	h Kumar	Palaniappan		
		Abbre	eviations		21	
	2.1	Intro	duction		22	
		2.1.1	Transpar	rency of Organic/Inorganic Nanocomposites	24	

vi	Contents
V I	CONTENTS

	2.2	Fabrication Methods	25
		2.2.1 Sol-Gel Method	25
		2.2.2 Cold Spray Technique	25
		2.2.3 Chemical Vapor Deposition	27
		2.2.4 Physical Vapor Deposition	28
		2.2.5 Thermal Spray Coating	29
		2.2.6 Electrodeposition Method	29
		2.2.7 Electroless Coating Method	30
	2.3	Conclusions	31
		References	32
3	Dry	y Powder Coating Techniques and Role of Force	
	Cor	ntrolling Agents in Aerosol	41
	Piyı	ush P. Mehta, Atmaram P. Pawar², Kakasaheb R. Mahadik	,
	Shi	vajirao S. Kadam and Vividha Dhapte-Pawar	
		Abbreviations	42
	3.1	Introduction	42
	3.2	Dry Powder Coating	44
	3.3	Dry Powder Coating Techniques	46
	3.4	Analytical Techniques for Ensuring Coating Uniformity	51
	3.5	Force Controlling Agents	52
		3.5.1 Metal Stearates	57
		3.5.2 Amino Acids	63
	3.6	Inhaler Device and Capsule Coating	66
	3.7	Numerical Simulation	67
	3.8	Conclusion	68
		References	69
4	Sup	perhydrophobic Polymer Coatings	75
	Am	ir Ershad Langroudi	
		Abbreviations	75
	4.1	Introduction	76
	4.2	Theoretical Background	76
		4.2.1 Young's Equation	78
		4.2.2 Wenzel Model	79
		4.2.3 Cassie-Baxter Model	80
	4.3	Physical and Chemical Texturing	81
		4.3.1 Cleaning Process	81
		4.3.2 Wet Chemical Reaction	81
		4.3.3 Sol-Gel Process	82

		4.3.4	Immers	ion Coated	82
		4.3.5	Electroc	hemical Deposition	82
		4.3.6	Ion Irra	diation or Implantation	82
		4.3.7	Plasma	Treatment	83
	4.4	Devel	opment o	of Superhydrophobic Coatings With	
		Nano	particles		84
		4.4.1	CNT Na	anoparticles	84
		4.4.2	Carbon	-Based Fillers	85
		4.4.3	Silica-B	ased Superhydrophobic Nanocoatings	85
	4.5	Trans	parent Su	perhydrophobic Coatings	
		for Se	lf-Cleani	ng Applications	86
	4.6	Super	hydropho	obic Coatings With Additional Self-Cleaning	
		Funct	tion		87
		4.6.1	Nanopa	rticles in Coating	87
		4.6.2	Plant Le	eaves	87
		4.6.3	Animal	(Gecko Setae)-Inspired	87
		4.6.4	Marine	Organisms–Inspired Antifouling Self-Cleaning	88
	4.7	Sumn	nary and	Outlook	88
		Refer	ences		89
5	Sup	erhydr	ophobic	Coatings Applications	95
	Han	nidreza	a Parsime	ehr and Amir Ershad Langroudi	
	5.1	Intro	duction		95
	5.2	Step I			97
		5.2.1	Substrat	ie	97
		5.2.2	Substan	ce	97
	5.3	Step I	Ι		98
		5.3.1	Restrict	ive Attributes	100
			5.3.1.1	Biological Agents	100
			5.3.1.2	Chemical Agents	101
			5.3.1.3	Physical Agents	103
		5.3.2	Self-Cle	aning	103
			5.3.2.1	Liquid Pollutants	104
			5.3.2.2	Solid Pollutants	105
		5.3.3	Smart A	ttributes	107
			5.3.3.1	Conductivity	107
			5.3.3.2	Energy Storage	108
				I lla a fra a a fra la di a	100
			5.3.3.3	Photocatalytic	108
			5.3.3.3 5.3.3.4	Self-Assembly	108

		5.3.3.6 Stimuli-Responsive	109
		5.3.3.7 Multifunctional Superhydrophobic Coatings	109
	5.4	Conclusions and Summary	110
		References	110
6	Ads	orptive Polymer Coatings	121
	Ane	ela Sabir, Muhammad Hamad Zeeshan,	
	Mul	hammad Shafiq, Rafi Ullah Khan and Karl I. Jacob	
	6.1	Introduction	121
	6.2	Types of Coatings	122
	6.3	Polymer Coating	122
	6.4	Types of Polymer Coating	123
	6.5	Adsorptive Polymer Coating	123
	6.6	Materials	124
	6.7	Adsorptive Polymer Coating Techniques	124
		6.7.1 Spray Coating	124
		6.7.2 Dip Coating	125
		6.7.3 Spin Coating	126
		6.7.4 Solution Casting	127
		6.7.5 Blade Coating	127
	6.8	Adsorptive Polymer Coating Applications	128
		6.8.1 UV Protection	128
		6.8.2 Biomedical	129
		6.8.3 Corrosion Protection	129
		6.8.4 Mechanical and Wear Properties	129
		6.8.5 Packaging	129
	6.9	Future Perspectives	129
		References	130
7	Poly	vurethane Coatings	135
	Nad	lia Akram, Khalid Mahmood Zia, Nida Mumtaz,	
	Mul	hammad Saeed, Muhammad Usman and Saima Rehman	
	7.1	Introduction	135
	7.2	Chemistry of Polyurethane	138
	7.3	Formulation of PU Coating	140
		7.3.1 Raw Material for Polyurethanes	140
		7.3.1.1 Polyols	140
		7.3.1.2 Polyether Polyols	140
		7.3.1.3 Hydrocarbon-Based Polyols	141
		7.3.2 Isocyanates	142
		7.3.3 Monomeric Diisocynate	144

		7.3.4	Vegetable Oil-Based Polyurethane Coating	144
		7.3.5	Water Borne Polyurethane Coating	145
	7.4	Appli	cations of Polyurethane Coating	145
		7.4.1	Multifunctional Polyurethane Coating	145
		7.4.2	Self-Cleaning of Polyurethane Coating	146
		7.4.3	Self-Healing of Polyurethane Coating	147
		7.4.4	Nanodoped Polyurethane Coating	148
	7.5	Adva	ntages of Polyurethane Coating	149
		7.5.1	Biodegradation of Polyurethane Coating	149
		7.5.2	Antimicrobial Activity of Polyurethane Coating	149
		7.5.3	Cloth Protection	150
		7.5.4	Anti-Scratch and Anti-Algal Coating	151
		7.5.5	Flame Retardant Waterborne Polyurethane Coating	152
	7.6	New]	Innovations and Future of Polyurethane Coating	153
		7.6.1	Development in Biomaterials	153
		7.6.2	Future of Paint Industry	154
	7.7	Conc	lusion	154
		Refer	ences	154
8	Elec	troact	ive Polymer Nanocomposite Coating	159
	Ave	sha Ka	usar	
	11,00	<i><i><i><i>iiu</i></i> 1<i>u</i></i></i>	4541	
	8.1	Intro	luction	160
	8.1 8.2	Introc Electr	duction oactive Polymer	160 160
	8.1 8.2 8.3	Introd Electr Electr	duction roactive Polymer roactive Polymer and Nanocomposite Coating	160 160 161
	8.1 8.2 8.3 8.4	Introd Electr Electr Appli	duction coactive Polymer coactive Polymer and Nanocomposite Coating cations of Electroactive Polymer	160 160 161
	8.1 8.2 8.3 8.4	Introd Electr Electr Appli Nano	duction coactive Polymer coactive Polymer and Nanocomposite Coating cations of Electroactive Polymer composite Coating	160 160 161 162
	8.1 8.2 8.3 8.4	Introd Electr Electr Appli Nano 8.4.1	duction coactive Polymer coactive Polymer and Nanocomposite Coating cations of Electroactive Polymer composite Coating Electroactive Anti-Corrosive Coating	160 160 161 162 162
	8.1 8.2 8.3 8.4	Introd Electr Electr Appli Nano 8.4.1 8.4.2	duction coactive Polymer coactive Polymer and Nanocomposite Coating cations of Electroactive Polymer composite Coating Electroactive Anti-Corrosive Coating Electroactive Antibacterial Coating	160 160 161 162 162 164
	8.1 8.2 8.3 8.4	Introd Electr Electr Appli Nano 8.4.1 8.4.2 8.4.3	duction duction coactive Polymer coactive Polymer and Nanocomposite Coating cations of Electroactive Polymer composite Coating Electroactive Anti-Corrosive Coating Electroactive Antibacterial Coating Electroactive Coating for Sensors and Actuators	160 160 161 162 162 164 166
	8.1 8.2 8.3 8.4 8.5	Introd Electr Electr Appli Nano 8.4.1 8.4.2 8.4.3 Futur	duction oactive Polymer oactive Polymer and Nanocomposite Coating cations of Electroactive Polymer composite Coating Electroactive Anti-Corrosive Coating Electroactive Antibacterial Coating Electroactive Coating for Sensors and Actuators e and Summary	160 160 161 162 162 164 166 168
	8.1 8.2 8.3 8.4 8.5	Introd Electr Appli Nano 8.4.1 8.4.2 8.4.3 Futur Refere	duction duction coactive Polymer coactive Polymer and Nanocomposite Coating cations of Electroactive Polymer composite Coating Electroactive Anti-Corrosive Coating Electroactive Antibacterial Coating Electroactive Coating for Sensors and Actuators e and Summary ences	160 160 161 162 162 164 166 168 169
9	8.1 8.2 8.3 8.4 8.5	Introd Electr Appli Nano 8.4.1 8.4.2 8.4.3 Futur Referen	duction duction coactive Polymer coactive Polymer and Nanocomposite Coating cations of Electroactive Polymer composite Coating Electroactive Anti-Corrosive Coating Electroactive Antibacterial Coating Electroactive Coating for Sensors and Actuators e and Summary ences	160 160 161 162 162 164 166 168 169
9	8.1 8.2 8.3 8.4 8.5 Con	Introd Electr Appli Nano 8.4.1 8.4.2 8.4.3 Futur Referen	duction duction coactive Polymer coactive Polymer and Nanocomposite Coating cations of Electroactive Polymer composite Coating Electroactive Anti-Corrosive Coating Electroactive Antibacterial Coating Electroactive Coating for Sensors and Actuators e and Summary ences Ig Polymer Coatings for Corrosion Resistance hic Materials	160 160 161 162 162 164 166 168 169 175
9	8.1 8.2 8.3 8.4 8.5 Con in E U. N	Introd Electri Appli Nano 8.4.1 8.4.2 8.4.3 Futur Referen Iductin Ilectror Varesh,	duction duction coactive Polymer coactive Polymer and Nanocomposite Coating cations of Electroactive Polymer composite Coating Electroactive Anti-Corrosive Coating Electroactive Antibacterial Coating Electroactive Coating for Sensors and Actuators e and Summary ences B Polymer Coatings for Corrosion Resistance hic Materials <i>N. Suresh Kumar, D. Baba Basha,</i>	 160 160 161 162 162 164 166 168 169 175
9	8.1 8.2 8.3 8.4 8.5 Con in E U. N K. C	Introd Electr Electr Appli Nano 8.4.1 8.4.2 8.4.3 Futur Referen Iduction Iectron Varesh, Chandr	duction duction coactive Polymer coactive Polymer and Nanocomposite Coating cations of Electroactive Polymer composite Coating Electroactive Anti-Corrosive Coating Electroactive Antibacterial Coating Electroactive Coating for Sensors and Actuators e and Summary ences By Polymer Coatings for Corrosion Resistance hic Materials <i>N. Suresh Kumar, D. Baba Basha,</i> <i>a Babu Naidu, M.S.S.R.K.N. Sarma,</i>	 160 160 161 162 162 164 166 168 169 175
9	8.1 8.2 8.3 8.4 8.5 Con in E U. N K. C R. Ja	Introd Electri Appli Nano 8.4.1 8.4.2 8.4.3 Futur Referen Iductin Iectron Varesh, Chandri eevan I	duction duction coactive Polymer coactive Polymer and Nanocomposite Coating cations of Electroactive Polymer composite Coating Electroactive Anti-Corrosive Coating Electroactive Antibacterial Coating Electroactive Coating for Sensors and Actuators e and Summary ences of Polymer Coatings for Corrosion Resistance nic Materials N. Suresh Kumar, D. Baba Basha, a Babu Naidu, M.S.S.R.K.N. Sarma, Kumar, Ramyakrishna Pothu and Rajender Boddula	 160 160 161 162 162 164 166 168 169 175
9	8.1 8.2 8.3 8.4 8.5 Con in E U. N K. C R. Jo 9.1	Introd Electri Appli Nano 8.4.1 8.4.2 8.4.3 Futur Referen Iduction Iduction Iduction Introd	duction duction coactive Polymer coactive Polymer and Nanocomposite Coating cations of Electroactive Polymer composite Coating Electroactive Anti-Corrosive Coating Electroactive Antibacterial Coating Electroactive Coating for Sensors and Actuators e and Summary ences of Polymer Coatings for Corrosion Resistance hic Materials N. Suresh Kumar, D. Baba Basha, a Babu Naidu, M.S.S.R.K.N. Sarma, Kumar, Ramyakrishna Pothu and Rajender Boddula duction	 160 160 161 162 162 164 166 168 169 1775 1776
9	8.1 8.2 8.3 8.4 8.5 Con in E U. N K. C R. Ja 9.1 9.2	Introd Electr Appli Nano 8.4.1 8.4.2 8.4.3 Futur Referen Ilectron Varesh, Chandr eevan I Introd Cond	duction duction roactive Polymer roactive Polymer and Nanocomposite Coating cations of Electroactive Polymer composite Coating Electroactive Anti-Corrosive Coating Electroactive Antibacterial Coating Electroactive Coating for Sensors and Actuators e and Summary ences 19 Polymer Coatings for Corrosion Resistance 10 Materials <i>N. Suresh Kumar, D. Baba Basha,</i> <i>a Babu Naidu, M.S.S.R.K.N. Sarma,</i> <i>Kumar, Ramyakrishna Pothu and Rajender Boddula</i> duction ucting Polymers	 160 160 161 162 162 164 166 168 169 175 176 178
9	8.1 8.2 8.3 8.4 8.5 Con in E U. N K. C R. Ja 9.1 9.2	Introd Electri Appli Nano 8.4.1 8.4.2 8.4.3 Futur Referen Iduction Iduction Iduction Introd Cond 9.2.1	duction duction coactive Polymer coactive Polymer and Nanocomposite Coating cations of Electroactive Polymer composite Coating Electroactive Anti-Corrosive Coating Electroactive Antibacterial Coating Electroactive Coating for Sensors and Actuators e and Summary ences B Polymer Coatings for Corrosion Resistance hic Materials <i>N. Suresh Kumar, D. Baba Basha,</i> <i>a Babu Naidu, M.S.S.R.K.N. Sarma,</i> <i>Kumar, Ramyakrishna Pothu and Rajender Boddula</i> duction ucting Polymers Polyaniline (PANI)	160 160 161 162 162 164 166 168 169 175 176 178 178

x Contents

		9.2.3	Poly(3,4-eth	ylenedioxy thiophene): Polystyrene	
			sulfonate (PI	EDOT:PSS)	184
	9.3	Conclu	usion		186
		Refere	ences		186
10	Poly	mer Co	oatings for Fo	ood Applications	189
	Fate	emeh Sa	dat Mostafa	vi and Davood Zaeim	
	10.1	Intro	duction		190
	10.2	The N	Main Objectiv	ves of Coating Food Surfaces	190
		10.2.	1 Controllin	ng Mass Transfer	190
		10.2.2	2 Carrier of	Functional Agents	190
		10.2.3	3 Physical F	Protection	191
		10.2.4	4 Sensorial	Improvement	191
	10.3	Com	ponents of Ec	lible Coatings	191
		10.3.	1 Polysacch	aride	192
			10.3.1.1	Cellulose Derivatives	192
			10.3.1.2	Chitosan	193
			10.3.1.3	Starch and Starch Derivatives	193
			10.3.1.4	Seaweed Extracts	193
			10.3.1.5	Pectin	193
			10.3.1.6	Other Polysaccharides	194
		10.3.2	2 Proteins		194
			10.3.2.1	Collagen and Gelatin	194
			10.3.2.2	Corn Zein	195
			10.3.2.3	Soy Protein	195
			10.3.2.4	Whey Protein	195
			10.3.2.5	Casein	196
		10.3.3	3 Lipids		196
			10.3.3.1	Shellac Wax	196
			10.3.3.2	Carnauba Wax	196
			10.3.3.3	Candelilla Wax	197
			10.3.3.4	Beeswax	197
		10.3.4	4 Additives		197
	10.4	Appl	ication Metho	ods of Edible Coating on Food Surface	198
	10.5	Food	Applications	of Edible Coatings	199
		10.5.	1 Fruits and	l Vegetables	199
		10.5.2	2 Meat and	Meat Products	202
		10.5.3	3 Bakery Pr	oducts	206
		10.5.4	4 Cheese		206

		10.5.5	Nuts		206
		10.5.6	Eggs		207
		10.5.7	Fried Foc	od	208
	10.6	Microe	encapsulation	on of Bioactive Components	
		in Food	d Systems	-	209
		10.6.1	Terminol	ogy	210
		10.6.2	Structure	of Microcapsules	211
		10.6.3	Materials	for Microencapsulation	212
		10.6.4	Microenc	capsulation Techniques	213
			10.6.4.1	Spray Drying	213
			10.6.4.2	Spray Cooling	213
			10.6.4.3	Freeze-Drying	214
			10.6.4.4	Emulsification	214
			10.6.4.5	Extrusion	215
			10.6.4.6	Electro-Hydrodynamic Atomization	216
	10.7	Conclu	isions		217
		Referei	nces		218
11	Biop	olvmers	as Edible (Coating for Food: Recent Trends	233
	Ravio	chandra	n Santhosh	Abhinav Tiwari and Ashish Rawson	
	11.1	Introdu	uction	-	233
	11.2	Need for	or Edible C	Coatings	235
	11.3	Functio	ons of Edib	le Coating	236
	11.4	Materia	als Used for	r Making Edible Coating	237
		11.4.1	Plant Sou	irce	237
			11.4.1.1	Starch	237
			11.4.1.2	Cellulose Derivatives	239
			11.4.1.3	Gum	242
			11.4.1.4	Protein	243
			11.4.1.5	Waxes	247
		11.4.2	Animal S	ource	251
			11.4.2.1	Chitosan	251
			11.4.2.2	Animal Protein	253
			11.4.2.3	Milk Protein: Whey and Casein	256
			11.4.2.4	Shellac	256
	11.5	Compo	osite Coatir	ngs	257
	11.6	Curren	t Trends		259
	11.7	Conclu	ision		261

NTS

12	Polymer Coatings for Pharmaceutical Applications Muhammad Harris Shoaib. Rabia Ismail Yousuf.			275		
	Farri	Farrukh Rafia Ahmed, Fatima Ramzan Ali, Faaiza Oazi.				
	Kamran Ahmed and Farva Zafar					
	12.1	Introdu	iction	·)·· _··j···	275	
	12.2	Polyme	ers for Coat	ting Pharmaceuticals, A Historical	_/ 0	
		Perspe	ctive		276	
	12.3	Types of Coatings Used on Pharmaceutical Drug Products			278	
		12.3.1	Solvent-E	Based Coatings	278	
			12.3.1.1	Sugar Coating	278	
			12.3.1.2	Film Coating	279	
			12.3.1.3	Soluble Film Coating	279	
			12.3.1.4	Insoluble Film Coating	293	
			12.3.1.5	Gastro-Resistant Film Coating	293	
			12.3.1.6	Semi-Permeable Film Coating	300	
			12.3.1.7	Mucoadhesive Coating Polymers	302	
		12.3.2	Solvent-L	ess Coating Procedures	303	
			12.3.2.1	Compression Coating	303	
			12.3.2.2	Hot Melt Coating	304	
			12.3.2.3	Dry Powder Coating	304	
			12.3.2.4	Electrostatic Spray Powder Coating	304	
			12.3.2.5	Supercritical Fluid-Based Coating	305	
			12.3.2.6	Photocurable Coating	305	
		12.3.3	Polymer	Coatings for Micro/Nano Particulate		
			Drug Del	ivery Systems (DDS)	305	
			12.3.3.1	Types of Polymer Coating Systems		
				for Specialized DDS	306	
	12.4	Mecha	nism of Dr	ug Release through Coating Systems	308	
		12.4.1	Diffusion		308	
		12.4.2	Dissolutio	on	308	
		12.4.3	Erosion		309	
		12.4.4	Osmosis		309	
	12.5	Ideal C	haracterist	ics of Coating Polymers	310	
		12.5.1	Solubility		310	
		12.5.2	Viscosity	_	310	
		12.5.3	Permeabi	lity	310	
		12.5.4	Glass Tra	nsition Temperature	310	
		12.5.5	Mechanic	cal Strength	311	
	12.6	Conclu	ision		311	
		Referei	nces		311	

13	Self-	Healing Polymer Coatings	319
	Sathi	sh Kumar Palaniappan, Moganapriya Chinnasamy,	
	Raja	sekar Rathanasamy and Samir Kumar Pal	
	13.1	Introduction	319
	13.2	Self-Healing: Introduction and Benefits	321
	13.3	Summary of Progress in Self-Healing Coating Technology	323
		13.3.1 Coatings for Self-Regeneration	323
		13.3.2 Anti-Corrosion Protective Layer Fractures	325
	13.4	Realistic Frameworks of Self-Healing Polymeric Coatings	327
	13.5	Potential Historic Activity	327
	13.6	Conclusions	328
		References	329
14	Poly	mer Coatings for Biomedical Applications	333
	Tahir	· Farooq, Arruje Hameed, Muhammad Sajid Hamid Akash	
	and l	Kanwal Rehman	
	14.1	Introduction	333
	14.2	Applications in Tissue Engineering	336
	14.3	Polymer Coating for Drug Delivery	339
	14.4	Polymer Coating as Antimicrobial Surfaces	341
	14.5	Conclusion	343
		References	343
15	Anti	microbial Polymer Coating	347
	Kanv	val Irshad, Kanwal Rehman, Hina Sharif	
	and i	Muhammad Sajid Hamid Akash	
	15.1	Introduction	348
	15.2	Mechanism of Action	349
		15.2.1 Passive Action	350
		15.2.2 Active Action	352
	15.3	Factor Affecting Activity of Antimicrobial	352
		15.3.1 Polymers	352
		15.3.2 Molecular Weight	352
		15.3.3 Charge Density	354
		15.3.4 Hydrophilicity	354
		15.3.5 Counter Ions	354
		15.3.6 pH	355
	15.4	Medical Applications	355
	15.5	Conclusion	355
		References	356

16	Char	acteriza	tion Techniques for Polymer Coatings	359
	Hina	Sharif,	Kanwal Rehman, Kanwal Irshad	
	and I	Muhamn	nad Sajid Hamid Akash	
	16.1	Introdu	action	359
	16.2	Polyme	er Coating	360
	16.3 Technique for Coating			361
	16.4	Types of	of Coating	361
		16.4.1	Film Coating	361
		16.4.2	Extended Release Coating	363
		16.4.3	Organic-Inorganic Nanocomposites	
			Hybrid Coating	363
		16.4.4	Enteric Coating	364
	16.5	Charac	terization of Coating System	364
		16.5.1	Water Vapor Permeability	364
		16.5.2	Oxygen Permeability	365
		16.5.3	Thermal Properties	366
			16.5.3.1 Glass Transition Temperature (Tg)	366
			16.5.3.2 Minimum Film Forming Temperature	
			(MFFT)	366
		16.5.4	Mechanical Testing	367
		16.5.5	Polymer Adhesion	367
		16.5.6	Surface Roughness	368
		16.5.7	Film Thickness and Uniformity	368
	16.6	Conclu	ision	368
		Referen	nces	368
17	Polyr	ner Coa	tings for Corrosive Protection	371
	Gobi	nath Vel	u Kaliyannan, Mahesh Kumar	
	Kara	valasu V	elusamy, Sathish Kumar Palaniappan,	
	Moha	an Kuma	ar Anandraj and Rajasekar Rathanasamy	
	17.1	Introdu	action	372
	17.2	Basics	of Corrosion	373
		17.2.1	Essentials of Corrosion	375
		17.2.2	Methods of Coatings	376
			17.2.2.1 Zinc-Rich Coating	376
			17.2.2.2 Inhibitive Coating	376
	17.3	Condu	cting Polymer-Based Coatings for Protection	
		Agains	t Corrosion	377
		17.3.1	Chemical Oxidative Polymerization Technique	378
		17.3.2	Electro-Chemical Oxidative	
			Polymerization Technique	379

	17.4	Synthes	sis of Conducting Polymer Commonly Used in	
		Protect	ion Against Corrosion	381
		17.4.1	Synthesis of Conducting Polymer: PANI	381
		17.4.2	Synthesis of Conducting Polymer: PPy	383
		17.4.3	Synthesis of Conducting Polymer: PTh	385
	17.5	Perform	nance Improvement and Bulk Modifications of	
		Condu	cting Polymers	385
		17.5.1	Doping	386
		17.5.2	Layering	386
		17.5.3	Copolymerization	386
	17.6	Condu	cting Copolymer Composites and Nanocomposites	387
	17.7	Summa	ary of Conducting Polymers-Based	
		Protect	ive Coatings	388
	17.8	Conclu	sions	389
		Referer	nces	389
18	Polyn	ner Coa	ting for Industrial Applications	397
	Moga	napriya	Chinnasamy, Rajasekar Rathanasamy, Sathish	
	Kuma	r Palani	appan, Mahesh Kumar Karavalasu Velusamy	
	and S	amir Ku	mar Pal	
	18.1	Introdu	action	397
	18.2	Polyme	er Coating in Oil and Gas Industry	398
	18.3	Polyme	eric Coatings for Tribo-Technical Applications	400
	18.4	Polyme	er Coating for Drug Delivery	402
	18.5	Polyme	er Coating for Corrosion Protection	403
	18.6	Polyme	er Coating for Antibacterial Activity	404
	18.7	Polyme	er Coating for Micro Bit Storage	406
	18.8	Polyme	er Coating for Micro Batteries	407
	18.9	Polyme	er Coating for Biomedical Applications	407
	18.10	Polyme	er Coating for Pipe Line Applications	409
	18.11	Conclu	sions	410
		Referer	nces	410
19	Form	ulations	s for Polymer Coatings	415
	Malle	sh Kura	kula, N. Raghavendra Naveen	
	and K	Thushwa	ant S. Yadav	
	19.1	Introdu	action	416
	19.2	Film C	oating	416
		19.2.1	Polymers for Film Coating	416
		19.2.2	Plasticizer	417
		19.2.3	Polymer-Plasticizer Compatibility	417
		19.2.4	Mechanism of Film Formation	418

19.3	Functions of the Polymeric Coating			419
	19.3.1 Application of Film Coating in Modified Release			
		System (F	stem (Enteric Release)	
	19.3.2	Liposomal Coating		422
	19.3.3	Aerosol Coating		
19.4	Polymeric-Coating Approaches to Targeted Colon Delivery			424
	19.4.1 Enzymatically Degradable Film Coatings [64]			430
		19.4.1.1	Film Coatings Based on Naturally	
			Occurring Polysaccharides	430
		19.4.1.2	Film Coating on the Basis of Synthetic	
			Azo Polymers	430
	19.4.2	pH-Sensitive Film Coatings		431
		19.4.2.1	Film Coating on Basis of Enteric	
			Solubility of Polymers	431
		19.4.2.2	Film Coatings on the Basis of Acid	
			Solubility of Polymers	431
19.5	Natural Polymers Applications in Modified Release			
	Dosage Forms			431
19.6	Application of Polymer Coating in Biomedicine			432
19.7	Pellet Coating (Film Coating and Dry Coating)			433
	19.7.1 Pellets by Solution/Suspension Layering			433
	19.7.2 Dry Coating			436
19.8	Conclusion			437
	References			437
Index				445

Preface

Polymer coatings are thin polymer films that are applied to flat surfaces or irregular objects. Protective and decorative layers can be served by these coatings. They can be used as functional coatings with corrosion inhibitors or for decorative purposes like in paints. Polymeric coatings are known to be made of organic materials. However, they may contain metallic or ceramic grains to enhance endurance, properties or appearance. Polymeric coatings can be obtained using natural and synthetic rubber, urethane, polyvinyl chloride, acrylic, epoxy, silicone, phenolic resins or nitrocellulose, etc. There is a wide range of fabrication methods to design and construct polymer-coated materials. Compared to conventional coatings, they offer efficient and cost-effective coatings, facile fabrication methods with excellent properties such as corrosion, wear, and heat resistance, higher mechanical strength, and additional benefits, including good chemical and blocking resistance, and excellent scratch/ abrasion resistance. Besides which, high gloss to matt looks, soft-touch effect, no color chage after UV exposure, excellent adhesion on metal and plastics, short drying time, fast hardness development, and easy formulation are other advantages of these coatings. Polymer coatings have various applications in the field of painting, storage media, semiconductors, optical devices, fluorescent devices, etc., and interest in them has increased due to their applications in areas such as electronics, defense, aeronautical and automotive industries.

This edition of *Polymer Coatings: Technology and Applications* explores the cutting-edge technology of polymer coatings. It discusses fundamentals, fabrication strategies, characterization techniques, and allied applications in fields such as corrosion, food, pharmaceutical, biomedical systems and electronics. It also discusses a few new innovative self-healing, antimicrobial and superhydrophobic polymer coatings. Subsequently, current industrial applications and possible potential activities are also discussed. This

xviii Preface

book is an invaluable reference guide for engineers, professionals, students and faculty members working in areas such as coatings, polymer chemistry, and materials science and engineering. Based on thematic topics, this edition contains the following eighteen chapters:

Chapter 1 provides an up-to-date account of fabrication methods for polymer coatings from the basic science to the latest innovations. The techniques which are described and discussed include blade coating, dip coating, spray coating, thermal spray coating, pulsed laser deposition, plasma polymerization, flow coating, spin coating, sol-gel and grafting.

Chapter 2 includes the different fabrication methods of organic/inorganic coating, namely, sol-gel method, cold spray technique, chemical vapor deposition, physical vapor deposition, thermal spray coating, electroplating deposition and electroless deposition. The classification of different coating methods for various organic/inorganic matrices and nanofillers are reported in detail.

Chapter 3 describes various eco-friendly dry powder coating techniques explored in the formulation and development of dry powder inhalers. Additionally, the chapter also includes a segment detailing the process analytical technology techniques, force controlling agents, implications in inhaler device coating and use of computational fluid dynamics in coating technology.

Chapter 4 first introduces the growth of bioinspired superhydrophobic coatings. Then, several theoretical backgrounds are discussed briefly. Afterwards, various methods are considered relating to the importance of creating chemical and physical textures on the surface. Additionally, the development of superhydrophobic and self-cleaning coatings with added nanoparticles are also presented.

Chapter 5 first investigates the nature (substrate-substance) and applications of superhydrophobic coatings. Afterwards, superhydrophobic coating applications are divided into three major categories of restrictive attributes, self-cleaning and smart attributes. All applications of hydrophobic coatings which have been examined in several studies are discussed.

Chapter 6 provides a brief overview of adsorptive polymer coatings, their techniques and a comprehensive comparison. Moreover, adsorptive polymer

coating applications in various fields are also discussed. Furthermore, a future perspective of existing challenges provides a better direction and understanding for overcoming these challenges in coming days.

Chapter 7 deals with the formulations and chemistry of polyurethane (PU) coatings, and also provides an insight into the development of PU over the conventional coatings. A detailed discussion of the advantages of PU coatings and their future scope in industry is also presented.

Chapter 8 emphasizes a unique type of polymer coatings based on electroactive material. Fabrication, essential characteristics, and potential applications of electroactive polymer coatings are discussed.

Chapter 9 deals with the importance of conducting polymer coatings in the field of corrosion resistance.

Chapter 10 discusses the main objectives, materials and techniques used for encapsulating food components or coating food surfaces such as fruits and vegetables, meat and meat products, eggs, cheese, nuts, and fried food. Biopolymers including polysaccharides, proteins, and waxes are the main ingredients used for this purpose.

Chapter 11 discusses the scope of biopolymers as edible coating in food products. The chapter emphasizes the various types of raw materials used for preparing edible coating. The role of edible packaging in microbial spoilage, mechanical damage, and consumer acceptance of food is discussed along with its advantages and limitations and selection criteria as edible coating for different varieties of food products.

Chapter 12 addresses the wider aspects of pharmaceutical coatings using different types of polymers and their applications in the development and manufacturing of conventional and modified release drug delivery systems. A historical perspective on pharmaceutical coatings along with their physical attributes and characterization are also discussed, which will guide researchers and pharmaceutical manufacturers to their appropriate selection.

Chapter 13 summarizes the critical characteristics of self-healing polymeric coatings. Progress in existing self-healing coating methods and realistic frameworks of polymeric coatings are presented. Surface self-regeneration

XX PREFACE

and anti-corrosive protective layer fractures are discussed. Issues related to the transition from laboratories to valid industrial application of these self-healing technologies are addressed.

Chapter 14 describes various methods that have revolutionized the role of this fascinating strategy in biological science especially in biomedical applications, notably infectious therapy, drug delivery system for therapeutic agent and protective layer for implants and biomedical devices. The major focus is given to some key applications which are trendsetting for surface functionalization of implants and biomedical materials.

Chapter 15 describes the role of polymers against various microorganisms such as bacteria, protozoans and fungi. These polymers mimic the action of antimicrobial peptides which are utilized by immune systems of such living organisms to kill the microorganism. The main purpose of antimicrobial coating is to combat antimicrobial resistance and infections.

Chapter 16 discusses in detail the various processes and techniques that are most commonly used for the coating of polymers which protect active pharmaceutical ingredient (API) against environmental hazards and bodily fluids, protecting the body from adverse effects of API and modifying the release of API.

Chapter 17 discusses the different conducting polymer coatings used over metal surfaces for corrosion protection along with the role of conducting polymers and various coating techniques. Additionally, this chapter summarizes the performance improvement and bulk modifications of conducting polymers and extensive studies on the protective coating of conductive polymer materials are discussed.

Chapter 18 presents extensive research studies reported by worldwide scientists and specialists in the area of polymer coatings for industrial applications. New and emerging industrial applications are discussed, including microsystems, oil and gas industries, electronics, biomedical systems, pipeline, automotive industries, micro bit storage systems, anti-corrosion and antibacterial coatings.

Chapter 19 discusses recent advancements in the usage of polymers for coating of different dosage forms such as tablets, capsules, implants,

nanoparticles, and liposomes. Additionally, mechanisms of polymeric film formation and applications of polymer coatings in the different areas of biomedicine are clearly explained as are the application of different polymers in various coating functions.

> Editors Inamuddin Rajender Boddula Mohd Imran Ahamed Abdullah M. Asiri February 2019

Hüsnügül Yilmaz Atay

1

İzmir Katip Çelebi University, Department of Material Science and Engineering, Çiğli İzmir, Turkey

Abstract

Polymer coatings mean the top layer applied on any substance for purposes like protection and decoration. It is possible to apply to synthetic materials as well as metals and ceramics. They are resistant to high temperatures, such as up to about 280°C. The polymeric coating process comprises applying a polymeric material onto a supporting substrate and coating the substrate surface. Polymeric coatings can be obtained using natural and synthetic rubber, urethane, polyvinyl chloride, acrylic, epoxy, silicone, phenolic resins or nitrocellulose, etc. There are a wide range of fabrication methods to design and construct polymer-coated materials. In this chapter, the techniques are described and discussed including blade coating, spray coating, spin coating, sol–gel, dip coating, and grafting. The key point is provided to highlight current methods and recent advances in polymer coating fabrication techniques.

Keywords: Polymer coatings, fabrication methods, blade coating, spray coating, thermal spray coating, pulsed laser deposition, plasma polymerization, flow coating, spin coating, sol–gel, dip coating, and grafting

1.1 Introduction

Polymer coatings are thin polymer films that are applied to flat surfaces or irregular objectives. Protective and decorative layers can be served by these coatings [1]. They can be functional coatings such as adhesives or photographic films. They can be used as corrosion inhibitors or for decorative purposes like paints. Moreover, for modifying the surfaces, they can be utilized such as paper coatings or hydrophobic coatings.

Email: hgulyilmaz@gmail.com

Inamuddin, Rajender Boddula, Mohd Imran Ahamed and Abdullah M. Asiri (eds.) Polymer Coatings: Technology and Applications, (1–20) © 2020 Scrivener Publishing LLC

2 POLYMER COATINGS

Polymeric coatings are known to be made of organic materials. However, they may contain metallic or ceramic grains to enhance endurance, property, or appearance [2]. They offer various properties and additional benefits, for instance, very good chemical resistance, very good blocking resistance, and excellent scratch and abrasion resistance. Besides, high gloss to matt looks, soft touch effect, noncoloring after UV exposure, excellent adhesion on metal and plastics, short drying time, fast hardness development, and easy formulation are other acquirements of those coatings [3].

In general, polymer coatings are architected to manufacture a film of a kind of polymer. The process should be as fast as possible. The thickness is typically 1–100 m. The type of coating method varies according to the thickness of the desired covering, the rheology of the running, and the velocity of the web [2].

1.1.1 Starting Liquid Types

Before passing through to the coating methods, it is better to explain starting liquid types to obtain an impermeable and indiscrete polymer coating deposit. Three different types of starting liquids can be used to achieve this output. These are indicated as: polymer solutions, monomer liquids, and polymer latexes [2].

1.1.1.1 Polymer Solutions

It is necessary to decrease the viscosity of the polymer to make it a stickable fluid. For this purpose, the polymer is decomposed in a dissolvent. The fluidity property of the solution is regulated by varying the amount of solvent in the solution. The resulting fluid is covered onto the substrate. The dissolvent should then be removed by a drying operation. The glass transition temperature of the dispersion rises with removal of the solvent. If the drying temperature is smaller than the glass transition temperature, the coating passes to the solid phase. However, when the drying temperature is higher than room temperature, it is seen that solidification or hardening continues during the cooling of the coating. On the other hand, some of the polymers can crystallize when the dissolvent is removed. While some are cooling, they form semi-crystalline final polymer coatings [2].

Generally, most polymers are insoluble in water and organic solvents are used for dissolution. The solvent is selected in terms of both its ability to dissolve the polymer and its influence on the drying step. Due to the need to add different additives and reduce the cost, it may be necessary to use more than one volatile solvent [2].

The use of coatings produced with polymer solution is favored as they can be applied to a wide variety of polymers at the processing site specifications and formulated according to adjustable properties to produce evaluated properties in the last product. The quantity of polymeric material soluble in a solvent is relatively small. The drying requirement therefore appears as a function of the unit thickness of the coating. On the other hand, there are environmental and safety concerns due to complications related to solvent use. Solvent recycling is another important problem. It is also another disadvantage that flammable solvents need to be captured by expensive driers [2].

1.1.1.2 Liquid Monomers

Many monomers have fluid properties at room temperature. Therefore, there is no need to decrease their flow resistance at the coating process temperature. Also, they can be covered directly without adding any dissolvent. Oligomeric precursors can be said to be in this category. Without the need for a drying operation, the monomer liquids are allowed to solidify by serial curing reactions. Meanwhile, the molecular weight of the covering material rises in the period from progression of curing to the formation of a solid polymer layer. Hardening reactions are initiated by exposing them to energetic sources, for instance, ultraviolet light or electron beams [2].

The most widely used and popular coating material is epoxy in the field. They are not monomers, yet they are formed by a chemical reaction of oligomeric resins with its hardeners. The liquids can also be produced with dissolvent to enhance interoperability. Acrylates as liquid monomers are widely used for ultraviolet curing [2].

Monomer fluids do not require much drying step because they contain very little solvent. Therefore, they are quite attractive ways for coatings. The final coating properties (e.g., density of crosslinking) can be managed at the curing stage using parameters such as temperature, ultraviolet density, or the resin chemistry. Nevertheless, in some cases, the materials used in functional polymer solution coatings may be less expensive than monomers and initiating agents. Besides, due to the high degree of crosslinking, the final product can sometimes be brittle [2].

4 POLYMER COATINGS

1.1.1.3 Polymer Latex

A latex can be defined as the dissipation of polymeric grains in water. In the case of lower water solubility of the polymeric materials having functional properties, the latex paths supply an environmentally suitable solution for forming enduring covering. Grains varying in size from ~ 10 nm to 1 umm can be manufactured from various polymeric chemicals by emulsion polymerization. It is easy to use, especially because they are synthesized in dispersion form and can be stabilized in the process. For some special applications, latex may also be formulated with other phases, such as ceramic grains [2].

The drying of the latex suspensions appears to be slightly different from the drying of the hard colloidal grains. This process is known as "film formation" depicted in Figure 1.1. Because water is removed, the grains go into the "consolidation" step and become more concentrated in suspension. When the drop time is over, surface tension, capillary, and van der Waals forces begin to pull the grains toward each other. Those forces must be powerful sufficiently to allow the grains to flatten at the grain–grain contact points. Consequently, the pores between the particles become smaller. This stage is called "compression." The final stage is the "union" stage. Here, the polymer chains boil the particles together and transcend the boundaries between the grains. With that process, a finalized covering is formed that lacks gaps that were once between the individual particles [2].

Water is a liquid medium that can be used in latex coatings. Thus, monomer and solvent may be an eco-friendly alternative to other coatings used.

Figure 1.1 Latex film formation stages [2].

Various coatings, such as paints and varnishes, seem to start as latex dispersions. On the other hand, it is pricey to transport and purchase latexes as raw material on a commercial scale. Besides, drying of water is an operation that requires more energy [2–4].

1.1.2 Polymer Coating Methods

Coatings made of polymeric materials can provide many different surfaces: metallic, ceramic, or synthetic materials, using a number of different techniques [5]. They must adhere well to the substrate. They should also not be readily susceptible to moisture, salt, heat, or different kind of chemicals. Generally, the following properties are required for a good coating film [3]:

- Water-based resins. Low- or zero-volatile organic compounds (VOC)
- Very good stain and chemical resistance
- Very good blocking resistance
- Excellent scratch and abrasion resistance
- High gloss to matt looks
- Soft touch effect
- Nonyellowing after UV exposure
- Excellent adhesion on metal and plastics
- Carbodiimides for 2K systems

Figure 1.2 Fabrication techniques for polymer coatings.

6 POLYMER COATINGS

- Short drying time, hence fast hardness development
- Easy formulation

Applied coating methods can affect the product quality, and thus the coating methods are important to obtain desired properties. Different fabrication methods are demonstrated in Figure 1.2.

1.1.2.1 Blade Coating

The blade coating can be defined as a process in which a certain amount of covering material is applied to the underside and the excess is removed by a measuring blade to obtain the desired coating thickness [6, 7]. This coating method has several advantages for obtaining a good coating film. Homogeneity of the coating area, small amount of material waste, prevention of intermediate layer melting, roll-to-roll production compliance, and economic use of the material [8–10]. In this method, fast drying process will prevent the slowing of the manufacturing process by solvent annealing [10]. Control of the thickness can be adjusted by controlling manufacturing conditions such as sol concentration, blade gap, and blade covering velocity [8].

1.1.2.2 Spray Coating

Spray coating technique is a process method in which the printing material (ink) is constrained through a nozzle and thereby forming a thin aerosol [11]. In this process, the performance of polymer solar cells seems to be limited by certain disadvantages, for instance, isolated droplets, nonuniform surfaces, and holes at some points. Regarding the process parameters, the flow rate, the pressure, the substrate temperature, the density of the mixing dissolution, the spraying time, the distance between the sample, and the air brush can be listed [6].

1.1.2.2.1 Nozzle-to-Substrate Distance

The distance between the nozzle and the surface is considered to be one of the process parameters, since it has a big effect on the morphology of the deposited part in the spray coating. Many studies were performed to examine and achieve the best distance of the nozzle and surface for the active coating. Vak *et al.* [12] found three areas between the air brush nozzle and the substrates, which were "wet," "intermediate," and "dry." They then concluded that the perfect linear control distance was in the "intermediate-region." This result is described as the spray time function.