Mechanisms and Machine Science

Jörg Niemann Adrian Pisla

Life-Cycle Management of Machines and Mechanisms

Mechanisms and Machine Science

Volume 90

Series Editor

Marco Ceccarelli, Department of Industrial Engineering, University of Rome Tor Vergata, Roma, Italy

Editorial Board

Alfonso Hernandez, Mechanical Engineering, University of the Basque Country, Bilbao, Vizcaya, Spain

Tian Huang, Department of Mechatronical Engineering, Tianjin University, Tianjin, China

Yukio Takeda, Mechanical Engineering, Tokyo Institute of Technology, Tokyo, Japan

Burkhard Corves, Institute of Mechanism Theory, Machine Dynamics and Robotics, RWTH Aachen University, Aachen, Nordrhein-Westfalen, Germany

Sunil Agrawal, Department of Mechanical Engineering, Columbia University, New York, NY, USA

This book series establishes a well-defined forum for monographs, edited Books, and proceedings on mechanical engineering with particular emphasis on MMS (Mechanism and Machine Science). The final goal is the publication of research that shows the development of mechanical engineering and particularly MMS in all technical aspects, even in very recent assessments. Published works share an approach by which technical details and formulation are discussed, and discuss modern formalisms with the aim to circulate research and technical achievements for use in professional, research, academic, and teaching activities.

This technical approach is an essential characteristic of the series. By discussing technical details and formulations in terms of modern formalisms, the possibility is created not only to show technical developments but also to explain achievements for technical teaching and research activity today and for the future.

The book series is intended to collect technical views on developments of the broad field of MMS in a unique frame that can be seen in its totality as an Encyclopaedia of MMS but with the additional purpose of archiving and teaching MMS achievements. Therefore, the book series will be of use not only for researchers and teachers in Mechanical Engineering but also for professionals and students for their formation and future work.

The series is promoted under the auspices of International Federation for the Promotion of Mechanism and Machine Science (IFToMM).

Prospective authors and editors can contact Mr. Pierpaolo Riva (publishing editor, Springer) at: pierpaolo.riva@springer.com

Indexed by SCOPUS and Google Scholar.

More information about this series at http://www.springer.com/series/8779

Jörg Niemann · Adrian Pisla

Life-Cycle Management of Machines and Mechanisms

Jörg Niemann Department of Mechanical and Process Engineering Fachhochschule Düsseldorf Düsseldorf, Nordrhein-Westfalen, Germany Adrian Pisla Design Engineering and Robotics Department Technical University of Cluj-Napoca Cluj-Napoca, Romania

 ISSN 2211-0984
 ISSN 2211-0992 (electronic)

 Mechanisms and Machine Science
 ISBN 978-3-030-56447-6
 ISBN 978-3-030-56449-0 (eBook)

 https://doi.org/10.1007/978-3-030-56449-0
 ISBN 978-3-030-56449-0
 ISBN 978-3-030-56449-0

© Springer Nature Switzerland AG 2021

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Contents

Part I Life Cycle System Modeling: Factors of PLM Design

1	Produ	ct Life Cycle and Services Management	3		
	1.1	The New Paradigm	3		
	1.2		8		
	1.3		9		
	1.4	Goals of a Sustainable Product Life Cycle Management 1	0		
	1.5	Definitions of Terms in Life Cycle 1	1		
		1.5.1 Product	1		
		1.5.2 Product Life Cycle	1		
		1.5.3 Product Life Cycle Management 1	1		
	1.6	Services Management 1	2		
		1.6.1 Definition of Terms 1	2		
		1.6.2 Importance of Service Business 1	3		
	Refere	nces	4		
2	Life Cycle Design Phase				
-	2.1	Generic Approach in Product Development 1	7		
	2.2	Interdisciplinary Collaboration 18			
	2.3	Life Cycle Design 2			
		2.3.1 Definition of Terms 2	0		
		2.3.2 Cost Allocation and Their Targeted Manipulation 2	0		
		2.3.3 Examples of Design Changes and Its Impact on Life			
		Cycle	1		
	2.4	Services in the Design Phase 2	3		
		2.4.1 Feasibility Analyses 2	4		
		2.4.2 Financial Services. 2	4		
	Refere	ences	4		
3	Life Cycle Usage Phase				
	3.1	Maintenance	7		
		3.1.1 Definition of Terms 2	7		

		3.1.2 Maintenance Strategies	29
		3.1.3 Introduction of a State-Oriented Maintenance 3	31
	3.2	Spare Parts	32
	Refere	nces	34
4	End	f-Life Phase	35
4	End- 4.1		55 35
	4.1		55 35
		1	
	1.2	6	36
	4.2	0	37
			37
		6	39
			40
			42
	4.3		42
		6	43
			43
			44
	4.4		44
	4.5	Modernization	46
	4.6	Disposal	47
	4.7	Conclusion	47
	Refere	nces	47
5	Life (ycle Evaluation	51
2	5.1		51
		1 the Civicle Assessments	
	5.2	Social Life Cycle Assessments 5	53
		Social Life Cycle Assessments 4 Life Cycle Costing 4	53 54
	5.2	Social Life Cycle Assessments 4 Life Cycle Costing 4 5.3.1 VDI 2884 Standard 4	53 54 54
	5.2 5.3	Social Life Cycle Assessments4Life Cycle Costing45.3.1VDI 2884 Standard5.3.2VDMA 34160 Standard	53 54 54 55
	5.2 5.3	Social Life Cycle Assessments4Life Cycle Costing45.3.1VDI 2884 Standard5.3.2VDMA 34160 Standardnces4	53 54 54 55 55
6	5.2 5.3 Refere	Social Life Cycle Assessments 4 Life Cycle Costing 4 5.3.1 VDI 2884 Standard 4 5.3.2 VDMA 34160 Standard 4 nces 4 4 ycle Information Support 4	53 54 54 55 55
6	5.2 5.3 Refere 6.1	Social Life Cycle Assessments 4 Life Cycle Costing 4 5.3.1 VDI 2884 Standard 4 5.3.2 VDMA 34160 Standard 4 nces 4 4 ycle Information Support 4 Analytics of Life Cycle Data 4	53 54 54 55 55 57
6	5.2 5.3 Refere	Social Life Cycle Assessments 4 Life Cycle Costing 5 5.3.1 VDI 2884 Standard 5 5.3.2 VDMA 34160 Standard 5 nces 5 5 ycle Information Support 5 Analytics of Life Cycle Data 5 Support Function of Life Cycle Data 5	53 54 55 55 57 57 61
6	5.2 5.3 Refere 6.1	Social Life Cycle Assessments 4 Life Cycle Costing 4 5.3.1 VDI 2884 Standard 4 5.3.2 VDMA 34160 Standard 4 nces 4 4 ycle Information Support 4 Analytics of Life Cycle Data 4 Support Function of Life Cycle Data 6 Options of Data Exchange 6	53 54 55 55 57 57 61
6	5.2 5.3 Refere 6.1 6.2	Social Life Cycle Assessments 4 Life Cycle Costing 4 5.3.1 VDI 2884 Standard 4 5.3.2 VDMA 34160 Standard 4 nces 4 4 ycle Information Support 4 Analytics of Life Cycle Data 4 Support Function of Life Cycle Data 4 Options of Data Exchange 6	53 54 55 55 57 57 61 62
6	5.2 5.3 Refere 6.1 6.2 6.3	Social Life Cycle Assessments4Life Cycle Costing45.3.1 VDI 2884 Standard45.3.2 VDMA 34160 Standard4nces5ycle Information Support4Analytics of Life Cycle Data4Support Function of Life Cycle Data6Options of Data Exchange6Product Life Cycle Software Tools6	53 54 55 55 57 57 61 62 63
6	5.2 5.3 Refere 6.1 6.2 6.3	Social Life Cycle Assessments4Life Cycle Costing45.3.1 VDI 2884 Standard45.3.2 VDMA 34160 Standard4nces4ycle Information Support4Analytics of Life Cycle Data4Support Function of Life Cycle Data6Options of Data Exchange6Product Life Cycle Software Tools66.4.1 Data and Document Management6	53 54 55 55 57 57 61 62 63 64
6	5.2 5.3 Refere 6.1 6.2 6.3	Social Life Cycle Assessments4Life Cycle Costing45.3.1 VDI 2884 Standard55.3.2 VDMA 34160 Standard4nces5ycle Information Support4Analytics of Life Cycle Data4Support Function of Life Cycle Data6Options of Data Exchange6Product Life Cycle Software Tools66.4.1 Data and Document Management66.4.2 CAD Integration6	53 54 55 55 57 61 62 63 64 65
6	5.2 5.3 Refere 6.1 6.2 6.3	Social Life Cycle Assessments4Life Cycle Costing45.3.1 VDI 2884 Standard45.3.2 VDMA 34160 Standard4nces4ycle Information Support4Analytics of Life Cycle Data4Support Function of Life Cycle Data6Options of Data Exchange6Product Life Cycle Software Tools66.4.1 Data and Document Management66.4.3 Life Cycle Collaboration6	53 54 55 55 57 57 61 62 63 64 65 66
6	5.2 5.3 Refere 6.1 6.2 6.3	Social Life Cycle Assessments4Life Cycle Costing55.3.1 VDI 2884 Standard55.3.2 VDMA 34160 Standard5nces5ycle Information Support5Analytics of Life Cycle Data6Support Function of Life Cycle Data6Options of Data Exchange6Product Life Cycle Software Tools66.4.1 Data and Document Management66.4.2 CAD Integration66.4.4 Project Management6	53 54 55 55 57 61 62 63 64 65 66
6	5.2 5.3 Refere 6.1 6.2 6.3	Social Life Cycle Assessments4Life Cycle Costing55.3.1 VDI 2884 Standard45.3.2 VDMA 34160 Standard5nces5ycle Information Support5Analytics of Life Cycle Data5Support Function of Life Cycle Data6Options of Data Exchange66.4.1 Data and Document Management66.4.2 CAD Integration66.4.3 Life Cycle Collaboration66.4.4 Project Management66.4.5 Quality Management6	53 54 55 55 57 57 61 62 63 64 65 66 67 68
6	5.2 5.3 Refere 6.1 6.2 6.3	Social Life Cycle Assessments4Life Cycle Costing45.3.1 VDI 2884 Standard45.3.2 VDMA 34160 Standard4nces5ycle Information Support4Analytics of Life Cycle Data6Support Function of Life Cycle Data6Options of Data Exchange6Product Life Cycle Software Tools66.4.1 Data and Document Management66.4.2 CAD Integration66.4.4 Project Management66.4.5 Quality Management66.4.6 Asset Management6	53 54 55 55 57 57 61 62 63 64 65 66 67 68 68
6	5.2 5.3 Refere 6.1 6.2 6.3	Social Life Cycle Assessments4Life Cycle Costing45.3.1 VDI 2884 Standard55.3.2 VDMA 34160 Standard4nces5ycle Information Support4Analytics of Life Cycle Data6Support Function of Life Cycle Data6Options of Data Exchange6Product Life Cycle Software Tools66.4.1 Data and Document Management66.4.2 CAD Integration66.4.3 Life Cycle Collaboration66.4.4 Project Management66.4.5 Quality Management66.4.7 Environment, Health and Safety (EH&S)6	51 53 54 55 55 57 61 62 63 64 65 66 67 68 69 69

7	Servit	tization a	and Modern Business Models	75			
	7.1	Introdu	action	75			
	7.2	Servitiz	zation	75			
		7.2.1	Definitions, Drivers and Challenges	76			
		7.2.2	Basic Concept: Adding Services as Additional				
			Offerings	77			
		7.2.3	Capabilities: From Manufacturer to Solution				
			Provider	78			
	7.3	Moder	n Life Cycle Business Models	80			
		7.3.1	Definition and Concept	80			
		7.3.2	Transition from Traditional to Modern Business				
			Models	81			
		7.3.3	Modern Business Models with Life Cycle Focus	82			
	7.4	Applic	ations and Practical Examples	84			
		7.4.1	Application: Servitization of the Rail Industry	84			
		7.4.2	Practical Examples: Service-Oriented Business				
			Models	85			
	7.5	Conclu	sion	85			
	Refere	ences		87			
8	Βίσ Π	Big Data					
Ŭ	8.1		ata Analytics	91 92			
	8.2	-	ss Intelligence	92			
	8.3		Ining	92			
	8.4		Tharacteristics	93			
		8.4.1	Volume	94			
		8.4.2	Velocity	94			
		8.4.3	Variety	94			
		8.4.4	Veracity	94			
		8.4.5	Value	95			
	8.5	Requir	ements for Data Processing in Industrie 4.0	95			
		8.5.1	Data Model	95			
		8.5.2	Data Content	96			
		8.5.3	Data Integration	97			
		8.5.4	Decision Making Process	98			
		8.5.5	Knowlede Processing	99			
		8.5.6	Real Time Processing	100			
		8.5.7	Security	100			
	8.6	Classif	ication of Big Data Analytics Maturity	101			
		8.6.1	Descriptive Analytics	101			
		8.6.2	Diagnostic Analytics	101			
		8.6.3	Predictive Analytics	102			
		8.6.4	Prescriptive Analytics	102			
	Refere	ences		102			

9	Smart	Life Cycle Services	107
	9.1	The Industry 4.0 and Internet of Things	107
		9.1.1 The Internet of Things	108
		9.1.2 Industry 4.0	108
	9.2	Smart Life Cycle Services	109
		9.2.1 Smart Services	109
		9.2.2 The Strategy of Smart Services	110
		9.2.3 The Life Cycle of "Smart Services"	112
		9.2.4 Fileds of Application	114
	9.3	Smart Services	115
	9.4	Influence of Smart Services on Business Models	116
	9.5	Smart Life Cycle Service Management	118
	Refere	nces	119
10	System	n Operators	123
10	10.1	Cooperation for Life Cycle Benefit.	123
	10.1	Integrated Product-Service Systems	124
	10.2	10.2.1 Developing Product Service Systems	128
		10.2.2 Supporting Activities and Modules	130
	10.3	Selling the Benefit Instead of the Equipment	132
	10.4	Full Service Concepts	133
		10.4.1 Business Model	133
		10.4.2 Service Management Terms	133
	10.5	Holistic Facility Life Cycle Management	135
		10.5.1 Holistic Life Cycle Management	135
	10.6	Why Service Life Cycle Management?	135
	10.7	Advantages	136
		10.7.1 Advantages from the customer's Point of View	136
		10.7.2 Advantages from the Producer's/Provider's Point	
		of View	137
	10.8	Disadvantages	138
		10.8.1 Disadvantages from the Customer's Point of View	138
		10.8.2 Disadvantages from the Producer's/Provider's Point	
		of View	138
	10.9	Full-Service Concepts in the Business Models	139
	10.10	Advantages and Disadvantages Over the Business	
		Life Cycle	141
	10.11	Summary and Conclusion	143
	Refere	nces	143
11	Tools	for the Digital Business Transformation	147
-	11.1	Business Model Dimensions and Trends.	147
		11.1.1 Dimensions and Strategies	147
		11.1.2 Trend to Digitalisation as New Business Model	
		Enabler	149

Contents

11.2	Method	ology	15
	11.2.1	As-Is Analysis	15
	11.2.2	Goal Definition	16
	11.2.3	Detailed Business Model Design	16
	11.2.4	Evaluation and Decision Methodology	17
	11.2.5	Solution Design	17
		Implementation Strategy	
Refere			

Part II CAD/CAM/FEA/PDM and Robotics: Factors of PLM Implementation

12	The N	lext Digital Age	199
	12.1	Introduction	199
	12.2	It a Helping Tool and a Nightmare	201
	12.3	PLM Functionality in the Next Digital Age	204
	12.4	PDM Methodology Evolution	206
	12.5	PDM Capabilities	207
	Refere	ences	217
13	Mach	ines and Mechanisms in the Digital Age	219
	13.1	Different Models	219
		13.1.1 Schematic Models	227
		13.1.2 Mathematical Models	228
		13.1.3 Physical Models	228
		13.1.4 PLM and MM	239
	Refere	ences	249
14	Challe	enging PLM	251
	14.1	PLM—Definition	251
	14.2	PLM—Core Features	252
	14.3	PLM—Model	255
	14.4	PLM—Architecture	257
		14.4.1 Sabbatical	269
	14.5	PLM—Benefits	278
	14.6	PLM—Implementation and Integration Techniques	279
	14.7	PLM—Standardization	281
	Refere	ences	282
15	Digita	l Product Tracking	283
	15.1	Generalities	283
	15.2	Tracking Labelling Overview	287
		15.2.1 The Linear Barcodes	287
		15.2.2 The Two Dimensional Barcodes	287
	15.3	RFID Tags	297

	15.4	The RFID Tracking in Supply-Chain-Management	300
	15.5	Trends in 3D Scanning	301
	Refere	nces	306
16	Boosting Performance		
10	16.1	Introduction	309 309
	16.2	The Contribution of Industry and for Industry	312
	16.3	Responsibility—A Must	314
	16.4	Smart Manufacturing	319
		nces	322
17		trial Digitally Prototypes	323
	17.1	Holistic View of Product and Process Design	323
	17.2	Training and Commissioning	325
	17.3	Knowledge Engineering and Management	330
	17.4	Model-Based Optimization	334
	17.5	PDP-Product Development Process and the Impact	
		on PLM	335
		17.5.1 Selected STEP	339
		17.5.2 STEP Description	340
	17.6	The Compromise.	350
	Refere	nces	353
18	Sieme	ns Plm Platform Structure	355
	18.1	The Kernel	355
	18.2	The Hardware	357
		18.2.1 Desktop Workstation	359
		18.2.2 Mobile Workstation	366
	18.3	The Managerial Connections	367
	Refere	nces	380
19	Teom	center Data Management	381
1)	19.1	Data Management—Data Continuity	388
		nce	396
			390
20		nents Handling	397
	20.1	Requirements and Fulfilment	397
	Refere	nces	406
21	The D	igital Factory	407
	21.1	The CIM	407
	21.2	The TLCM	410
	21.3	The Manufacturing Line and the Automation	411
	21.3	Manage the Digital Factory	412
		nces	413

22	Applications Modeling		
	22.1	Life Cycle Management Approaches 4	
	22.2	Life Cycle Implementation	
		22.2.1 Life Cycle Phases	
		22.2.2 Life Cycle Engineering 4	
	22.3	Life Cycle End of Life Management 4	
		22.3.1 The Recycling Trend 4	
		22.3.2 Life Cycle Management Close-Loop 4	
	22.4	Life Cycle Planning 4	
	22.5	The Viable System Model 4	
	Refere	ence	
Ind	ex		

Acronyms/Terms and Abbreviations

A&D	A&D Industry, Aerospace & Defense Industry
AAM	Application Activity Model
ABV	Added Business Value
AEC	Aided Engineering in Construction
AGV	Automated guided vehicle
AI	Artificial intelligence
AICAPA	American Institute of Certified Public Accountants
AIM	Application interpreted model
ANSI	American National Standards Institute
AOV	Average order value
AP	Application protocol
APPTR	Axial piston pump test rig
APUID	Acquisition Program Unique Identification
AR	Augmented reality, to the physical (real) components are added
	data for connecting characteristics to an image
ARIS	Architecture of Integrated Information Systems
ARM	Application Reference Model
ASCII	American Standard Code for Information Interchange is a
	character encoding standard for electronic communication.
	ASCII codes represent text in computers, telecommunications
	equipment, and other devices (labeling, bar codes, etc.)
ASG	Alternative scenarios generation
ASRS	Automated storage and retrieval systems
AT&T Inc.	American multinational conglomerate holding company
	headquartered at Whitacre Tower in Downtown Dallas, Texas
ATA	Air Transport Association
ATO	Assemble-to-order
AVM	Architecture virtual machine
BC	Best in the class
BCFTR	Bearing cage friction test rig

	Des lise forthe entry lise
BFTM	Bending fatigue testing machine
BMC	Business Model Canvas
BO Model	Business object model
BOM	Bill of materials
BSC	Balanced scorecard
BTO	Build to order
BVC	Best value chain
С	Cheap, not expensive
CAC	Computer-aided control
CAD	Computer-aided design
CAE	Computer-aided engineering
CAM	Computer-aided manufacturing
CAPA	Corrective and preventive action
CAPP	Computer-aided processes planning
CAPP	Computer-aided production planning
CAQ	Computer-aided quality assurance
CAX	Computer aided for X applications
CCSDS	Consultative Committee for Space Data Systems, founded in 1982
	for governmental and quasi-governmental space agencies to
	discuss and develop standards for space data and information
	systems
CE	Concurrent engineering
CEO	Chief Executive Officer
CHP	Combined heat and power plants (cogeneration plants)
CIL	Correlation with insurance companies and social dedicated
CIL	legislation
CIM	Computer-integrated manufacturing
CM	Condition monitoring
CM	Configuration management
CMP	Change management profile
CNC	Computer numerical control
COS	Computer operating system
COTS	Commercial items including services
CPG	Consumer packaged goods
CPP	Conventional power plant
	Cyber-Physical Production System
CPPS CPR	
	Contract provided resources
CPU CDISD DA	Central processing units
CRISP-DA	Cross-industry standard process for data mining
CRM	Customer relationship management
CSI	Customer Satisfaction Index
CSR	Corporate social responsibility
CTC	Company technological culture
CTO	Chief Technical Officer
CUS	Conversions-upgrading-shutdown

D&M	Design and manufacturing
DAC	Design and manufacturing Digital Age Context
DAG	Directed acyclic graph
DAM	Digital assets management
DAO	Data access objects
DAO DB	Databases
DB	
	Designated community
DF	Digital factory
DFE	Design for the Environment
DFEA	Design for Environment Alternatives
DHD	Documents handling department
DITA	Darwin Information Typing Architecture
DKP	Direct kinematic problem
DL	Deep learning
DLR	Deutsches Zentrum für Luft- und Raumfahrt
DMS	Data management solution
DMSS	Digital mobile security systems
DMU	Digital mockup
DNC	Direct numerical control
DoD	Department of Defense
DPI	Dots per inch
DPM	Direct part marking
DPS	Digital preservation system/digital preservation strategy
DRP	Disaster recovery plan
DRS	Distributed Resource Scheduler
DSN	Data source name
DSPD	Data sources, processing, and distribution
DT	Digital tool/digital twin
DTO	Data transfer object
DTT	Digital twin technology
EAM	Enterprise asset management
EAS	Engineering analysis and simulation
EBIT	Earnings before interest and taxes
EBITDA	Earnings before interest, taxes, depreciation, and amortization
ECC	Error correcting code memory
ECM	Engineering change management
EDGE	Enhanced Data Rates for Global Evolution network
EDM	Engineering Data Management
EDMS	Electronic data management system
EH&S	Environment, health and safety
EHD	Elastohydrodynamic
EID	Enterprise Identifier
EK	Engineering knowledge
EMD	Electromechanical design
EMK	Engineering and management knowledge
	0 0 m m m 0 m m m 0 m

EMS	Energy management system
EOF	End-of-life, management
EOL	End-of-life
EPP	Electronic prototyping platform
ER	Enhanced reality
ERP	Enterprise resource planning
ETO	Engineering to order
FAR	Federal Acquisition Regulation
FASB	Financial Accounting Standards Board
FBS	Function-behavior-structure
FDA	Food and Drug Administration
FGI	Finished goods inventory
FMECA	Failure mode effects and criticality analysis
FMS	Flexible manufacturing systems
FPGA	Field-programmable gate array
FSA	Flexible Spending Account, also known as flexible spending
	arrangement
FTO	Freedom to Operate
FWTR	Fretting wear test rig
G	Good
GD&T	Geometric dimensioning and tolerancing
GHG	Greenhouse Gas protocol
GRA	Golden Robot Award
GSM/EDGE	The technology Enhanced Data for Global Evolution (EDGE) is a
	high-speed mobile data standard, intended to enable
	second-generation Global System for Mobile communication
	(GSM) and time-division multiple access (TDMA) networks to
	transmit data at up to 384 kilobits per second (Kbps)
GTO	Game theory optimal
HMI	Human-machine interfaces
Homo Faber	In Latin, means "Man the Smith," "Man the Maker," or "Man the
	Toolmaker." As used by Max Frisch, it refers to a man who
	controls his environment through his abilities and tools, to be a
	maker of things. Including the Internet of things (IoT) or the
	industrial Internet of things (IIoT)
HVAC	Heating ventilation/air conditioning
I/O	Input/output
I4.0	The Fourth Industrial Revolution, rise from the activities
	digitalization
ICAM	Integrated Computer-Aided Manufacturing
ICT	Information and Communications Technology
IDEF0	Integration definition for function modeling
IEC	International Electrotechnical Commission

IEEE	Institute of Electrical and Electronics Engineers, a professional
	association for electronic engineering and electrical engineering
	with its corporate office in New York City
IFIP	International Federation for Information Processing
IIC	Information item contents, lifecycle management documents
IIoT	Industrial Internet of things
IKP	Inverse kinematic problem
ILS	Integrated logistic support
IMPS	Integrated manufacturing process systems
IoT	Internet of things
IPR	Intellectual property rights
IQ	An intelligence quotient is a total score derived from a set of
-	standardized tests designed to assess human intelligence
IRR	Internal rate of return
ISO	International Standardization Organization
ISV	Independent software vendors
IT	Information Technology
ITAR	International Traffic in Arms Regulations
ITT	Invitation to tender
IUID	Item Unique Identification
JBP	Joint Business Planning
JEDEC	Joint Electron Device Engineering Council, a solid-state technol-
	ogy association independent semiconductor engineering trade
	organization and standardization body
JTC	Joint Technical Committee
ЈТтм	Data format, for viewing and sharing lightweight 3D product data
KADS	Knowledge analysis and design support
KBS	Knowledge-based systems
KDE SC	K Desktop Environment Software Compilation, founded in 1996
11111111	by Matthias Ettrich, a student at the University of Tübingen,
	troubled at the time by certain aspects of the Unix desktop. Among
	his qualms was that none of the applications looked, felt, or
	worked alike. He proposed the formation of not only a set of
	applications, but, rather, a desktop environment, in which users
	could expect things to look, feel, and work consistently. He also
	wanted to make this desktop easy to use; one of his complaints
	with desktop applications of the time was that his girlfriend could
	not use them. His initial Usenet post spurred a lot of interest, and
	the KDE project was born
KPI	Key performance indicators
LAN	Local area network
LCA LCC	Life cycle assessment (or life cycle analysis)
	Life cycle cost
LCM	Lifecycle management
LCP	Life cycle planning

xviii	Acronyms/Terms and Abbreviations
LSF	Logistic storing facilities
LTE	Long-Term Evolution, a 4G communication standard for wireless
212	broadband communication for mobile devices and data terminals,
	based on the GSM/EDGE and UMTS/HSPA technologies
LTO	Limited time offer
M2M	Machine to machine
MANK	Management knowledge
MBSE	Model-based systems engineering
MDA	Model-driven approach
MDE	Multiple Discipline Engineering
MK	Marketing knowledge
ML	Machine learning
MLM	Machines and mechanisms lifecycle management
MM	Machines and mechanisms
MoU	Memorandum of understanding
MPR	Micro-pitting rig
MR	Mixed reality
MRO	Maintenance, repair, and overhaul
MTO	Made to order/Make to order/Manufacture to order
NC	Numerical control
NDA	Net Digital Age
NEN	Nederlands Normalisatie-instituut
NOPAT	Net operating profit after taxes
NPV	Net present value
OAIS	Open Archival Information System
OASIS	Open standards opens source
OEM	Original Equipment Manufacturer
OMG	Object Management Group
ORC	Organic Rankine cycle is a steam generator that uses an organic,
	high molecular mass fluid with a liquid-vapor phase change, or
	boiling point, occurring at a lower temperature than the
	water-steam phase change
OSLC	Open Services for Lifecycle Collaboration
PAS	Publicly Available Specification
PASM	Product accompanying service model
PBM	Policy-based management
PC	Personal computer
PCB	Printed circuit boards
РСН	Project change histories
PCPR	Previous contract provided resources
PD	Product data
PDM	Product data management
PESTEL	Political, economic, social, technology, environmental, legal
PiP	Picture in picture
PIV	Particle image velocimetry

PLC	Programmable logic controllers
PLCS	Application Protocol for Product Life Cycle Support
PLM	Product lifecycle management
PLMP	Product lifecycle management platform
PM	Parts management
PMBOK	Product management book of knowledge
PMT	Project management triangle
POD	Pin on disk
POF	Problem optimization formulation
POS	Point of sale
PP	Product process
PPC	Production planning and control
PROSA	Production planning and control Product sustainability assessment
ProSeCo	Product sustainability assessment
	-
PSH	Process Simulate Human
PSM	Product structure management
PSS	Product-service system
PTAB	Primary Trustworthy Digital Repository Authorisation Body
PTO	Paid time off
PTR	Pump test rig
PVM	Process virtual machine
R&D	Research and development
RACI	Responsible, Accountable, Consulted, Informed
RCF	Relative centrifugal force
REACH	Registration, Evaluation, Authorisation and Restriction of
	Chemicals, an European Union regulation dating from 18
	December 2006
RFID	Radio-frequency identification
RGB	Red Green Blue, is an additive color model in which red, green,
	and blue light are added together in various ways to reproduce a
	broad array of colors. The name of the model comes from the
	initials of the three additive primary colors
RIO	CompactRIO is a real-time embedded industrial controller made
	by National Instruments for industrial control systems. The
	CompactRIO is a combination of a real-time controller, reconfig-
	urable IO modules, FPGA module, and an Ethernet expansion
	chassis
RMA	Records Management Applications
RMMD	Refined mechanism-machine design
RMT	Reliable Memory Technology
ROCE	Return on capital employed
RoHS	Restriction of Hazardous Substances Directive 2002/95/EC
ROI	Return on investment
RPA	Robotics process automation
RPM	Rotations per minute
	L

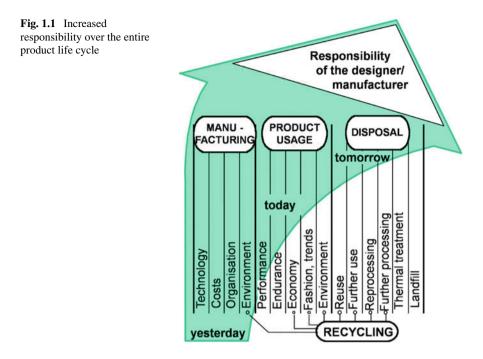
RPUID	Real Property Unique Identification
RQ	Robotics quotient is a scoring way of a company or individual's
κų	about the ability to work effectively with robots
RTO	Recovery Time Objective
RTPV	Real-time project visibility
S	Swift
SADT	Structured analysis and design technique
SCM	Supply chain management
SE	Sale Engineer
SEC	Securities and Exchange Commission, an independent agency
	of the United States federal government
SEM	Systems engineering methodologies
SEO	Systems Engineering Organization
SHRM	Society for Human Resource Management
SIPOC	Suppliers, inputs, process, outputs, customers
SLM	Simulation lifecycle management/service lifecycle management
SMBO	Sequential model-based optimization
SME	Small and medium-sized enterprises
SMRL	Semantic Markup Rule Language
SOP	Standard operating procedure
SPDM	Simulation and Process Data Management
SSCC	Serial Shipping Containers Code
ST	Synchronous technology
STEP	Standard for the Exchange of Product Model Data
STEP	Is an open-source two-dimensional physics simulation engine that
	is included in the KDE SC
SVM	System virtual machine/support vector machine, a supervised
5 111	machine learning model that uses classification algorithms for
	two-group classification problems.
SWOT	Strengths, weaknesses, opportunities, threats
SysML	Systems Modeling Language
TaT	Turnaround time
TCD	Total customer demand
TCO	Total cost of ownership
ТСР	Tool Center Point
TLCM	Total Life Cycle Management
TOC	Total ownership cost
TPM	Trusted Platform Module
TRL	Technology readiness level
TTM	Time to market
TTR	Tiltrotor test rig
TTR	· · · · · · · · · · · · · · · · · · ·
	Turbocharger test rig
TWTR	Thrust washer test rig
UA	User agent
UI	User interface

UID	Unique Identification
UII	Unique item identifier
UML	Unified Modeling Language
UMTS/HSPA	Technologies, where UMTS provides a clear evolutionary
	path to high-speed packet access (HSPA). HSPA refers to the
	combination of high-speed downlink packet access (HSDPA)
	and high-speed uplink packet access (HSUPA) that allows data
	rates up to 14.4 Mbit/s in the downlink
VC	Variant configurator
VM	Virtual machine
VMC	Virtual machine controls
VMM	Virtual machine monitor (hypervisor)
VMT	Virtual machine templates
VP	Vice President
VR	Virtual reality
VSM	Viable system model
VSOE	Vendor-specific objective evidence
VTR	Valve test rig
W3C	World Wide Web Consortium
WACC	Weighted average cost of capital
WAN	Wide area network
WBS	Work breakdown structure
WEEE	Waste Electrical and Electronic Equipment Directive
	(2002/96/EC)
WIPO	World Intellectual Property Organization
WPDM	Web-based PDM
XML	Extensible Markup Language

Part I Life Cycle System Modeling: Factors of PLM Design

Chapter 1 Product Life Cycle and Services Management

1.1 The New Paradigm


Industrial manufacturing and the consumption of technical products have led to a dramatic depletion of natural resources and an increasing strain on the environment due to emissions. Society's heightened ecological awareness is taking effect, with the result that more and more companies are publicly committing themselves to environmental protection. In the process, laws and requirements are bringing about a change in the management of resources. Many companies now recognise the fact that they can make cost savings by encapsulating critical technical processes and handling problem materials more frugally. Today, this development is leading to a rediscovery of the product life cycle. In consequence, this development is also strengthening the sustainability sought by politics and society with regard to responsible commercial trading. Commercial sustainability means that all trade should be orientated towards maintaining all resources. The question at the core of manufacturing is how to achieve overall value creation with one product over its entire lifetime by taking life cycle management into account. Consequently, a change in strategies has taken place which not only takes economical aims but also ecological and societal aspects into consideration in the design and utilisation of technical products (Fig. 1.1).

Manufacturers have to accept more and more responsibility for the usability of their technical products and for the consequences of usage. However, many companies only follow statutory general conditions in pre-sales and after-sales in order to avoid losing their markets. There is a general impression that the cost-benefit ratio, especially in after-sales business, is insufficient. This also applies to industrial recycling.One main factor is the availability of actual information about the products and a lack of synergy between final assembly and after-sales operations [1].

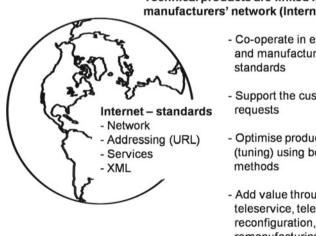
The development of modern products is being decisively influenced by the application of technologies contributing towards increased efficiency. Products are becoming complex highly-integrated systems with internal technical intelligence enabling the user to implement them reliably, economically and successfully even in the fringe

[©] Springer Nature Switzerland AG 2021

J. Niemann and A. Pisla, *Life-Cycle Management of Machines* and Mechanisms, Mechanisms and Machine Science 90, https://doi.org/10.1007/978-3-030-56449-0_1

ranges of technology. As a result, business strategies are aiming more and more at perfecting technical systems, optimising product usage and maximising added value over the entire lifetime of a product. In this context, the total management of product life cycles coupled with the integration of information and communications systems is becoming a key success factor for industrial companies.

When manufacturing technical products, industrial companies generally direct their strategies towards economic targets. Their main business lies in developing, producing and operating products either for individual customers or for complete sectors of the market. Service and maintenance are considered by many companies to be necessary in order to achieve lasting business relationships with customers.


Several studies indicate that the role of these services will change from being a product-accompanying service to becoming the main *revenue driver*. This means that the original product itself will turn into a vehicle (platform) to sell such services as *main business* [1].

Consequently, industrial manufacturing companies are increasingly concentrating their businesses on engineering, assembly and services. They are following new paradigms in order to add value through customer orientation, system management and services during the lifetime of their products. The machine manufacturing industry and other industrial fields such as the automobile industry have reduced their own capacities down to the main or core technologies and final assembly. Parts and components are manufactured by suppliers or specialised companies. Profit is increasingly becoming a result of business operations in design, engineering, final

assembly and service. These phases of production are the core competencies of companies which produce strong market or customer-orientated products and add value during a product's life cycle [2].

The functionalities of products are defined in the processes of design and engineering. The functionality of products and their specific or characteristic properties for usage are determined (as built) or altered by assembling, maintaining and disassembling real configurations. In the usage phase, special know-how regarding design and characteristic properties is required, such as specific process knowledge for optimising utilisation and performance. Increasing technical complexity is promoting product-near services and manufacturer assistance. This brings about new business models for marketing only the functionality of capital-intensive products rather than selling the products themselves.

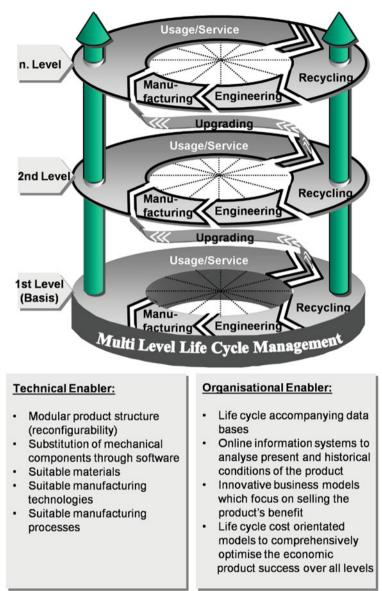
There is a new paradigm behind these tendencies: in order to add value and maximise utilisation, products are linked in the manufacturer's network from the beginning right up to the end (Fig. 1.2). In order to realise this paradigm, manufacturers need life cycle management (LCM) systems, tools and technologies. The concentration of all processes into the total life cycle of a product and the optimisation of usage of each single technical product can be described as a new paradigm. Seen from a global point or macro-economical point of view, this is only logical. Seen from an operational or micro-economical point of view, it is proving difficult to initiate such strategies. This is because fundamental structural changes are required in products as well as in organisations and production technologies and also that the economic benefits involved are either uncertain or associated with risks [1].

Technical products are linked in the manufacturers' network (Internet) to

- Co-operate in engineering and manufacturing on global
- Support the customer in all
- Optimise product utilisation (tuning) using best practice
- Add value through the use of teleservice, teleoperations, reconfiguration, reuse, remanufacturing, recycling
- Manage the total life cycle of specific products

Fig. 1.2 The vision of life cycle management

Additionally, locally optimised product life cycles (i.e. optimisation of individual processes) may not exhibit superior performance globally from multi-objective perspectives. Therefore, the performance of product life cycles needs to be evaluated from holistic and multi-objective perspectives.


However, there is a futuristic vision in the life cycle management of optimising the total exploitation of each product and reducing environmental impact to a minimum. In reality, the different types of products need to be taken into account individually. For some products, it makes economic sense to link them to the manufacturer's network. If the futuristic vision is followed that all machines and high-quality technical products remain in the manufacturer's information network, the Internet will attain a central importance in total life cycle management [3-5].

The strategies followed by companies are significantly dependent upon the type of product involved. In a preliminary classification, three categories with varying time scales and strategies may be defined. The first category is goods with a short lifetime and a low product value or complexity. Such non-durable technical consumer goods are usually mass-produced and manufactured in large series. Here the main emphasis of life cycle management is placed on the rational organisation of services, marketing and product recycling techniques. Robust techniques can be used for recycling due to the fact that the added value profit is low in relation to the value of the product. The second category is assigned to series products with a limited number of variants. Life cycle management for these products includes services and maintenance as well as industrial recycling and the partial reuse of parts and components. The third category is reserved for high-quality capital goods. The main emphases here are on maximum utilisation strategies, maintaining performance and additional added value in the field of after-sales. Industrial recycling only plays a minor economic role in this category of products.

A forward-looking life cycle plan for the product is one example of a maximum utilisation strategy. On completion of the usage phase, the owner faces the alternatives of either scrapping/recycling the product or of upgrading it. Through upgrading, the product is transformed so that it obtains a new operational status reflected in new product functions. Specific software or hardware modifications are carried out on the product to equip it with advanced, extended or new functional features in comparison with its original condition. Consequently, the product can be improved, extended or utilised to perform completely new tasks. Through upgrading, a product almost starts a new life (Fig. 1.3).

However, upgrading is not always possible due to either technical or economic circumstances. In order to be able to upgrade at a later point in time, far-sighted product planning is required which commences in the product engineering stage. In this early phase of development, the fundamental product features—including later modification possibilities—are fixed. Numerous technical and organisational measures decide whether a product can be successfully transformed to attain another level.

From a technical point of view, the modular design of a product's construction is of particular importance. Modular product design in accordance with the laws of system technology enables the variable and economically-viable re-design of a

© IFF, Westkämper, Niemann

Fig. 1.3 Products have several lives [2]

product throughout its entire lifetime. If the fact is taken into consideration that a product may be modified many times over or even altered completely during its lifetime, such product constructions not only bring about advantages for product maintenance but also create enormous potentials. The increasing substitution of mechanical components with software also supports the short-term usage of a product for variable task assignments. Retrofitting times can be shortened due to the fact that modified software can be installed much faster than hardware components can be exchanged [1].

From a technical point of view, product optimisation can be supported using lifelong data acquisition. Data-logging enables the behaviour of a product to be statistically analysed or products and processes to be monitoring online. The data obtained using this method is evaluated according to specific criteria and discloses optimisation potentials. This permits machines to be completely controlled with the result that, in the future, not only will it be possible to perform technical optimisation but also to take economical factors into consideration and to carry out far-sighted planning thanks to the availability of "real" machine data. Life cycle simulation techniques also enable us to predict product behaviour even in the early phases of the design process. Such real machine data dynamically improve the life cycle model used in life cycle simulation. Up till now, conventional manufacturing paradigms have focused on profit aspects associated with manufacturing and selling products to the end-customer. The new paradigm takes into account the life cycle of technical products and the optimisation of value and benefits during the phases of engineering, assembly, service, maintenance and disassembly. The objective is to reduce environmental losses and to fulfil public or governmental restrictions over the life cycle [5, 6].

Following the new paradigm of optimisation and added value over the total life of products, a structural change in the relationship between the manufacturer and the user will take place. Both have different views regarding the same business processes in the life of products, as shown in Fig. 1.4.

Different views held about the same product are the result of industrial developments in the twenty-first century. In the future, the holistic view will offer new ages of manufacturing.

1.2 Manufacturer's Viewpoint

In general, the life cycle of products can be divided into the phases of design and engineering, manufacturing, assembly, usage, service, disassembly and recycling.

The main objective is to fulfil markets and customer requirements to ensure the efficient utilisation of manufacturing resources. The new view adds value in the usage and recycling phases as a result of customer-related services including maintenance and disassembly for reconfiguration, reuse and recycling. More than ever before, this view of the usage and recycling phases makes it indispensable to take into account



Fig. 1.4 Views of manufacturers and users on the life cycle of technical products

the various aspects of life cycle design and engineering or the capability of systems to be assembled, disassembled and diagnosed in all phases, especially in that of usage.

It is also necessary to describe the architecture of a product which, in effect, is a mixture of goods and services. Using a model of the integrated architecture, interdependencies between goods and services can be managed more easily because it clarifies how various parts contribute to realising a function. As mentioned before, the early phases of the manufacturing process are mostly outsourced to suppliers. Therefore, it is necessary to consider the relationship between manufacturers and suppliers from an economical and environmental perspective. This creates profitable product-orientated services throughout all operations by supporting the diagnostics of actual features, as well as the partial disassembly and assembly for reconfiguration or upgrading and the final disassembly for recycling [7, 8].

1.3 Customer's Viewpoint

Customers are generally interested in achieving high product utilisation in the usage phase at the lowest cost, even if this demands that manufacturing processes need to be changed. This requires flexible manufacturing systems which provide guaranteed process performance and require minimal set-up times and costs. The high efficiency of the usage of complex technical products depends on specific skills and knowhow concerned with the details of machines, mechatronic components, software and process optimisation. These costs can be overcome by using specific skilled services and assistance or support provided by manufacturers. Users prefer buying specialised services to reduce the fixed costs of products as well as the costs of inspection, maintenance and reconfiguration or upgrading.

The economic efficiency of capital-intensive products in industrial manufacturing depends on the demands and profiles of products, technical requirements and capacities. These requirements are constantly changing with the result that manufacturing systems need to be permanently adapted [7].

1.4 Goals of a Sustainable Product Life Cycle Management

The new paradigm of optimising a technical product's cost-benefit is orientated not only towards economic but also towards environmental aspects by applying ecological criteria. It assumes that the concentration on core competencies and specialisation offers new potentials to add value or reduce the cost of usage by industrialising services and disassembly.

A common understanding between manufacturers and users is a prerequisite for activating potentials in order to obtain the maximum benefit from each technical product during its life cycle and to fulfil economic and environmental objectives (Fig. 1.5).

Common sense and active optimisation demand technical solutions that link products at any point in the time of their entire life cycle to the information networks of manufacturers and users. This can be achieved by integrating technical products into global IT networks and electronic services. It is evident today that we have the technologies to do this and also to follow the technical trend for developing intelligent machines connected up to communications systems [9-11].

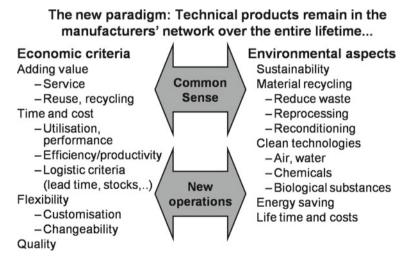


Fig. 1.5 Objectives of life cycle management