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of PLM Design



Chapter 1
Product Life Cycle and Services
Management

1.1 The New Paradigm

Industrial manufacturing and the consumption of technical products have led to a
dramatic depletion of natural resources and an increasing strain on the environment
due to emissions. Society’s heightened ecological awareness is taking effect, with the
result that more andmore companies are publicly committing themselves to environ-
mental protection. In the process, laws and requirements are bringing about a change
in the management of resources. Many companies now recognise the fact that they
can make cost savings by encapsulating critical technical processes and handling
problemmaterials more frugally. Today, this development is leading to a rediscovery
of the product life cycle. In consequence, this development is also strengthening
the sustainability sought by politics and society with regard to responsible commer-
cial trading. Commercial sustainability means that all trade should be orientated
towards maintaining all resources. The question at the core of manufacturing is how
to achieve overall value creation with one product over its entire lifetime by taking
life cycle management into account. Consequently, a change in strategies has taken
place which not only takes economical aims but also ecological and societal aspects
into consideration in the design and utilisation of technical products (Fig. 1.1).

Manufacturers have to accept more and more responsibility for the usability of
their technical products and for the consequences of usage. However, many compa-
nies only follow statutory general conditions in pre-sales and after-sales in order to
avoid losing their markets. There is a general impression that the cost-benefit ratio,
especially in after-sales business, is insufficient. This also applies to industrial recy-
cling.One main factor is the availability of actual information about the products and
a lack of synergy between final assembly and after-sales operations [1].

Thedevelopment ofmodernproducts is beingdecisively influencedby the applica-
tion of technologies contributing towards increased efficiency. Products are becoming
complex highly-integrated systems with internal technical intelligence enabling the
user to implement them reliably, economically and successfully even in the fringe
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Fig. 1.1 Increased
responsibility over the entire
product life cycle

ranges of technology. As a result, business strategies are aiming more and more at
perfecting technical systems, optimising product usage and maximising added value
over the entire lifetime of a product. In this context, the total management of product
life cycles coupled with the integration of information and communications systems
is becoming a key success factor for industrial companies.

When manufacturing technical products, industrial companies generally direct
their strategies towards economic targets. Their main business lies in developing,
producing and operating products either for individual customers or for complete
sectors of the market. Service and maintenance are considered by many companies
to be necessary in order to achieve lasting business relationships with customers.

Several studies indicate that the role of these services will change from being a
product-accompanying service to becoming the main revenue driver. This means
that the original product itself will turn into a vehicle (platform) to sell such services
as main business [1].

Consequently, industrialmanufacturing companies are increasingly concentrating
their businesses on engineering, assembly and services. They are following new
paradigms in order to add value through customer orientation, system manage-
ment and services during the lifetime of their products. The machine manufacturing
industry and other industrial fields such as the automobile industry have reduced
their own capacities down to the main or core technologies and final assembly. Parts
and components are manufactured by suppliers or specialised companies. Profit is
increasingly becoming a result of business operations in design, engineering, final
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assembly and service. These phases of production are the core competencies of
companies which produce strong market or customer-orientated products and add
value during a product’s life cycle [2].

The functionalities of products are defined in the processes of design and engi-
neering. The functionality of products and their specific or characteristic properties
for usage are determined (as built) or altered by assembling, maintaining and disas-
sembling real configurations. In the usage phase, special know-how regarding design
and characteristic properties is required, such as specific process knowledge for opti-
mising utilisation and performance. Increasing technical complexity is promoting
product-near services and manufacturer assistance. This brings about new business
models for marketing only the functionality of capital-intensive products rather than
selling the products themselves.

There is a new paradigm behind these tendencies: in order to add value and
maximise utilisation, products are linked in the manufacturer’s network from the
beginning right up to the end (Fig. 1.2). In order to realise this paradigm, manu-
facturers need life cycle management (LCM) systems, tools and technologies. The
concentration of all processes into the total life cycle of a product and the optimisa-
tion of usage of each single technical product can be described as a new paradigm.
Seen from a global point or macro-economical point of view, this is only logical.
Seen from an operational or micro-economical point of view, it is proving difficult to
initiate such strategies. This is because fundamental structural changes are required
in products as well as in organisations and production technologies and also that the
economic benefits involved are either uncertain or associated with risks [1].

Fig. 1.2 The vision of life cycle management
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Additionally, locally optimised product life cycles (i.e. optimisation of individual
processes) may not exhibit superior performance globally from multi-objective
perspectives. Therefore, the performance of product life cycles needs to be evaluated
from holistic and multi-objective perspectives.

However, there is a futuristic vision in the life cyclemanagement of optimising the
total exploitation of each product and reducing environmental impact to a minimum.
In reality, the different types of products need to be taken into account individu-
ally. For some products, it makes economic sense to link them to the manufacturer’s
network. If the futuristic vision is followed that all machines and high-quality tech-
nical products remain in the manufacturer’s information network, the Internet will
attain a central importance in total life cycle management [3–5].

The strategies followed by companies are significantly dependent upon the type of
product involved. In a preliminary classification, three categories with varying time
scales and strategies may be defined. The first category is goods with a short lifetime
and a low product value or complexity. Such non-durable technical consumer goods
are usually mass-produced andmanufactured in large series. Here the main emphasis
of life cyclemanagement is placed on the rational organisation of services, marketing
and product recycling techniques. Robust techniques can be used for recycling due
to the fact that the added value profit is low in relation to the value of the product. The
second category is assigned to series products with a limited number of variants. Life
cycle management for these products includes services and maintenance as well as
industrial recycling and the partial reuse of parts and components. The third category
is reserved for high-quality capital goods. The main emphases here are on maximum
utilisation strategies, maintaining performance and additional added value in the field
of after-sales. Industrial recycling only plays a minor economic role in this category
of products.

A forward-looking life cycle plan for the product is one example of a maximum
utilisation strategy.On completion of the usage phase, the owner faces the alternatives
of either scrapping/recycling the product or of upgrading it. Through upgrading, the
product is transformed so that it obtains a new operational status reflected in new
product functions. Specific software or hardware modifications are carried out on the
product to equip it with advanced, extended or new functional features in comparison
with its original condition. Consequently, the product can be improved, extended or
utilised to perform completely new tasks. Through upgrading, a product almost starts
a new life (Fig. 1.3).

However, upgrading is not always possible due to either technical or economic
circumstances. In order to be able to upgrade at a later point in time, far-sighted
product planning is required which commences in the product engineering stage.
In this early phase of development, the fundamental product features—including
later modification possibilities—are fixed. Numerous technical and organisational
measures decide whether a product can be successfully transformed to attain another
level.

From a technical point of view, the modular design of a product’s construction
is of particular importance. Modular product design in accordance with the laws
of system technology enables the variable and economically-viable re-design of a
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Fig. 1.3 Products have several lives [2]
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product throughout its entire lifetime. If the fact is taken into consideration that a
product may be modified many times over or even altered completely during its life-
time, such product constructions not only bring about advantages for product mainte-
nance but also create enormous potentials. The increasing substitution of mechanical
componentswith software also supports the short-termusage of a product for variable
task assignments. Retrofitting times can be shortened due to the fact that modified
software can be installed much faster than hardware components can be exchanged
[1].

From a technical point of view, product optimisation can be supported using
lifelong data acquisition. Data-logging enables the behaviour of a product to be
statistically analysed or products and processes to be monitoring online. The data
obtained using this method is evaluated according to specific criteria and discloses
optimisation potentials. This permits machines to be completely controlled with the
result that, in the future, not only will it be possible to perform technical optimisation
but also to take economical factors into consideration and to carry out far-sighted
planning thanks to the availability of “real” machine data. Life cycle simulation tech-
niques also enable us to predict product behaviour even in the early phases of the
design process. Such real machine data dynamically improve the life cycle model
used in life cycle simulation. Up till now, conventional manufacturing paradigms
have focused on profit aspects associated with manufacturing and selling products
to the end-customer. The new paradigm takes into account the life cycle of technical
products and the optimisation of value and benefits during the phases of engineering,
assembly, service, maintenance and disassembly. The objective is to reduce envi-
ronmental losses and to fulfil public or governmental restrictions over the life cycle
[5, 6].

Following the new paradigm of optimisation and added value over the total life
of products, a structural change in the relationship between the manufacturer and the
user will take place. Both have different views regarding the same business processes
in the life of products, as shown in Fig. 1.4.

Different views held about the same product are the result of industrial develop-
ments in the twenty-first century. In the future, the holistic view will offer new ages
of manufacturing.

1.2 Manufacturer’s Viewpoint

In general, the life cycle of products can be divided into the phases of design and
engineering, manufacturing, assembly, usage, service, disassembly and recycling.

The main objective is to fulfil markets and customer requirements to ensure the
efficient utilisation ofmanufacturing resources. The new view adds value in the usage
and recycling phases as a result of customer-related services including maintenance
and disassembly for reconfiguration, reuse and recycling. More than ever before, this
view of the usage and recycling phases makes it indispensable to take into account
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Fig. 1.4 Views of manufacturers and users on the life cycle of technical products

the various aspects of life cycle design and engineering or the capability of systems to
be assembled, disassembled and diagnosed in all phases, especially in that of usage.

It is also necessary to describe the architecture of a product which, in effect,
is a mixture of goods and services. Using a model of the integrated architecture,
interdependencies between goods and services can be managed more easily because
it clarifies how various parts contribute to realising a function. As mentioned before,
the early phases of the manufacturing process are mostly outsourced to suppliers.
Therefore, it is necessary to consider the relationship between manufacturers and
suppliers from an economical and environmental perspective. This creates profitable
product-orientated services throughout all operations by supporting the diagnostics
of actual features, as well as the partial disassembly and assembly for reconfiguration
or upgrading and the final disassembly for recycling [7, 8].

1.3 Customer’s Viewpoint

Customers are generally interested in achieving high product utilisation in the usage
phase at the lowest cost, even if this demands that manufacturing processes need to
be changed. This requires flexible manufacturing systems which provide guaranteed
process performance and require minimal set-up times and costs. The high efficiency
of the usage of complex technical products depends on specific skills and know-
how concerned with the details of machines, mechatronic components, software
and process optimisation. These costs can be overcome by using specific skilled
services and assistance or support provided by manufacturers. Users prefer buying
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specialised services to reduce the fixed costs of products as well as the costs of
inspection, maintenance and reconfiguration or upgrading.

The economic efficiency of capital-intensive products in industrial manufacturing
depends on the demands and profiles of products, technical requirements and capac-
ities. These requirements are constantly changing with the result that manufacturing
systems need to be permanently adapted [7].

1.4 Goals of a Sustainable Product Life Cycle Management

The new paradigm of optimising a technical product’s cost–benefit is orientated not
only towards economic but also towards environmental aspects by applying ecolog-
ical criteria. It assumes that the concentration on core competencies and specialisa-
tion offers new potentials to add value or reduce the cost of usage by industrialising
services and disassembly.

A common understanding between manufacturers and users is a prerequisite for
activating potentials in order to obtain the maximum benefit from each technical
product during its life cycle and to fulfil economic and environmental objectives
(Fig. 1.5).

Common sense and active optimisation demand technical solutions that link prod-
ucts at any point in the time of their entire life cycle to the information networks of
manufacturers and users. This can be achieved by integrating technical products into
global IT networks and electronic services. It is evident today that we have the tech-
nologies to do this and also to follow the technical trend for developing intelligent
machines connected up to communications systems [9–11].

Fig. 1.5 Objectives of life cycle management


