ADVANCES IN METALLODRUGS
Preparation and Applications in Medicinal Chemistry

Edited by Shahid-ul-Islam, Athar Adil Hashmi, Salman Ahmad Khan
Advances in Metallodrugs
Emerging Trends in Medicinal and Pharmaceutical Chemistry

Series Editor: Shahid-ul-Islam and B.S. Butola

The Emerging Trends in Medicinal Chemistry and Pharmacology Series is intended to provide recent trends, the state-of-the-art, and advancements particularly in the rapidly growing fields of drug design and synthesis, medicinal natural products, phytochemistry, pharmacology and applications. With a focus on generating means to combat different human diseases, the series addresses novel strategies and advanced methodology to circumvent the invasion from microbial infections and to ameliorate the effects caused by dreadful diseases. Each volume from the series will provide high-level research books covering theoretical and experimental approaches of medicinal natural products, antimicrobial drugs, chemotherapeutic agents, anticancer agents, phytochemistry and pharmacology. The volumes will be written by international scientists for a broad readership researchers and students in biology, chemistry, biochemistry, medicinal science, chemical and biomedical engineering.

Publishers at Scrivener
Martin Scrivener (martin@scrivenerpublishing.com)
Phillip Carmical (pcarmical@scrivenerpublishing.com)
Advances in Metallodrugs

Preparation and Applications in Medicinal Chemistry

Edited by
Shahid-ul-Islam, Athar Adil Hashmi and Salman Ahmad Khan

WILEY
Contents

Preface xiii

1 Metallodrugs in Medicine: Present, Past, and Future Prospects 1
 Intiyaz Yousuf and Masrat Bashir
 1.1 Introduction 2
 1.2 Therapeutic Metallodrugs 6
 1.2.1 Anticancer Metallo drugs 6
 1.2.1.1 Mechanism of Anticancer Action 7
 1.2.2 Antimicrobial and Antiviral Metallo drugs 15
 1.2.2.1 Antimicrobial Metallo drugs 15
 1.2.2.2 Antiviral Metallo drugs 16
 1.2.3 Radiopharmaceuticals and Radiodiagnostic Metallo drugs 17
 1.2.4 Anti-Diabetic Metallo drugs 19
 1.2.5 Catalytic Metallo drugs 22
 1.3 Future Prospects 23
 1.4 Conclusion 25
 References 26

2 Chemotherapeutic Potential of Ruthenium Metal Complexes Incorporating Schiff Bases 41
 Manzoor Ahmad Malik, Parveez Gull, Ovas Ahmad Dar, Mohmmad Younus Wani, Md Ikbal Ahmed Talukdar and Athar Adil Hashmi
 2.1 Introduction 42
 2.2 Schiff Base Complexes of Ruthenium as Anticancer Agents 43
 2.3 Conclusion 63
 References 64

3 Role of Metallodrugs in Medicinal Inorganic Chemistry 71
 Manish Kumar, Gyanendra Kumar, Arun Kant and Dhanraj T. Masram
 3.1 Introduction 72
3.2 Platinum Anticancer Drugs
 3.2.1 Nucleophilic Displacement Reactions in Complexes of Platinum 80
 3.2.2 Mode of the Interaction of Cisplatin Species With Nitrogen Donors of DNA Strand 80
 3.2.3 Systemic Toxicity of Cisplatin 82
3.3 Copper-Based Anticancer Complexes 82
 3.3.1 Copper is Essential for Health and Nutrition 82
 3.3.2 Healthcare Applications of Copper 83
 3.3.3 Copper and Human Health Disorders 83
 3.3.3.1 Wilson’s Disease (WD) 84
 3.3.3.2 Menkes’ Disease 85
 3.3.4 Role of Copper Complexes as Potential Therapeutic Agents 85
 3.3.4.1 Thiosemicarbazones-Based Complexes 86
 3.3.4.2 Quinolones-Based Copper Complexes 88
 3.3.4.3 Naphthoquinones 88
3.4 Zinc Anticancer Complexes 89
 3.4.1 Biologically Importance of Zinc 90
 3.4.2 Schiff Base Chemistry 92
 3.4.2.1 Schiff Base and Their Metal Complexes 92
 3.4.3 Zinc-Based Complexes 93
 3.4.4 Top Food Sources of Zinc 94
 3.4.5 Role of Zinc in Human Body 97
 3.4.6 Zinc as a Health Benefit 98
 3.4.7 Zinc in Alloy and Composites 100
 3.4.8 Zinc Supplementation as a Treatment 100
 3.4.8.1 Zinc Deficiency 101
 3.4.8.2 Zinc Toxicity 102
 3.4.8.3 Zinc and Viral Infections 102
 3.4.9 Gastrointestinal Effects 103
3.5 Future Prospects of Metallodrugs 103
References 104
4 Ferrocene-Based Metallodrugs 115
 Hamza Shoukat, Ataf Ali Altaf and Amin Badshah
 4.1 Introduction 115
 4.2 Ferrocene-Based Antimalarial Agents 117
 4.2.1 Mechanism of Action 118
 4.3 Ferrocene-Based Antibacterial and Antifungal Drugs 118
 4.3.1 Schiff Base Derived Ferrocene Conjugates as Antibacterial Agents 119
4.3.2 Ferrocenyl Guanidines as Antibacterial and Antifungal Agents 121
4.3.3 Sedaxicene as Antifungal Agents 122
4.4 Ferrocene-Based Anti-Tumor and Anti-Cancerous Drugs 123
4.4.1 Ferricenium Salts as Anti-Tumor Agents 124
4.4.2 Ferrocenylalkylazoles Active Anti-Tumor Drugs 124
4.4.3 Ferrocene Conjugated to Peptides for Lung Cancer 125
4.4.4 Ferrocenylalkyl Nucleobases Potential Anti-Cancerous Drugs 126
4.4.5 Ferrocenyl Sub-Ordinates of Illudin-M 126
4.4.6 Ferrocenyl Derivatives of Retinoids Potential Anti-Tumor Drug 127
4.4.7 Targeting Breast Cancer With Selective Ferrocene-Based Estrogen Receptor Modulators (SERM) 128
4.5 Conclusion 131
4.6 Future of Ferrocene-Based Drugs 131
References 132

5 Recent Advances in Cobalt Derived Complexes as Potential Therapeutic Agents 137
Manzoor Ahmad Malik, Ovas Ahmad Dar and Athar Adil Hashmi
5.1 Introduction 137
5.2 Cobalt Complexes as Potential Therapeutic Agents 138
5.3 Conclusion 153
References 154

6 NO-, CO-, and H₂S-Based Metallopharmaceuticals 157
R. C. Maurya and J. M. Mir
6.1 Introduction 158
6.2 Signaling Molecules: Concept of “Gasotransmitter” 160
6.2.1 Therapeutic Applications of NO, CO, and H₂S 162
6.2.1.1 Exogenous NO Donating Molecules 163
6.3 NO Donors Incorporated in Polymeric Matrices 167
6.3.1 Metal Nitrosyl Complexes 168
6.3.1.1 Sodium Nitroprusside (SNP) 168
6.4 Dinitrosyl Iron Thiol Complexes (DNICs) 170
6.5 Photoactive Transition Metal Nitrosyls as NO Donors 170
6.6 Exogenous CO Donating Molecules 173
6.7 H₂S Donating Compounds 176
6.7.1 H₂S Gas: A Fast Delivering Compound 176
Contents

6.7.2 Sulfide Salts: Fast Delivering H\(_2\)S Compounds 177
6.7.3 Synthetic Moieties 178
 6.7.3.1 Slow-Delivering H\(_2\)S Compounds 178
 6.7.3.2 H\(_2\)S-Releasing Composite Compounds 179
6.7.4 Naturally Occurring Plant Derived Compounds 182
 6.7.4.1 Garlic 182
 6.7.4.2 Broccoli and Other Cruciferous Vegetables 184
6.8 Concluding Remarks and Future Outlook 185

References 186

7 Platinum Complexes in Medicine and in the Treatment of Cancer

Rakesh Kumar Ameta and Parth Malik

7.1 What is Cancer? 203
 7.1.1 Characteristic Features of Cancer Cells 205
 7.1.2 Definition of Anticancer Compound 206
 7.1.3 Anticancer Attributes of Pt Complexes 207
 7.1.4 Native State Behavior of Pt Complexes 208
7.2 Compatibility of Pt Compounds in Cancer Treatment 209
 7.2.1 Significance of DNA as Primary Target 209
 7.2.2 Kinetics of DNA Binding Activities 210
 7.2.3 Structural and Regioselectivity of DNA Adducts 210
 7.2.4 Studies on Action Mechanism 211
7.3 Pt Complexes as Anticancer Drugs 214
 7.3.1 DNA-Coordinating Pt(II) Complexes 214
 7.3.2 DNA-Covalently Binding Pt(II) Complexes 219
 7.3.3 Targeted Pt(II) Complexes 222
 7.3.4 Pt(IV) Prodrugs 224
 7.3.5 Multiple Action of Pt(IV) Prodrugs 225
 7.3.6 Targeted Pt(IV) Prodrugs 228
 7.3.7 Photodynamic Killing of Cancer Cell by Pt Complexes 231
7.4 Conclusion 231

Acknowledgments 232
References 232

8 Recent Advances in Gold Complexes as Anticancer Agents

Mohammad Nadeem Lone, Zubaid-ul-khazir, Ghulam Nabi Yatoo, Javid A. Banday and Irshad A. Wani

8.1 Introduction 248
8.2 Evolution of Metal Complexes as Anticancer Agents 250
8.3 Gold Complexes 251
 8.3.1 Complexes with Nitrogen Donor Ligands 252
 8.3.2 Complexes with Sulphur Donor Ligands 254
 8.3.3 Complexes with Phosphorus Donor Ligands 255
 8.3.4 Complexes with Sulphur-Phosphorus Donor Ligands 256
 8.3.5 Organometallic Gold Complexes 259
 8.3.6 Miscellaneous 260
8.4 Nano-Formulations of Gold Complexes 262
8.5 Future Challenges and Perspectives 263
8.6 Conclusion 265
Acknowledgements 266
References 266

9 Recent Developments in Small Molecular HIV-1 and Hepatitis B Virus RNase H Inhibitors 273
Fenju Wei, Dongwei Kang, Luis Menéndez-Arias, Xinyong Liu and Peng Zhan
9.1 Introduction 273
 9.1.1 Activity and Function of HIV and HBV RNases H 274
 9.1.2 The Metal-Chelating RNase H Active Site 274
9.2 RNase H Inhibitors and Strategies in the Discovery of Active Compounds 276
 9.2.1 High-Throughput Screening 276
 9.2.2 Design Based on Pharmacophore Models 278
 9.2.3 Novel Inhibitors Obtained by Using “Click Chemistry” 279
 9.2.4 Dual-Target Inhibitors Against HIV-1 Integrase (IN) and RNase H 280
 9.2.5 Inhibitors Obtained by Using Privileged Fragment-Based Libraries 282
 9.2.6 RNase H Inhibitors in Natural Products 283
 9.2.7 Drug Repurposing Based on Privileged Structures 284
9.3 Conclusion 286
References 287

10 The Role of Metals and Metallodrugs in the Modulation of Angiogenesis 293
Mehmet Varol and Tuğba Ören Varol
10.1 Introduction 294
10.2 Metallodrugs in Anticancer Therapy 297
10.3 Angiogenesis as a Substantial Target of Tumorigenesis 300
10.4 Metals and Metallodrugs in Angiogenesis 302
10.5 Concluding Remarks and Future Prospects 306
References 306

11 Metal-Based Cellulose: An Attractive Approach Towards Biomedicine Applications 319
Kulsoom Koser and Athar Adil Hashmi
11.1 Introduction 320
11.2 History of Cellulose 320
11.3 The Properties and Structure of Cellulose 321
11.4 Modification of Cellulose 322
 11.4.1 Acid Hydrolysis 322
 11.4.2 Oxidation 324
 11.4.3 Esterification 326
 11.4.4 Amidation 331
 11.4.5 Carbamiation 333
 11.4.6 Etherification 336
 11.4.7 Nucleophilic Substitution 339
 11.4.8 Further Modification 341
11.5 Present and Future Medical Applications of Cellulose as Well as Its Components 344
 11.5.1 Cellulose Used as Wound Dressing 344
 11.5.2 Dental Applications 345
 11.5.3 Engineering 346
 11.5.4 Controllable Drug Delivery System 348
 11.5.5 Blood Purification 348
 11.5.6 Wrapping Purpose 350
 11.5.7 Renal Failure 351
11.6 Conclusion 351
References 352

12 Multifunctional Nanomedicine 363
Nobel Tomar, Maroof A. Hashmi and Athar Adil Hashmi
12.1 Introduction 364
12.2 Diagnostics and Imaging 366
12.3 Drug Delivery and Therapy 369
 12.3.1 Drug Delivery by Organic Nanomaterials 369
 12.3.1.1 Liposomal Drug Delivery 369
 12.3.1.2 Polymeric Drug Delivery 371
 12.3.1.3 Proteins and Peptides for Drug Delivery 373
12.3.2 Drug Delivery by Inorganic Nanomaterials 374
 12.3.2.1 Metal and Metal Oxides 374
 12.3.2.2 Au NPs 375
 12.3.2.3 Carbon-Based NPs 375
 12.3.2.4 Silicon-Based Nanostructures for Drug Delivery 378
12.3.3 Photo Therapy 379
 12.3.3.1 Photodynamic Therapy 380
 12.3.3.2 Photothermal Therapy 381
12.3.4 Radiation Therapy 383
12.3.5 Neutron Capture Therapy 384
12.4 Regenerative Medicine 385
12.5 Future Prospects and Conclusion 386
References 387
Index 403
Over the past few decades, medicinal inorganic chemistry as an interdisciplinary sub-area of bioinorganic chemistry has received the growing attention of researchers in the search for promising antimicrobial, antimalarial, antiviral, and antitumor chemotherapeutic agents. An excellent compilation of reports on metal complexes has revealed the potency of metal complexes as better therapeutic agents. Metal-containing drugs have several promising advantages over organic ligands and have gained the trust of researches after the worldwide approval of the drug cisplatin. Their distinct mechanism of action makes them perfect candidates as alternatives to the conventional drugs to which resistance has already been shown. In this direction, a huge number of transition metal complexes have been synthesized and evaluated for their biological profiles.

This book is organized into 12 important chapters that focus on the progress made by metal-based drugs as anticancer, antibacterial, antiviral, anti-inflammatory, and anti-neurodegenerative agents, as well as highlights the application areas of newly discovered metalloids. It can prove beneficial for researchers, investigators, and scientists whose work involves inorganic and coordination chemistry, medical science, pharmacy, biotechnology, and biomedical engineering.

We are indebted to all the authors for their commitment and for bringing their knowledge and professional experience to making this project a reality. Last but not least, the editors would like to thank Mr. Martin Scrivener, President of Scrivener Publishing, USA, who accepted and supported this project.

Shahid-ul-Islam
Athar Adil Hashmi
Salman Ahmad Khan
April 2020
Metallo drugs in Medicine: Present, Past, and Future Prospects

Imtiyaz Yousuf* and Masrat Bashir

Department of Chemistry, Aligarh Muslim University, Aligarh, India

Abstract

Metal coordination complexes on account of their unique properties of metals which includes variable oxidation states, geometry, coordination numbers, redox behavior, and ability to bind to a wide variety of types of ligands offer a versatile platform for the design of novel therapeutic and diagnostic agents. The therapeutic potential of metal ions can be optimized by tethering it to a suitable framework that not only tune but synchronize the organic ligand scaffold to act in concord at the target site. Medicinal inorganic chemistry is a growing interdisciplinary field of pharmaceutical research which involves design of therapeutic and diagnostic agents with emphasis on medicinal use for the treatment of various chronic diseases. The serendipitous discovery of cisplatin, inorganic anticancer drug opened up new prospects in the area of medicinal inorganic chemistry that not only cured cancer but provided a continuous spur towards the development of new metallo drugs that can address the serious challenges in the drug regime. Thus, many metal-based therapeutics and diagnostic agents have been explored extensively for their diverse applications as artificial metalloenzymes, DNA foot-printing agents, and nucleic acid structural probes, etc. Given the premises of metallo drugs in the medicinal field, this chapter focuses on the progress made by metal-based drugs as anticancer, anti-bacterial, anti-viral, anti-inflammatory, and anti-neurodegenerative agents, as well as emphasis on the new strategies to be used in the development of new potential metallo drugs.

Keywords: Medicinal inorganic chemistry, metallo drugs, metal-coordination complexes, therapeutic and diagnostic agents, chronic diseases, drug delivery, prodrugs

*Corresponding author: imtiyazchem@gmail.com
1.1 Introduction

Medicinal inorganic chemistry is an interdisciplinary sub-area of bioinorganic chemistry field which tethers the applications of inorganic chemistry and biological disciplines, thereby investigate the intriguing properties of metal ions, their complexes, and other metal binding compounds for the therapeutic and diagnostic purposes [1–6]. Conceptually, the field of medicinal inorganic chemistry includes the biomimetic chemistry of metal ions in metalloproteins [7, 8], identification of metal ions in pathogenic protein misfolding [9, 10], functions of endogenous and exogenous metal ions at the molecular level [11, 12], and the homeostasis of metal ions in living systems [13]. The use of several metals (Cu, Au, Ag, Hg, and As) can be traced back to ancient civilizations (Mesopotamia, Egypt, India, and China) [14] with the recognition by the Egyptians who used copper to sterilize water with an understanding of disinfection and the Chinese and Arabs utilized gold in the treatment of many chronic diseases [15]. Zinc was found to promote healing of wounds while mercurous chloride was used as a diuretic. Paul Ehrlich the “founder of chemotherapy” developed arsenical, Salvarsan, as a drug for the treatment of Syphilis in early twentieth century (Figure 1.1) [16]. Thus, a link between the discovery of a new elements and their application into the medicinal armamentarium (therapeutic and diagnostic) has been exploited since antiquity (Table 1.1).

Numerous metal ions and their complexes have been routinely administered to patients for therapeutic and diagnostic benefit such as platinum and ruthenium complexes in cancer therapy [17–20], gold complexes as anti-arthritis agents [21, 22], cobalt complexes as antiviral [23], and gadolinium and technetium as magnetic resonance imaging (MRI) contrasting agents [24–26] (Figure 1.2).

Metal ions can serve many important functions in the biological systems; (i) functional role, i.e., the biological activity is due to direct binding

Figure 1.1 Structures of arsenic-based therapeutic drug, salvarsan (3-amino-4-hydroxyphenyl-arsenic(III) compounds).
Table 1.1 The use of metal salts and their compounds as therapeutic and diagnostic agents.

<table>
<thead>
<tr>
<th>Metal</th>
<th>Metal-based salt/compound</th>
<th>Therapeutic/diagnostic use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>Silver sulphadiazine</td>
<td>Antibacterial</td>
</tr>
<tr>
<td>Al</td>
<td>Al(OH)₃</td>
<td>Antacid</td>
</tr>
<tr>
<td>As</td>
<td>Salvarsan, Melarsen, Tryparsamide</td>
<td>Antimicrobial</td>
</tr>
<tr>
<td>Au</td>
<td>Gold(I) thiolates</td>
<td>Antitumour</td>
</tr>
<tr>
<td></td>
<td>Auranofin</td>
<td>Antiarthritis</td>
</tr>
<tr>
<td>Ba</td>
<td>Barium sulphate</td>
<td>X-ray contrast</td>
</tr>
<tr>
<td>Bi</td>
<td>Bismuth subsalicylate, colloidal bismuth citrate</td>
<td>Antacid, antiulcer</td>
</tr>
<tr>
<td>Cu</td>
<td>Copper histidine complex</td>
<td>Menkes disease</td>
</tr>
<tr>
<td></td>
<td>Casiopeinas</td>
<td>Anticancer</td>
</tr>
<tr>
<td>Co</td>
<td>Coenzyme B₁</td>
<td>Supplement</td>
</tr>
<tr>
<td></td>
<td>Doxovir</td>
<td>Antiviral</td>
</tr>
<tr>
<td>Fe</td>
<td>Sodium nitroprusside</td>
<td>Vasodilator</td>
</tr>
<tr>
<td></td>
<td>Fe(III) desferrioxamine chelates</td>
<td>Antimicrobial</td>
</tr>
<tr>
<td>Gd</td>
<td>Gd metallotexaphyrin (Magnevist, Dotarem)</td>
<td>MRI contrast agent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Radiopharmaceuticals</td>
</tr>
<tr>
<td>Hg</td>
<td>Mereurochrome</td>
<td>Antiseptic</td>
</tr>
<tr>
<td>Li</td>
<td>Li₂CO₃</td>
<td>Manic depression</td>
</tr>
<tr>
<td>Pt</td>
<td>Cisplatin, carboplatin, oxaliplatin, nedaplatin etc</td>
<td>Anticancer</td>
</tr>
<tr>
<td>Ru</td>
<td>NAMI-A, KP10109, RAPTA-C etc</td>
<td>Anticancer</td>
</tr>
<tr>
<td>Sb</td>
<td>Pentostam, N-methylglucamine antimonate</td>
<td>Antileishmanial</td>
</tr>
<tr>
<td>Tc</td>
<td>⁹⁹ᵐ⁹⁹ᵐ₇₀Tc (V) propyleneamine oxime</td>
<td>Diagnostic imaging</td>
</tr>
<tr>
<td>Ti</td>
<td>Titanocene dichloride, bis(β-diketonato) Ti(IV)</td>
<td>Anticancer</td>
</tr>
</tbody>
</table>

(Continued)
Table 1.1 The use of metal salts and their compounds as therapeutic and diagnostic agents. (Continued)

<table>
<thead>
<tr>
<th>Metal</th>
<th>Metal-based salt/compound</th>
<th>Therapeutic/diagnostic use</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>Bis(maltolato) oxovanadium(IV)</td>
<td>Antidiabetic</td>
</tr>
<tr>
<td></td>
<td>Bis(glycinato) oxovanadium (IV)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bis(methylpicolinato oxovanadium (IV)</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>PolyoxometalJates</td>
<td>Anti-HIV activity</td>
</tr>
<tr>
<td>Zn</td>
<td>ZnO</td>
<td>Skin ointment</td>
</tr>
<tr>
<td></td>
<td>Zn(II)bicyclam complexes</td>
<td>Antiviral</td>
</tr>
<tr>
<td></td>
<td>Zinc citrate/sulphate</td>
<td>Supplement</td>
</tr>
<tr>
<td>Zr</td>
<td>Zr(IV) glycinato</td>
<td>Antiperspirant</td>
</tr>
</tbody>
</table>

Figure 1.2 Prominent examples of metal-based drug in medicinal inorganic chemistry: (a) Cisplatin, (b) MS–325, (c) Darinaparsin, and (d) Auranofin.
of the metal fragment to the target site [27], (ii) structural role, i.e., the shape of the complex is determined and binding to the biological target occurs through non-covalent interactions [28–30], (iii) act as a carrier for active ligands that are delivered in vivo [31, 32] and protect the ligand before its delivery at the target site, (iv) metal complexes behave as a catalyst in vivo by the production of reactive oxygen species (ROS) that cause cell damage [33, 34], and (v) metal complexes which are photoactive can act as photosensitizers [35, 36]. Metal ions once introduced into a bio system for therapeutic or diagnostic effect can also be removed from back by the judicious use of the chelating ligands (chelation therapy). Many proteins and enzymes bind one or more metal ions to perform their functions where the metal ion is involved in the catalytic mechanism or stabilizes the tertiary and quaternary structure of proteins.

Whereas the small organic drug molecules rely purely on carbon, their binding geometry in space is dictated by the hybridization, viz., sp (linear), sp² (trigonal-planar), and sp³ (tetrahedral) as compared to the diverse geometry in 3D space open to metal-based drugs [37]. Besides linear, square planar, and tetrahedral geometries, pyramidal, trigonal bipyramidal, and octahedral shapes can be created and even higher coordination numbers and geometries with larger metal ions are possible, all of these geometries exhibit a tremendous importance for biological phenomena that allow the fine-tuning of their chemical reactivity in terms of both kinetics (rates of ligand exchange) and thermodynamics (strengths of metal-ligand bonds, redox potentials, etc). Not only the metal but also the ligands can play important roles in biological activity, ranging from outer-sphere recognition of the target site to the activity of any released ligands and ligand centered redox processes. Modification of substituents or ligands around the metal center, thus modulates drug entities to perform manifold functions and at specific target sites to combat chronic diseases, viz., cancers, HIV-AIDS, cardiovascular, cerebrovascular diseases, and respiratory disorders [38]. Since metal ion can participate in biological redox reactions, and many transition metals (Pt, Ru, Fe, Cu) possessing variable oxidation states offer many possibilities for strategic designs of new chemotherapeutics. Many literature reports reveal that the redox properties of the metal ions or the ligands can influence the mechanism of action of metal-based anticancer chemotherapeutic drugs [39–41]. Thus, in metal complexes, it is possible to trigger a desired biological response at the site of action and at the optimum time by controlling the activation process by substitution (ligand exchange) and/or redox processes.
Advances in Metallodrugs

One of the biggest challenges in enhancing the therapeutic potential of a metallodrug is its delivery to the selective targets. It is imperative for a prospective drug to demonstrate sufficient reactivity towards the selective biological target but less affinity towards other biomolecules encountered on the way which render its deactivation. Prodrugs are drug derivatives that can undergo in vivo transformation to release the active species, with improved physiochemical, biopharmaceutical, and pharmacokinetic properties [42, 43]. The application of prodrug strategy encompasses the use of polymeric conjugate materials and other inclusions of metallodrug in liposomes, protein macromolecules, lipid-based systems, and dendrimers as drug carriers that limit its interaction with biomolecules other than the selected targets [44]. For metal-based therapeutics, this prodrug activation can be accomplished by in vivo ligand substitution, photochemical process and/or redox reactions before reaching the target site. It is thus important to ascertain the active part of the metal complex which is essential for therapeutic activity; the metal itself, the ligands and the intact delivery system. Thus, a rational state-of-art design of therapeutic and diagnostic agents is required to achieve specific targeting features and control toxicity (side effects) which can be achieved by controlling thermodynamic and kinetic processes of metal complexes.

1.2 Therapeutic Metallodrugs

1.2.1 Anticancer Metallodrugs

Cancer is a class of disease in which a group of cells display uncontrolled growth (division beyond the normal limits), invasion (intrusion and destruction of adjacent tissues), and sometimes metastasis (spread to other locations in the body via lymph or blood) [45]. Current statistics indicate that one in every three people will develop some form of cancer during their lifetime. It is estimated that by 2030, there will be 21.4 million new cases diagnosed every year [46]. Most cancerous cells divide uncontrollably to form lumps or masses of tissue called tumors but some like leukemia (where cancer prohibits normal blood function by abnormal cell division in the blood stream) do not [47]. The complexity of the disease however, arises mainly due to the fact that cancers evolve from different tissues of origin, shows multiple etiologies or endless combinations of genetic or epigenetic alterations. The primary treatment modalities include surgery, chemotherapy, radiations, and immunotherapy, etc [48]. However, the mainstay treatment is based on chemotherapy which a viable alternative
involving various natural and synthetic origin compounds that can kill or halt the unwanted proliferation of cancerous cells.

Metal-based antitumor chemotherapeutics gained prominence after the phenomenal serendipitous discovery of the archetypical inorganic drug, cisplatin (\textit{cis}–diamminedichloroplatinum(II), [\textit{cis}–(\text{NH}_3)_2\text{PtCl}_2]) by B. Rosenberg in 1965 [49]. Cisplatin is one of the most effective chemotherapeutic drug used for treating solid malignancies, \textit{viz.}, bladder, melanoma, non–small cell lung, small cell lung, head and neck, cervical, ovarian, and testicular cancers (>90% cure rate) [50]. Currently, it is used in 32 of 78 treatment regimens in combination with a wide range of other drugs including: topoisomerase II inhibitors (doxorubicin, etoposide, and bleomycin), mustards (cyclophosphamide, melphalan and ifosfamide), and antimetabolites [51].

\subsection*{1.2.1.1 Mechanism of Anticancer Action}

Cisplatin initially enters inside the cell \textit{via} both passive diffusion and active uptake where it undergoes a ligand substitution event prior to DNA binding. Noticeably, inside the bloodstream (extracellular), cisplatin is relatively stable and maintains its neutral state, due to the high concentration of chloride ions (~100 mM). However, inside the cell (intracellular), the relatively low chloride ion concentration (~4–12 mM) causes cisplatin to undergo aquation, in which a chloride ligand is replaced by a water molecule resulting in the formation of cis–\([\text{Pt(NH}_3)_2\text{Cl(H}_2\text{O)}]\)^+ species having half-life of ca. 2 h for the aquation reaction. The positive charged platinum complex is a potent electrophile that is attract to the negatively charged nuclear DNA at the N7 position of purine bases of DNA with a release of the water molecule [52]. The remaining cis-monochloride species ([Pt(NH}_3)_2\text{Cl(H}_2\text{O)}]) is then subsequently aquated diaqua species ([Pt(NH}_3)_2\text{H}_2\text{O}_2]\)^+ allowing the cisplatin to cross-link to another purine. Moreover, the square-planar geometry of cisplatin facilitates ligand substitution, which is necessary for it to form the DNA lesions that characterize its activity. Cross-linking between adjacent guanine residues is considered to be crucial to the cytotoxicity of cisplatin. Such cross-links can occur between deoxyguanosines on the same strand or on different strands, giving rise to intrastrand and interstrand DNA cross-links, respectively. The 1,2–d(GpG) intrastrand cross-link is the most prevalent lesion (65%), but 1,2–(ApG) (25%) and 1,3–d(GpTpG) (10%) intrastrand cross-links also form along with small amounts of GG interstrand crosslinks [53]. These adducts interfere with cellular DNA replication and transcription processes causing eventual cell cycle arrest and potentially activation of pro-apoptotic signals (Figure 1.3) [54].
Regardless of the therapeutic success of cisplatin in the treatment of several types of tumors, its effectiveness is severely hindered by adverse side effects, viz., alopecia, ototoxicity, neurotoxicity, myelosuppression, and nephrotoxicity [55]. Another major drawback is tumor resistance, either acquired or intrinsic resistance [56]. However, considerable efforts are being made by many research groups around the world to mitigate the severe side effects, provide oral bioavailability, and overcome resistance issues of cisplatin; and consequently, a plethora of second generation platinum analogs were envisaged, viz., carboplatin, oxaliplatin, nedaplatin, heptaplatin, and satraplatin (Figure 1.4) [57].

Carboplatin and oxaliplatin have entered worldwide in chemotherapeutic drug regimens as a first-line treatment for colorectal cancer [58]. Carboplatin is primarily used against ovarian cancers; however, it has also found use in treating a diverse type of cancers including retinoblastomas, neuro- and nephroblastomas, brain tumors, as well as cancers of the head, neck, cervix, testes, breast, lung, and bladder [59]. Carboplatin has the same implications as that of cisplatin, but with a different toxicity profile [60]. Another
front-line platinum anticancer drug oxaliplatin has gained global approval for combination chemotherapy treatment against colon cancers [61] and was subsequently approved for clinical use in countries like France and the United States [62]. Oxaliplatin features two chelating ligand groups with oxalate and \(R,R \)-diaminocyclohexane (DACH) as leaving and non-leaving groups, respectively. Nedaplatin has been mainly used to treat head, neck, and esophagous cancers besides small cell lung and non-small cell lung cancers in Japan [63]. The drug possesses \textit{cis} ammine as non-leaving group along with a chelating leaving group ligand as glycolate, which confers greater water solubility than cisplatin. Heptaplatin was developed in Korea and is being used against gastric cancer under the market name SunPla. The drug contains two types of chelating ligands, a malonate as a leaving group and 2-(1-methylethyl)-1,3-dioxolane-4,5-dimethanamine as its non-leaving ligand.

However, the search for efficacious drugs that overcome the limitations of platinum compounds such as severe side effects, high systemic toxicity, and incidence of drug resistance have motivated researchers to introduce non-platinum drugs into the drug regimens. No-platinum drug entities are likely to have different mechanism of action, bio-distribution, toxicity profile, and could be effective against human cancers that are poor chemo-sensitive or have become resistant to conventional platinum drugs.

Three-dimensional transition metals particularly Ti, Fe, Co, Cu, and Zn have invoked considerable interest as antitumor chemotherapeutics as these metal ions are site selective at physiological pH and are compatible to the biological system in contrast to platinum-based anticancer agents. Although essential metal ion that escapes from its normal metabolic

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{structure.png}
\caption{Structure of anticancer platinum metallodrugs; carboplatin and oxaliplatin (approved), Carboplatin, Lobaplatin, heptaplatin, and satraplatin (in clinical trials).}
\end{figure}
pathway could show toxic effects in an organism, complexes of such metals can serve as effective cytotoxic agents. Among first row transition metal ions titanium complexes, viz., titanocenedichloride, (Cp₂TiCl₂) and budotitane (Figure 1.5) have demonstrated pronounced antitumor properties and low toxic side effects [64]. Cp₂TiCl₂ which has entered in phase II clinical trial inhibits DNA synthesis rather than RNA and protein synthesis and titanium accumulates in nucleic acid rich regions in tumor cells after in vivo or in vitro administration [65]. The complex also showed weaker affinity to DNA bases and binds more strongly to phosphate backbone. Budotitane, which was the first non-platinum transition metal anticancer agent to be tested in clinical trials, was quite effective against a number of ascites tumors and induced colorectal tumors [66]. Clinical trials indicated that it was fairly well tolerated by patients with the dose limiting side effects being cardiac arrhythmia [67, 68].

Iron is the most significant essential metal ion in biology which serves as important cofactors of many redox enzymes [69]. Iron is vital for wide variety of metabolic processes including oxygen transport, DNA synthesis, and electron transport reactions. Many synthetic iron complexes have been reported displaying anticancer activities that are often linked to the redox reactions of Fe(II) or Fe(III) under physiological conditions [70]. One of notable example of anticancer compounds involving iron complexation is bleomycin which was clinically used to treat testicular carcinoma with high cure rates [71]. Bleomycin is a glycopeptide comprising a N-terminal metal-binding domain that coordinates to Fe(II) ion through five nitrogen donor atoms of amines, pyrimidine, and imidazole [72]. The coordination of dioxygen to Fe(II) is followed by one-electron oxidation which generates a bleomycin-Fe(III) OOH species. This species induced DNA damage as well as production of ROS, leading to apoptotic cell death [73]. Recently,

Figure 1.5 Structure of Titanium anticancer agents: (a) Titanocene dichloride and (b) Budotitane.
an organometallic compound Ferrocifen, an analog of Tamoxifen (which has been widely used in the clinic for the treatment of hormone dependent breast cancers) was discovered indicating a distinguished mode of antiproliferative activity (Figure 1.6) [74]. Another noteworthy example of iron complexes is a polypyridine iron(II) complex, Fe(II)–N₄Py {N₄Py = N,N–bis(2–pyridylmethyl)–N–bis(2–pyridyl)methylamine} which is synthetic bleomycin mimetic [75]. The complex was reported to cleave DNA efficiently under aerobic conditions and induced cell death and caused nuclear DNA damage [76].

Copper is one of widely distributed in the biological system and is the most familiar redox metal accessible within the cellular potential range [77]. Due to the plasticity and participation of copper as an integral part of the active site of metalloproteins (superoxide dismutase, ceruloplasmin, cytochrome oxidase, and tyrosinase), it familiarizes its coordination with the human body’s functions [78]. Copper binds to electron rich nucleic acids (DNA/RNA) with higher affinity than any other divalent cation and induces conformational changes in polynucleotides and bio-membranes. The altered metabolism of cancer cells and the differential response between normal and tumor cells to copper is the basis for the development of copper complexes endowed with antitumor properties [79].

Ruiz-Azuara et al. have synthesized a series of Cu(II) complexes with diimine ligand donors having the trade name “Casiopeinas®, (Cas)” as antitumor chemotherapeutics (Figure 1.7) [80, 81]. These compounds are mixed chelate copper(II) complexes with a general condensed formula [Cu(N–N)(A–A)][NO₃], where N–N represents neutral diimine donors, either phen or bipy, A–A stands for uninegative N–O or O–O donors, either aminoacidates or acetylacetonate. The activity of Cas II–gly, [Cu(1,4–dimethyl–1,10–phenanthroline)(glycine)NO₃], a novel anticancer agent, was tested against two cell lines, L1210 (murine leukemia)

![Figure 1.6](image_url)
Figure 1.6 Examples of some iron anticancer agents: (a) Ferrocifen (ferrocene derivative of tamoxifene) and (b) Iron(II) pentapyridyl complexes.
and CH1 (human ovarian carcinoma). It was observed Cas II–gly was highly active against these cell lines, including cell lines resistant to cisplatin and mechanism of cell death was both via apoptosis and necrosis [82]. Another variant of the “Casiopeina” series, [Cu–(acetylacetonato) (4,4′–dimethyl–2,2′–bipyridine)(NO₃)], (CasIII–ia), was found to exhibit antineoplastic effects on glioma C6 [83].

Ruthenium(II) complexes are rapidly becoming a prime focus for the development of new more efficacious metal-based anticancer drug entities due to their unique spectroscopic and electrochemical properties [84, 85]. Ruthenium is well suited for pharmacological applications as it offers various oxidation states (II, III, and IV) under physiologically conditions [86]. Plethora of ruthenium complexes have been synthesized and have successfully demonstrated significant cytotoxic and antimetastatic properties with reduced side effects [87]. The first successful breakthrough in the area of ruthenium-based chemotherapeutics was achieved by B. K. Keppler et al. who synthesized imidazolium [trans–RuCl₄(1H–imidazole)(DMSO–S)] (NAMI–A) and indazolium [trans–RuCl₄(1H–indazole)]₂ (KP1019), as a substitute to platinum-based drugs (Figure 1.8). These drugs have successfully completed phase I clinical trials and are now undergoing further clinical evaluation [88, 89].

Both NAMI–A and KP1019 are ionic Ru(III) compounds bearing structural novelty possessing negatively charged octahedral metal center coordinated to heterocyclic nitrogen donor ligands and equatorial chlorides; a protonated form of the heterocyclic nitrogen ligands as counter ions that are replacable by sodium or other cations [90]. NAMI–A in solution phase involves both loss of Cl⁻ and DMSO. NAMI–A is the most intensively studied ruthenium anticancer complexes because of its ability to prevent the metastasis formation or inhibit the growth of secondary tumor cells while KP1019 is active only against primary cancers [91]. KP1019 has entered in the clinical trials after it demonstrated in vitro cytotoxic activity against
cisplatin-resistant human colon carcinoma cell lines [92] along with efficient in vivo activity against various tumor types. Pertinent to mention, Ru(II) compounds that are administered to the patient are not as the active species rather Ru(III) complexes are first reduced into a more active Ru(II) form (Scheme 1.1). The plausible mechanistic hypothesis for Ru(III) compounds was attributed on “activation by reduction” mechanism, according to which the Ru(III) complexes act as prodrugs that can be reduced to Ru(II) active species in the hypoxic (therefore reducing) environment of cancer cells [93]. The hydrolysis reaction of Ru–X bonds to give ruthenium–aqua species (aquation) is an important aspect of the therapeutical behavior for ruthenium complexes. The corresponding aqua species

![Figure 1.8](image_url)

Figure 1.8 Ru(III) anticancer compounds currently in clinical trials: (a) imidazolium [trans-RuCl₄(1H–imidazole)(DMSO–S)] (NAMI–A) and (b) indazolium [trans-RuCl₄(1H-indazole)$_2$] (KP1019).

![Scheme 1.1](image_url)

Scheme 1.1 A generalized scheme depicting possible action for Ru(III) prodrugs invoking "activation by reduction" hypothesis (X = Cl⁻, Br⁻, I⁻).
exist over a wide range of pH, but for pH > pKa, the hydroxo species formed by deprotonation are predominant. Since, the hydroxide is a less labile ligand than water, it will not so easily be displaced by biomolecule targets. “Aquation” of the chloro complexes may be suppressed extracellularly due to high chloride concentrations (0.1 M) but because of lower intracellular Cl⁻ concentrations (4–25 mM), the aquation reaction is highly possible.

Many ruthenium compounds have been found are non-toxic and have been quite selective for cancer cells. This has been attributed to the ability of ruthenium to mimic iron in binding to biomolecules. As cancer cells overexpress transferrin receptors to satisfy their increased demand for iron, ruthenium-based drugs have been found to be delivered more efficiently to cancer cells [94].

In recent years, half-sandwich–configured organoruthenium(II)–arene scaffold have emerged as a versatile tool for the design novel anticancer agents because their biological activity and pharmacological properties can easily be modulated by ligand selection [95]. The different mode of action is a consequence of their high lipophilicity that favor better cellular uptake; and the presence of labile ligands, viz., chlorido/carboxylato, favor the extracellular binding with the drug target. Besides possessing supposedly low general toxicity and high selectivity of ruthenium-arene complexes towards cancer cells, the big reasons for the flourishing design of arene-ruthenium–based anticancer drugs are the amphiphilic properties of the arene ruthenium unit, which provides the hydrophobic nature to the arene ligand counter balanced by the hydrophilic metal center [96]. The pioneering work of Paul J. Dyson and P. J. Sadler in the field of anticancer organometallics led to successful revelation of two lead Ru(II)–arene anticancer agents, RAPTA–C, and RAED which are at an advanced preclinical development stage (Figure 1.9) [97, 98].

![Figure 1.9](image)

Figure 1.9 Structures of anticancer organoruthenium complexes (a) RAPTA–C ([Ru^II(cym)(PTA)Cl]_2, PTA = 1,3,5–triaza–7–phosphatricyclo[3.3.1.1]decane; cym = η⁶–p–cymene) and (b) RAED ([Ru^II(η⁶–biphenyl)(en)Cl]^+).